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XII

ARISTARCHUS OF SAMOS

Historians of mathematics have, as a rule, given too little

attention to Aristarchus of Samos. The reason is no doubt
that he was an astronomer, and therefore it might be supposed

that his work would have no sufficient interest for the mathe-
matician. The Greeks knew better; they called him Aristar-

chus ' the mathematician ', to distinguish him from the host

of other Aristarchuses ; he is also included by Vitruvius

among the few great men who possessed an equally profound

knowledge of all branches of science, geometry, astronomy,

music, &c.

' Men of this type are rare, men such as were, in times past,

Aristarchus of Samos, Philolaus and Archytas of Tarentum,
Apollonius of Perga, Eratosthenes of Cyrene, Archimedes and
Scopinas of Syracuse, who left to posterity many mechanical
and gnomonic appliances which they invented and explained

on mathematical (lit. ' numerical
')

principles.' 1

That Aristarchus was a very capable geometer is proved by

his extant work On the sizes and distances of the Sun and
Moon which will be noticed later in this chapter: in the

mechanical line he is credited with the discovery of an im-

proved sun-dial, the so-called o-Kcc(f>r], which had, not a plane,

but a concave hemispherical surface, with a pointer erected

vertically in the middle throwing shadows and so enabling

the direction and the height of the sun to be read off by means

of lines marked on the surface of the hemisphere. He also

wrote on vision, light and colours. His views on the latter

subjects were no doubt largely influenced by his master, Strato

of Lampsacus ; thus Strato held that colours were emanations

from bodies, material molecules, as it were, which imparted to

the intervening air the same colour as that possessed by the

body, while Aristarchus said that colours are ' shapes or forms

1 Vitruvius, De architectural i. 1. 16.

1523.2 B



2 ARISTARCHUS OF SAMOS

stamping the air with impressions like themselves, as it were ',

that ' colours in darkness have no colouring ', and that ' light

is the colour impinging on a substratum '.

Two facts enable us to fix Aristarchus's date approximately.

In 281/280 B.C. he made an observation of the summer
solstice ; and a book of his, presently to be mentioned, was
published before the date of Archimedes's Psammites or Sand-

reckoner, a work written before 216 B.C. Aristarchus, there-

fore, probably lived circa 310-230 B.C., that is, he was older

than Archimedes by about 25 years.

To Aristarchus belongs the high honour of having been

the first to formulate the Copernican hypothesis, which was
then abandoned again until it was revived by Copernicus

himself. His claim to the title of ' the ancient Copernicus ' is

still, in my opinion, quite unshaken, notwithstanding the in-

genious and elaborate arguments brought forward by Schia-

parelli to prove that it was Heraclides of Pontus who first

conceived the heliocentric idea. Heraclides is (along with one

Ecphantus, a Pythagorean) credited with having been the first

to hold that the earth revolves about its own axis every 24

hours, and he was'the first to discover that Mercury and Venus

revolve, like satellites, about the sun. But though this proves

that Heraclides came near, if he did not actually reach, the

hypothesis of Tycho Brahe, according to which the earth was
in the centre and the rest of the system, the sun with the

planets revolving round it, revolved round the earth, it does

not suggest that he moved the earth away from the centre.

The contrary is indeed stated by Aetius, who says that ' Hera-

clides and Ecphantus make the earth move, not in the sense of

translation, but by way of turning on an axle, like a wheel,

from west to east, about its own centre *.1 None of the

champions of Heraclides have been able to meet this positive

statement. But we have conclusive evidence in favour of the

claim of Aristarchus ; indeed, ancient testimony is unanimous

on the point. Not only does Plutarch tell us that Cleanthes

held that Aristarchus ought to be indicted for the impiety of

' putting the Hearth of the Universe in motion

'

2
; we have the

best possible testimony in the precise statement of a great

1 Aet. iii. 13. 3, Vors. i
3
, p. 341. 8.

2 Plutarch, De facie in orbe lunae, c. 6, pp. 922 f-923 a.



ARISTARCHUS OF SAMOS 3

contemporary, Archimedes. In the Sand-reckoner Archi-

medes has this passage.

' You [King Gelon] are aware that " universe " is the name
given by most astronomers to the sphere the centre of which
is the centre of the earth, while its radius is equal to the

straight line between the centre of the sun and the centre of

the earth. This is the common account, as you have heard
from astronomers. But Aristarchus brought out a book con-

sisting of certain hypotheses, wherein it appears, as a conse-

quence of the assumptions made, that the universe is many
times greater than the " universe "just mentioned. His hypo-
theses are that the fixed stars and the sun remain unmoved,
that the earth revolves about the sun in the circumference of a
circle, the sun lying in the middle of the orbit, and that the

sphere of the fixed stars, situated about the same centre as the

sun, is so great that the circle in which he supposes the earth

to revolve bears such a proportion to the distance of the fixed

stars as the centre of the sphere bears to its surface.'

(The last statement is a variation of a traditional phrase, for

which there are many parallels (cf . Aristarchus's Hypothesis 2

' that the earth is in the relation of a point and centre to the

sphere in which the moon moves '), and is a method of saying

that the ' universe ' is infinitely great in relation not merely to

the size of the sun but even to the orbit of the earth in its

revolution about it; the assumption was necessary to Aris-

tarchus in order that he might not have to take account of

parallax.)

Plutarch, in the passage referred to above, also makes it

clear that Aristarchus followed Heraclides in attributing to

the earth the daily rotation about its axis. The bold hypo-

thesis of Aristarchus found few adherents. Seleucus, of

Seleucia on the Tigris, is the only convinced supporter of it of

whom we hear, and it was speedily abandoned altogether,

mainly owing to the great authority of Hipparchus. Nor'do

we find any trace of the heliocentric hypothesis in Aris-

tarchus's extant work On the sizes and distances [of the

Sun and Moon. This is presumably because that work was

written before the hypothesis was formulated in the book

referred to by Archimedes. The geometry of the treatise

is, however, unaffected by the difference between the hypo-

theses. *
,

B 2



4 ARISTARCHUS OF SAMOS

Archimedes also says that it was Aristarchus who dis-

covered that the apparent angular diameter of the sun is about

l/720th part of the zodiac circle, that is to say, half a degree.

We do not know how he arrived at this pretty accurate figure :

but, as he is credited with the invention of the o-KcccpT], he may
have used this instrument for the purpose. But here again

the discovery must apparently have been later than the trea-

tise On sizes and distances, for the value of the subtended

angle is there assumed to be 2° (Hypothesis 6). How Aris-

tarchus came to assume a value so excessive is uncertain. As
the mathematics of his treatise is not dependent on the actual

value taken, 2° may have been assumed merely by way of

illustration ; or it may have been a guess at the apparent

diameter made before he had thought of attempting to mea-

sure it. Aristarchus assumed that the angular diameters of

the sun and moon at the centre of the earth are equal.

The method of the treatise depends on the just observation,

which is Aristarchus's third ' hypothesis ', that ' when the moon
appears to us halved, the great circle which divides the dark

and the bright portions of the moon is in the direction of our

eye
'

; the effect of this (since the moon receives its light from

the sun), is that at the time of the dichotomy the centres of

the sun, moon and earth form a triangle right-angled at the

centre of the moon. Two other assumptions were necessary

:

first, an estimate of the size of the angle of the latter triangle

at the centre of the earth at the moment of dichotomy : this

Aristarchus assumed (Hypothesis 4) to be ' less than a quad-

rant by one-thirtieth of a quadrant', i.e. 87°, again an inaccu-

rate estimate, the true value being 89° 50' ; secondly, an esti-

mate of the breadth of the earth's shadow where the moon
traverses it : this he assumed to be ' the breadth of two
moons ' (Hypothesis 5).

The inaccuracy of the assumptions does not, however, detract

from the mathematical interest of the succeeding investigation.

Here we find the logical sequence of propositions and the abso-

lute rigour of demonstration characteristic of Greek geometry
;

the only remaining drawback would be the practical difficulty

of determining the exact moment when the moon ' appears to

us halved '. The form and style of the book are thoroughly

classical, as befits the period between Euclid and Archimedes
;
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the Greek is even remarkably attractive. The content from

the mathematical point of view is no less interesting, for we
have here the first specimen extant of pure geometry used

with a trigonometrical object, in which respect it is a sort of

forerunner of Archimedes's Measurement of a Circle. Aristar-

chus does not actually evaluate the trigonometrical ratios

on which the ratios of the sizes and distances to be obtained

depend ; he finds limits between which they lie, and that by

means of certain propositions which he assumes without proof,

and which therefore must have been generally known to

mathematicians of his day. These propositions are the equi-

valents of the statements that,

(1) if a is what we call the circular measure of an angle

and oc is less than \ w, then the ratio sin oc/oc decreases, and the

ratio tan oc/oc increases, as oc increases from to \ it
;

(2) if ft be the circular measure of another angle less than

| tt, and oc>ft, then

sin oc oc tan oc

sin ft (3 tan /?

Aristarchus of course deals, not with actual circular measures,

sines and tangents, but with angles (expressed not in degrees

but as fractions of right angles), arcs of circles and their

chords. Particular results obtained by Aristarchus are the

equivalent of the following :

A > sin 3° > J
,

[Prop. 7]

^>sinl >3-V [Prop. 11]

1 >cosl° > ||, [Prop. 12]

1 >cos2 l°>|f. [Prop. 13]

The book consists of eighteen propositions. Beginning with

six hypotheses to the effect already indicated, Aristarchus

declares that he is now in a position to prove

(1) that the distance of the sun from the earth is greater than

eighteen times, but less than twenty times, the distance of the

moon from the earth

;

(2) that the diameter of the sun has the same ratio as afore-

said to the diameter of the moon

;
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(3) that the diameter of the sun has to the diameter of the

earth a ratio greater than 19:3, but less than 43 : 6.

The propositions containing these results are Props. 7, 9

and 15.

Prop. 1 is preliminary, proving that two equal spheres are

comprehended by one cylinder , and two unequal spheres b}'

one cone with its vertex in the direction of the lesser sphere,

and the cylinder or cone touches the spheres in circles at

right angles to the line of centres. Prop. 2 proves that, if

a sphere be illuminated by another sphere larger than itself,

the illuminated portion is greater than a hemisphere. Prop. 3

shows that the circle in the moon which divides the dark from

the bright portion is least when the cone comprehending the

sun and the moon has its vertex at our eye. The ' dividing

circle ', as we shall call it for short, which was in Hypothesis 3

spoken of as a great circle, is proved in Prop. 4 to be, not

a great circle, but a small circle not perceptibly different

from a great circle. The proof is typical and is worth giving

along with that of some connected propositions (11 and 12).

B is the centre of the moon, A that of the earth, CD the

diameter of the ' dividing circle in the moon ', EF the parallel

diameter in the moon. BA meets the circular section of the

moon through A and EF in G, and CD in L. GH, GK
are arcs each of which is equal to half the arc GE. By
Hypothesis 6 the angle CAD is ' one-fifteenth of a sign' =2°,

and the angle BAC =1°.

Now, says Aristarchus,

1°:45°[> tan 1°: tan 45°]

> BC:CA,

and, a fortiori,

BC.BA or BG.BA

< 1:45;

that is, BG<^BA

therefore, a fortiori,

< A GA

BH<&HA.
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Now

whence

BE:EA[= sin EA

B

: sin HBA]

> LEAB.LEBA,
LHAB< ^LEBA,

F D

and (taking the doubles) LEAK < & Z #£if.

But Z im/L = Z EBG = ^o -K (where R is a right angle)

therefore LEAK < ^IncB.3 9^0

But 'a magnitude (arcffit) seen under such an angle is

imperceptible to our eye
'

;

therefore, a fortiori, the arcs CE, DF are severally imper-

ceptible to our eye. Q. E. D.

An easy deduction from the same figure is Prop. 12, which

shows that the ratio of CD, the diameter of .the ' dividing-

circle ', to EF, the diameter of the moon, is < 1 but > §§

.

We have Z EBC = L BAG = 1°

;

therefore (arc EG) = ^ (arc EG),

and accordingly (arc GG) : (arc GE) = 89 : 90.

Doubling the arcs, we have

(arc GGD) : (arc EGF) = 89 : 90.

But CD : EF > (arc GGD) : (arc EGF)

[equivalent to sin a /sin (3 > oc//3, where LCBD = 2 a,

and 2 /3 = ir\ ;

therefore CD.EF [= cos 1°] > 89 : 90,

while obviously CD : EF < 1

.

Prop. 11 finds limits to the ratio EF.BA (the ratio of the

diameter of the moon to the distance of its centre from

the centre of the earth) ; the ratio is < 2 : 45 but > 1 : 30.
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The first part follows from the relation found in Prop. 4,

namely BC.BA < 1:45,

for EF = 2 BG.

The second part requires the use of the circle drawn with

centre A and radius AG. This circle is that on which the

ends of the diameter of the ' dividing circle ' move as the moon
moves in a circle about the earth. If r is the radius AG
of this circle, a chord in it equal to r subtends at the centre

A an angle of § R or 60° ; and the arc CD subtends at A
an angle of 2°.

But (arc subtended by CD) : (arc subtended by r)

< CD.r,

or 2:60 < CD.r
;

that is, CD.CA > 1:30.

And, by similar triangles,

CL-.CA = CB.BA, or CD.CA = 2GB: BA = FE.BA.

Therefore FE.BA > 1 : 30.

The proposition which is of the greatest interest on the

whole is Prop. 7, to the effect that the distance of the sun

from the earth is greater than 18 times, but less than 20
times, the distance of the moon from the earth. This result

represents a great improvement on all previous attempts to

estimate the relative distances. The first speculation on the

subject was that of Anaximander (circa 611-545 B.C.), who
seems to have made the distances of the sun and moon from

the earth to be in the ratio 3:2. Eudoxus, according to

Archimedes, made the diameter of the sun 9 times that of

the moon, and Phidias, Archimedes's father, 1 2 times ; and,

assuming that the angular diameters of the two bodies are

equal, the ratio of their distances would be the* same.

Aristarchus's proof is shortly as follows. A is the centre of

the sun, B that of the earth, and G that of the moon at the

moment of dichotomy, so that the angle AGB is right. ABEF
is a square, and AE is a quadrant of the sun's circular orbit.

Join BF, and bisect the angle FBE by BG, so that

LGBE= \R or 22|°.
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I. Now, by Hypothesis 4, Z ABC = 87°,

so that Z HBE = Z BAC = 3°

:

9

therefore LGBE\£HBE= iR:^R
= 15:2,

so that GE:HE[= tan GBE : tan HBE] > Z ££# : Z #£#

> 15 :2. (1)

The ratio which has to be proved > 18:1 is AB:BC or

FE:EH.

Now FG:GE=FB:BE,

whence FG 2 :GE 2 = FB2 :BE* = 2:1,

and FG:GE = V2:l

> 7:5

(this is the approximation to \/2 mentioned by Plato and

known to the Pythagoreans).
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Therefore FE: EG > 12 : 5 or 36 : 15.

Compounding this with (1) above, we have

FE.EH > 36:2 or 18:1.

II. To prove BA < 20 BC.

Let BH meet the circle AE in D, and draw DK parallel

to EB. Circumscribe a circle about the triangle BKD, and

let the chord BL be equal to the radius (r) of the circle.

Now Z BDK = L DBE = & R,

so that arc BK = £§ (circumference of circle).

' Thus (arc BK) : (arc BL) = ^ : |

,

= 1:10.

And (arc BK ) : (arc BL) < BK : r

[this is equivalent to a/j3 < sin a/sin /?„ where a < /? < J77-],

so that r < 10 5Z,

and £D < 20 BK.

But BD:BK = AB:BC;

therefore AB < 20 £0. Q. E. D.

The remaining results obtained in the treatise can be

visualized by means of the three figures annexed, which have

reference to the positions of the sun (centre A), the earth

(centre B) and the moon (centre C) during an eclipse. Fig. 1

shows the middle position of the moon relatively to the earth's

shadow which is bounded by the cone comprehending the sun

and the earth. ON is the arc with centre B along which

move the.extremities of the diameter of the dividing circle in

the moon. Fig. 3 shows the same position of the moon in the

middle of the shadow, but on a larger scale. Fig. 2 shows

the moon at the moment when it has just entered the shadow
;

and, as the breadth of the earth's shadow is that of two moons
(Hypothesis 5), the moon in the position shown touches BN at

iVand BL at L, where L is the middle point of the arc ON.
It should be added that, in Fig. 1, ?7Fis the diameter of the

circle in which the sun is touched by the double cone with B
as vertex, which comprehends both the sun and the moon,
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while Y, Z are the points in which the perpendicular through

A, the centre of the sun, to BA meets the cone enveloping the

sun and the earth.

Fig. 1.

This being premised, the main results obtained are as

follows

:

Prop. 13.

(1)

but

ON : (diam. of moon) < 2 : 1

> 88:45.
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(2) ON: (diam. of sun) < 1 : 9

but > 22: 225

(3) ON.YZ > 979:10125.

Prop. 14 (Fig. 3).

Prop. 15

but

BC:CS> 675:1.

(Diam. of sun) : (diam. of earth) > 19 : 3

< 43:6.

B

Fig. 2.

Prop. 17.

(Diam. of earth) : (diam. of moon) > 108 : 43

but < 60: 19.

It is worth while to show how these results are proved.

Prop. 13.

(1) In Fig. 2 it is clear that

0Ar < 2LN and, a fortiori, < 2 LP.

The triangles LON, GLN being similar,

0N:NL = NL:LC:

therefore 0N:NL = NL.\LP

> 89: 45. (by Prop. 12)
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Hence ON : LC = ON2
: NL2

> 89 2 :45 2
;

therefore ON: LP > 7921 : 4050

> 88:45, says Aristarchus.

[If J§|J be developed as a continued fraction, we easily

obtain 1 + , which is in fact1+21+2 45 J

(2) ON < 2 (diam. of moon).

But (diam. of moon) < -£s (diam. of sun)
;

(Prop. 7)

therefore ON < § (diam. of sun).

Again ON: (diam. of moon) > 88:45, from above,

and (diam. of moon) : (diam. of sun) > 1 : 20
;

(Prop. 7)

therefore, ex aequali,

ON: (diam. of sun) > 88 : 900

> 22:225.

(3) Since the same cone comprehends the sun and the moon,

the triangle BUV (Fig. 1) and the triangle BLN (Fig. 2) are

similar, and

LN:LP = UV: (diam. of sun)

= WU:UA

= UA:AS

< UA-.AY.

But LN : LP > 89 : 90
;

(Prop. 1 2)

therefore, a fortiori, UA : A Y > 89 : 90.

And UA:AY= 2UA.YZ

= (diam. of sun) : YZ.

But ON: (diam. of sun) > 22 : 225
;

(Prop. 1 3)

therefore, ex aequali,

ON: YZ > 89 x 22 : 90 x 225

> 979:10125.
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Prop. 14 {Fig. 3).

The arcs OM, ML, LP, PN are all equal ; therefore so are

the chords. BM, BP are tangents to the circle MQP, so that

CM is perpendicular to BM, while BM is perpendicular to OL.

Therefore the triangles LjOS, CMR are similar.

Therefore SO :MR = SL: RC.

But SO < 2 MR, since ON < 2 MP; (Prop. 13)

therefore SL < 2 RC,

and, a fortiori, SR < 2 RC, or SC < 3 RC,

that is, CR:CS>i:3.

Again, MC : CR = BC : tfif

> 45: 1
;

(see Prop. 11)

therefore, ex aequali,

CM:CS> 15:1.

And BG'.CM > 45:1;

therefore £(7 : C£ > 6 7 5 : 1

.

Prop. 15 (Fig. 1).

We have NO : (diam. of sun) < 1 : 9, (Prop. 13)

and, a fortiori, YZ : NO > 9 : 1
;

therefore, by similar triangles, if YO, ZN meet in X,

AX:XR>9:1,
and convertendo, XA :AR < 9:8.

But AB > 18 BC, and, a fortiori, > 18 BR,

whence AB > IS(AR-AB), or 19 45 > 18 AR;

that is, AR:AB < 19:18.

Therefore, ex aequali,

XA.AB < 19:16,

and, convertendo, AX : XB > 19:3;

therefore (diam. of sun) : (diam. of earth) > 19:3.

Lastly, since CB.CR > 675 : 1, (Prop. 14)

CB:BR < 675:674.
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But AB:BG< 20:1;

therefore, ex aequali,

AB.BR < 13500:674

< 6750:337,

whence, by inversion and componendo,

RA-.AB > 7087:6750. (1)

But AX:XR = YZ:N0

< 10125:979; (Prop. 13)

therefore, convertendo,

XA :AR > 10125:9146.

From this and (1) we have, ex* aequali,

XA :AB > 10125 x 7087:9146x6750

> 71755875 : 61735500

> 43 : 37, a fortiori.

[It is difficult not to see in 43 : 37 the expression 1 + — -,

which suggests that 43 : 37 was obtained by developing the

ratio as a continued fraction.]

Therefore, co'nvertendo,

XA:XB < 43:6,

whence (diam. of sun) : (diam. of earth) < 43 : 6. Q. E. D.



XIII

ARCHIMEDES

The siege and capture of Syracuse by Marcellus during the

second Punic war furnished the occasion for the appearance of

Archimedes as a personage in history ; it is with this histori-

cal event that most of the detailed stories of him are con-

nected ; and the fact that he was killed in the sack of the city

in 212 B.C., when he is supposed to have been 75 years of age,

enables us to fix his date at about 287-212 B.C. He was the

son of Phidias, the astronomer, and was on intimate terms

with, if not related to, King Hieron and his son Gelon. It

appears from a passage of Diodorus that he spent some time

in Egypt, which visit was the occasion of his discovery of the

so-called Archimedean screw as a means of pumping water. 1

It may be inferred that he studied at Alexandria with the

successors of Euclid. It was probably at Alexandria that he

made the acquaintance of Conon of Samos (for whom he had

the highest regard both as a mathematician and a friend) and

of Eratosthenes of Cyrene. To the former he was in the habit

of communicating his discourses before their publication

;

while it was to Eratosthenes that he sent The Method, with an

introductory letter which is of the highest interest, as well as

(if we may judge by its heading) the famous Cattle-Problem.

Traditions.

It is natural that history or legend should say more of his

mechanical inventions than of his mathematical achievements,

which would appeal less to the average mind. His machines

were used with great effect against the Romans in the siege

of Syracuse. Thus he contrived (so we are told) catapults so

ingeniously constructed as to be equally serviceable at long or

1 Diodorus, v. 37. 3.
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short range, machines for discharging showers of missiles

through holes made in the walls, and others consisting of

long movable poles projecting beyond the walls which either

dropped heavy weights on the enemy's ships, or grappled

their prows by means of an iron hand or a beak like that of

a crane, then lifted them into the air and let them fall again. 1

Marcellus is said to have derided his own engineers with the

words, Shall we not make an end of fighting against this

geometrical Briareus who uses our ships like cups to ladle

water from the sea, drives off our sambuca ignominiously

with cudgel-blows, and by the multitude of missiles that he

hurls at us all at once outdoes the hundred-handed giants of

mythology ? '
; but all to no purpose, for the Romans were in

such abject terror that, - if they did but see a piece of rope

or wood projecting above the wall, they would cry " there it

is ", declaring that Archimedes was setting some engine in

motion against them, and would turn their backs and run

away \
2 These things, however, were merely the * diversions

of geometry at play ',3 and Archimedes himself attached no

importance to them. According to Plutarch,

' though these inventions had obtained for him the renown of

more than human sagacity, he yet would not even deign to

leave behind him any written work on such subjects, but,

regarding as ignoble and sordid the business of mechanics and
every sort of art which is directed to use and profit, he placed

his whole ambition in those speculations the beauty and
subtlety of which is untainted by any admixture of the com-
mon needs of life.'

4

(a) Astronomy.

Archimedes did indeed write one mechanical book, On
Sphere-making, which is lost ; this described the construction

of a sphere to imitate the motions of the sun, moon and

planets.5 Cicero saw this contrivance and gives a description

of it ; he says that it represented the periods of the moon
and the apparent motion of the sun with such accuracy that

it would even (over a short period) show the eclipses of the

sun and moon/' As Pappus speaks of ' those who understand

1 Polybius, Hist. viii. 7, 8 ; Livy xxiv. 34 ; Plutarch, Marcellus, cc. 15-17.
2 lb., c. 17. 3 Ib.,c. 14. 4 Ib.,c. 17.
5

. Carpus in Pappus, viii, p. 1026. 9; Proclus on Eucl. I, p. 41. 16.
6 Cicero, De rep. i. 21, 22, Tusc. i. 63, Be nat deor. ii. 88.

1623.2 Q
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the making of spheres and produce a model of the heavens by

means of the circular motion of water', it is possible that

Archimedes's sphere was moved by water. In any case Archi-

medes was much occupied with astronomy. Livy calls him
' unicus spectator caeli siderumque '- 1 Hipparchus says, ' From
these observations it is clear that the differences in the years

are altogether small, but, as to the solstices, I almost think

that Archimedes and I have both erred to the extent of a

quarter of a day both in the observation and in the deduction

therefrom \
2 Archimedes then had evidently considered the

length of the year. Macrobius says he discovered the dis-

tances of the^ planets,3 and he himself describes in his Sand-
reckoner the apparatus by which he measured the apparent

angular diameter of the sun.

(/?) Mechanics.

Archimedes wrote, as we shall see, on theoretical mechanics,

and it was by theory that he solved the problem To 'move a
given weight by a given force, for it was in reliance ' on the

irresistible cogency of his proof ' that he declared to Hieron

that any given weight could be moved by any given force

(however small), and boasted that, ' if he were given a place to

stand on, he could move the earth ' (wd /3co, koX klvco tclv yav,

as he said in his Doric dialect). The story, told by Plutarch,

is that, ' when Hieron was struck with amazement and asked

Archimedes to reduce the problem to practice and to give an
illustration of some great weight moved by a small force, he

fixed upon a ship of burden with three masts from the king's

arsenal which had only been drawn up with great labour by
many men, and loading her with many passengers and a full

freight, himself the while sitting far off, with no great effort

but only holding the end of a compound pulley (TroXvcnrao-Tos)

quietly in his hand and pulling at it, he drew the ship along

smoothly and safely as if she were moving through the sea.' 4

The story that Archimedes set the Roman ships on fire by
an arrangement of burning-glasses or concave mirrors is not

found in any authorit}^ earlier than Lucian; but it is quite

1 Livy xxiv. 34. 2. 2 Ptolemy, Syntaxis, III. 1, vol. i, p. 194. 23.
3 Macrobius, In Somn. Scip. ii. 3 ; cf. the figures in Hippolytus, Refut.,

p. 66. 52 sq., ed. Duncker.
4 Plutarch, Marcellus, c. 14.
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likely that he discovered some form of burning-mirror, e.g. a

paraboloid of revolution, which would reflect to one point all

rays falling on its concave surface in a direction parallel to

its axis.

Archimedes's own view of the relative importance of his

many discoveries is well shown by his request to his friends

and relatives that they should place upon his tomb a represen-

tation of a cylinder circumscribing a sphere, with an inscrip-

tion giving the ratio which the cylinder bears to the sphere

;

from which we may infer that he regarded the discovery of

this ratio as his greatest achievement. Cicero, when quaestor

in Sicily, found the tomb in a neglected state and repaired it
1

;

but it has now disappeared, and no one knows where he was

buried.

Archimedes's entire preoccupation by his abstract studies is

illustrated by a number of stories. We are told that he would

forget all about his food and such necessities of life, and would

be drawing geometrical figures in the ashes of the fire or, when
anointing himself, in the oil on his body. 2 Of the same sort

is the tale that, when he discovered in a bath the solution of

the question referred to him by Hieron, as to whether a certain

crown supposed to have been made of gold did not in fact con-

tain a certain proportion of silver, he ran naked through the

street to his home shouting evptjKa, evprjKa. 3 He was killed

in the sack of Syracuse by a Roman soldier. The story is

told in various forms ; the most picturesque is that found in

Tzetzes, which represents him as saying to a Roman soldier

who found him intent on some diagrams which he had drawn
in the dust and came too close, ' Stand away, fellow, from my
diagram', whereat the man was so enraged that he killed

him.4

Summary of main achievements.

In geometry Archimedes's work consists in the main of

original investigations into the quadrature of curvilinear

plane figures and the quadrature and cubature of curved

surfaces. These investigations, beginning where Euclid's

Book XII left off, actually (in the words of Chasles) ' gave

1 Cicero, Tusc. v. 64 sq. 2 Plutarch, Marcelhts, c, 17,
3 Vitruvius, De architectura, ix. 1. 9, 10.
4 Tzetzes, Chiliad, ii. 35. 135.

c 2
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birth to the calculus of the infinite conceived and brought to

perfection successively by Kepler, Cavalieri, Fermat, Leibniz

and Newton '. He performed in fact what is equivalent to

integration in finding the area of a parabolic segment, and of

a spiral, the surface and volume of a sphere and a segment of

a sphere, and the volumes of any segments of the solids of

revolution of the second degree. In arithmetic he calculated

approximations to the value of tt, in the course of which cal-

culation he shows that he could approximate to the value of

square roots of large or small non-square numbers ; he further

invented a system of arithmetical terminology by which he

could express in language any number up to that which we
should write down with 1 followed by 80,000 million million

ciphers. In mechanics he not only worked out the principles of

the subject but advanced so far as to find the centre of gravity

of a segment of a parabola, a semicircle, a cone, a hemisphere,

a segment of a sphere, a right segment of a paraboloid and

a spheroid of revolution. His mechanics, as we shall see, has

become more important in relation to his geometry since the

discovery of the treatise called The Method which was formerly

supposed to be lost. Lastly, he invented the whole science of

hydrostatics, which again he carried so far as to give a most

complete investigation of the positions of rest and stability of

a right segment of a paraboloid of revolution floating in a

fluid with its base either upwards or downwards, but so that

the base is either wholly above or wholly below the surface of

the fluid. This represents a sum of mathematical achieve-

ment unsurpassed by any one man in the world's history.

Character of treatises.

The treatises are, without exception, monuments of mathe-

matical exposition ; the gradual revelation of the plan of

attack, the masterly ordering of the propositions, the stern

elimination of everything not immediately relevant to the

purpose, the finish of the whole, are so impressive in their

perfection as to create a feeling akin to awe in the mind of

the reader. As Plutarch said, 'It is not possible to find in

geometry more difficult and troublesome questions or proofs

set out in simpler and clearer propositions \* There is at the

1 Plutarch, Marcellus, c. 17.



CHARACTER OF TREATISES 21

same time a certain mystery veiling the way in which he

arrived at his results. For it is clear that they were not

discovered by the steps which lead up to them in the finished

treatises. If the geometrical treatises stood alone, Archi-

medes might seem, as Wallis said, ' as it were of set purpose

to have covered up the traces of his investigation, as if he had
grudged posterity the secret of his method of inquiry, while

he wished to extort from them assent to his results '. And
indeed (again in the words of Wallis) ' not only Archimedes

but nearly all the ancients so hid from posterity their method
of Analysis (though it is clear that they had one) that more

modern mathematicians found it easier to invent a new
Analysis than to seek out the old'. A partial exception is

now furnished by The Method of Archimedes, so happily dis-

covered by Heiberg. In this book Archimedes tells us how
he discovered certain theorems in quadrature and cubature,

namely by the use of mechanics, weighing elements of a

figure against elements of another simpler figure the mensura-

tion of which was already known. At the same time he is

careful to insist on the difference between (1) the means
which may be sufficient to suggest the truth of theorems,

although not furnishing scientific proofs of them, and (2) the

rigorous demonstrations of them by orthodox geometrical

methods which must follow before they can be finally accepted

as established

:

' certain things ', he says, ' first became clear to me by a
mechanical method, although they had to be demonstrated by
geometry afterwards because their investigation by the said

method did not furnish an actual demonstration. But it is

of course easier, when we have previously acquired, by the
method, some knowledge of the questions, to supply the proof
than it is to find it without any previous knowledge.' ' This

',

he adds, ' is a reason why, in the case of the theorems that

the volumes of a cone and a pyramid are one-third of the
volumes of the cylinder and prism respectively having the
same base and equal height, the proofs of which Eudoxus was
the first to discover, no small share of the credit should be
given to Democritus who was the first to state the fact,

though without proof.'

Finally, he says that the very first theorem which he found

out by means of mechanics was that of the separate treatise
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on the Quadrature of the parabola, namely that the area ofany
segment of a sectio n of a right-angled cone (i. e. a parabola) is

four-thirds of that of the triangle which has the same base and
height. The mechanical proof, however, of this theorem in the

Quadrature of the Parabola is different from that in the

Method, and is more complete in that the argument is clinched

by formally applying the method of exhaustion.

List of works still extant.

The extant works of Archimedes in the order in which they

appear in Heiberg's second edition, following the order of the

manuscripts so far as the first seven treatises are concerned,

are as follows :

(5) On the Sphere and Cylinder : two Books.

(9) Measurement of a Circle.

(7) On Conoids and Spheroids.

(6) On Spirals.

(1) On Plane Equilibriums, Book I.

(3) „ „ „ Book II.

(10) The Sand-reckoner (Psammites).

(2) Quadrature of the Parabola.

(8) On Floating Bodies : two Books.

? Stomachion (a fragment).

(4) The Method.

This, however, was not the order of composition; and,

judging (a) by statements in Archimedes's own prefaces to

certain of the treatises and (b) by the use in certain treatises

of results obtained in others, we can make out an approxi-

mate chronological order, which I have indicated in the above

list by figures in brackets. The treatise On Floating Bodies

was formerly only known in the Latin translation by William

of Moerbeke, but the Greek text of it has now been in great

part restored by Heiberg from the Constantinople manuscript

which also contains The Method and the fragment of the

Stomachion.

Besides these works we have a collection of propositions

(Liber assumptorum) which has reached us through the

Arabic. Although in the title of the translation by Thabit b.



LIST OF EXTANT WORKS 23

Qurra the book is attributed to Archimedes, the propositions

cannot be his in their present form, since his name is several

times mentioned in them ; but it is quite likely that some
of them are of Archimedean origin, notably those about the

geometrical figures called dp/3r]Xo^ (' shoemaker's knife ') and
vakivov (probably ' salt-cellar ') respectively and Prop. 8 bear-

ing on the trisection of an angle.

There is also the Cattle-Problem in epigrammatic form,

which purports by its heading to have been communicated by.

Archimedes to the mathematicians at Alexandria in a letter

to Eratosthenes. Whether the epigrammatic form is due to

Archimedes himself or not, there is no sufficient reason for

doubting the possibility that the substance of it was set as a

problem by Archimedes.

Traces of lost works.

Of works which are lost we have the following traces.

1. Investigations relating to polyhedra are referred to by

Pappus who, after alluding to the Hve regular polyhedra,

describes thirteen others discovered by Archimedes which are

semi-regular, being contained by polygons equilateral and

equiangular but not all similar. 1

2. There was a book of arithmetical content dedicated to

Zeuxippus. We learn from Archimedes himself that it dealt

with the naming of mimbers (Karovofiagis roav dpi6/j,a>v)
2 and

expounded the system, which we find in the Sand-reckoner, of

expressing numbers higher than those which could be written

in the ordinary Greek notation, numbers in fact (as we have

said) up to the enormous figure represented by 1 followed by

80,000 million million ciphers.

3. One or more works on mechanics are alluded to contain-

ing propositions not included in the extant treatise On Plane

Equilibriums. Pappus mentions a work On Balances or Levers

(nepl (vy&v) in which it was proved (as it also was in Philon's

and Heron's Mechanics) that ' greater circles overpower lesser

circles when they revolve about the same centre '.3 Heron, too,

speaks of writings of Archimedes ' which bear the title of

1 Pappus, v, pp. 352-8.
2 Archimedes, vol. ii, pp. 216. 18, 236. 17-22 ; cf. p. 220. 4.
3 Pappus, viii, p. 1068.
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" works on the lever " \l Simplicius refers to problems on the

centre of gravity, KevrpofiapiKa, such as the many elegant

problems solved by Archimedes and others, the object of which
is to show how to find the centre of gravity, that is, the point

in a body such that if the body is hung up from it, the body

will remain at rest in any position.2 This recalls the assump-

tion in the Quadrature of the Parabola (6) that, if a body hangs

at rest from a point, the centre of gravity of the body and the

point of suspension are in the same vertical line. Pappus has

a similar remark with reference to a point of support, adding

that the centre of gravity is determined as the intersection of

two straight lines in the body, through two points of support,

which straight lines are vertical when the body is in equilibrium

so supported. Pappus also gives the characteristic of the centre

of gravity mentioned by Simplicius, observing that this is

the most fundamental principle of the theory of the centre of

gravity, the elementary propositions of which are found in

Archimedes's On Equilibriums (jrepl io-oppoTri&v) and J3eron's

Mechanics. Archimedes himself cites propositions which must

have been proved elsewhere, e.g. that the centre of gravity

of a cone divides the axis in the ratio 3:1, the longer segment

being that adjacent to the vertex 3
; he also says that ' it is

proved in the Equilibriums ' that the centre of gravity of any

segment of a right-angled conoid (i. e. paraboloid of revolution)

divides the axis in such a way that the portion towards the

vertex is double of the remainder.4 It is possible that there

was originally a larger work by Archimedes On Equilibriums

of which the surviving books On Plane Equilibriums formed

only a part ; in that case irepl ^vyoav and KevrpofiapiKoi may
only be alternative titles. Finally, Heron says that Archi-

medes laid down a certain procedure in a book bearing the

title ' Book on Supports '. 5

4. Theon of Alexandria quotes a proposition from a work
of Archimedes called Catoptrica (properties of mirrors) to the

effect that things thrown into water look larger and still

larger the farther they sink. Olympiodorus, too, mentions

1 Heron, Mechanics, i. 32.
2 Simpl. on Arist. De caelo, ii, p. 508 a 30, Brandis

; p. 543. 24, Heib.
3 Method, Lemma 10.

4 On Floating Bodies, ii. 2.
5 Heron, Mechanics, i. 25.
6 Theon on Ptolemy's Syntaxis, i, p. 29, Halma.
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that Archimedes proved the phenomenon of refraction ' by

means of the ring placed in the vessel (of water) '- 1 A scholiast

to the Pseudo-Euclid's Catoptrica quotes a proof, which he

attributes to Archimedes, of the equality of the angles of

incidence and of reflection in a mirror.

The text • of Archimedes.

Heron, Pappus and Theon all cite works of Archimedes

which no longer survive, a fact which shows that such works

were still extant at Alexandria as late as the third and fourth

centuries A.D. But it is evident that attention came to be

concentrated on two works only, the Measurement of a Circle

and On the Sphere and Cylinder. Eutocius (ft. about A.D. 500)

only wrote commentaries on these works and on the Plane

Equilibriums, and he does not seem even to have been

acquainted with the Quadrature of the Parabola or the work

On Spirals, although these have survived. Isidorus of Miletus

revised the commentaries of Eutocius on the Measurement

of a Circle and the two Books On the Sphere and Cylinder,

and it would seem to have been in the school of Isidorus

that these treatises were turned from their original Doric

into the ordinary language, with alterations designed to make
them more intelligible to elementary pupils. But neither in

Isidorus's time nor earlier was there any collected edition

of Archimedes's works, so that those which were less read

tended to disappear.

In the ninth^century Leom who restored the University

of Constantinople, collected together all the works that lie

could find at Constantinople, and had the manuscript written

(the archetype, Heiberg's A) which, through its derivatives,

was, up to the discovery of the Constantinople manuscript (C)

containing The Method, the only source for the Greek text.

Leon's manuscript came, in the twelfth century, to the

Norman Court at Palermo, and thence passed to the House
of Hohenstaufen. Then, with all the library of Manfred, it

was given to the Pope by Charles of Anjou after the battle

of Benevento in 1266. It was in the Papal Library in the

years 1269 and 1311, but, some time after 1368, passed into

1 Olyinpiodorus on Arist. Meteorologica, ii, p. 94, Ideler
; p. 211. 18,

Busse.
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private hands. In 1491 it belonged to Georgius Valla, who
translated from it the portions published in his posthumous

work De expetendis et fugiendis rebus (1501), and intended to

publish the whole of Archimedes with Eutocius's commen-
taries. On Valla's death in 1500 it was bought by Albertus

Pius, Prince of Carpi, passing in 1530 to his nephew, Rodolphus

Pius, in whose possession it remained till 1544. At some

time between 1544 and 1564 it disappeared, leaving no

trace.

The greater part of A was translated into Latin in 1269

by William of Moerbeke at the Papal Court at Viterbo. This

translation, in William's own hand, exists at Rome (Cod.

Ottobon. lat. 1850, Heiberg's B), and is one of our prime

sources, for, although the translation was hastily done and

the translator sometimes misunderstood the Greek, he followed

its wording so closely that his version is, for purposes of

collation, as good as a Greek manuscript. William used also,

for his translation, another manuscript from the same library

which contained works not included in A. This manuscript

was a collection of works on mechanics and optics ; William

translated from it the two Books On Floating Bodies, and it

also contained the Plane Equilibriums and the Quadrature

of the Parabola, for which books William used both manu-

scripts.

The four most important extant Greek manuscripts (except

C, the Constantinople manuscript discovered in 1906) were

copied from A. The earliest is E, the Venice manuscript

(Marcianus 305), which was written between the years 1449

and 1472. The next is D, the Florence manuscript (Laurent.

XXVIII. 4), which was copied in 1491 for Angelo Poliziano,

permission having been obtained with some difficulty in con-

sequence of the jealousy with which Valla guarded his treasure.

The other two are G (Paris. 2360) copied from A after it had

passed to Albertus Pius, and H (Paris. 2361) copied in 1544

by Christopherus Auverus for Georges d'Armagnac, Bishop

of Rodez. These four manuscripts, with the translation of

William of Moerbeke (B), enable the readings of A to be

inferred.

A Latin translation was made at the instance of Pope

Nicholas V about the year 1450 by Jacobus Cremonensis.
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It was made from A, which was therefore accessible to Pope

Nicholas though it does not seem to have belonged to him.

Regiomontanus made a copy of this translation about 1468

and revised it with the help of E (the Venice manuscript of

the Greek text) and a copy of the same translation belonging

to Cardinal Bessarion, as well as another 'old copy' which

seems to have been B.

The editio princeps was published at Basel (apud Herva-

gium) by Thomas Gechauff Venatorius in 1544. The Greek

text was based on a Niirnberg MS. (Norimberg. Cent. V,

app. 12) which was copied in the sixteenth century from A
but with interpolations derived from B; the Latin transla-

tion was Regiomontanus's revision of Jacobus Cremonensis

(Norimb. Cent. V, 15).

A translation by F. Commandinus published at Venice in

1558 contained the Measurement of a Circle, On Spirals, the

Quadrature of the Parabola, On Conoids and Spheroids, and

the Sand-reckoner. This translation was based- on the Basel

edition, but Commandinus also consulted E and other Greek

manuscripts.

Torelli's edition (Oxford, 1792) also followed the editio

prlnceps in the main, but Torelli also collated E. The book

was brought out after Torelli's death by Abram Robertson,

who also collated five more manuscripts, including D, G
and H. The collation, however, was not well done, and the

edition was not properly corrected when in the press.

The second edition of Heiberg's text of all the works of

Archimedes with Eutocius's commentaries, Latin translation,

apparatus criticus, &c, is now available (1910-15) and, of

course, supersedes the first edition (1880-1) and all others.

It naturally includes The Method, the fragment of the Stoma-

chion, and so much of the Greek text of the two Books On
Floating Bodies as could be restored from the newly dis-

covered Constantinople manuscript. 1

Contents of The Method.

Our description of the extant works of Archimedes

may suitably begin with The Method (the full title is On
1 The Works of Archimedes, edited in modern notation by the present

writer in 1897, was based on Heiberg's first edition, and the Supplement
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Mechanical Theorems, Method (communicated) to Eratosthenes).

Premising certain propositions in mechanics mostly taken
from the Plane Equilibriums, and a lemma which forms

Prop. 1 of On Conoids and Spheroids, Archimedes obtains by
his mechanical method the following results. The area of any
segment of a section of a right-angled cone (parabola) is § of

the triangle with the same base and height (Prop. 1). The
right cylinder circumscribing a sphere or a spheroid of revolu-

tion and with axis equal to the diameter or axis of revolution

of the sphere or spheroid is 1\ times the sphere or spheroid

respectively (Props. 2, 3), Props. 4, 7,8,11 find the volume of

any segment cut off, by a plane at right angles to the axis,

from any right-angled conoid (paraboloid of revolution),

sphere, spheroid, and obtuse-angled conoid (hyperjboloid) in

terms of the cone which has the same base as the segment and
equal height. In Props. 5, 6, 9, 10 Archimedes uses his method
to find the centre of gravity of a segment of a paraboloid of

revolution, a sphere, and a spheroid respectively. Props.

12-15 and Prop. 16 are concerned with the cubature of two
special solid figures. (1) Suppose a prism with a square base

to have a cylinder inscribed in it, the circular bases of the

cylinder being circles inscribed in the squares which are

the bases of the prism, and suppose a plane drawn through

one side of one base of the prism and through that diameter of

the circle in the opposite base which is parallel to the said

side. This plane cuts oft* a solid bounded by two planes and

by part of the curved surface of the cylinder (a solid shaped

like a hoof cut off by a plane); and Props. 12-15 prove that

its volume is one-sixth of the volume of the prism. (2) Sup-

pose a cylinder inscribed in a cube, so that the circular bases

of the cylinder are circles inscribed in two opposite faces of

the cube, and suppose another cylinder similarly inscribed

with reference to two other opposite faces. The two cylinders

enclose a certain solid which is actually made up of eight

'hoofs' like that of Prop. 12. Prop. 16 proves that the

volume of this solid is two-thirds of that of the cube. Archi-

medes observes in his preface that a remarkable fact about

(1912) containing The Method, on the original edition of Heiberg (in

Hermes, xlii, 1907) with the translation by Zeuthen (Bibliotheca Mathe-
matics, vii

3
. 1906/7).
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these solids respectively is that each of them is equal to a

solid enclosed by jplanes, whereas the volume of curvilinear

solids (spheres, spheroids, &c.) is generally only expressible in

terms of other curvilinear solids (cones and cylinders). In

accordance with his dictum that the results obtained by the

mechanical method are merely indicated, but not actually

proved, unless confirmed by the rigorous methods of pure

geometry, Archimedes proved the facts about the two last-

named solids by the orthodox method of exhaustion as

regularly used by him in his other geometrical treatises ; the

proofs, partly lost, were given in Props. 15 and 16.

We will first illustrate the method by giving the argument ^
of Prop. 1 about the area of a parabolic segment.

Let ABC be the segment, BD its diameter, OF the tangent

at 0. Let P be any point on the segment, and let AKF,

A

OPNM be drawn parallel to BD. Join CB and produce it to

meet MO in N and FA in K, and let KH be made equal to

KG.

Now, by a proposition ' proved in a lemma ' (cf . Quadrature

of the Parabola, Prop. 5)'

MO:OP= CA:AO
= OK : KN
= HK:KN.

Also, by the property of the parabola, EB = BD, so that

MN = NO and FK = KA.
It follows that, if HO be regarded as the bar of a balance,

a line TG equal to PO and placed with its middle point at H
balances, about K, the straight line MO placed where it is,

i. e. with its middle point at J¥.

Similarly with all lines, as MO, PO, in the triangle OFA
and the segment CBA respectively.

And there are the same number of these lines. Therefore
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'
j the whole segment of the parabola acting at H balances the

triangle CFA placed where it is.

But the centre of gravity of the triangle CFA is at W
t

where CW = 2 WK [and the whole triangle may be taken as

acting at W\

Therefore (segment ABC) : ACFA = WK : KH
= 1:3,

so that (segment ABC) = ±ACFA

= §AABC. Q.E.D.

*^lt will be observed that Archimedes takes the segment and

the triangle to be made up of parallel lines indefinitely close

together. In reality they are made up of indefinitely narrow

strips, but the width (dx, as we might say) being the same

for the elements of the triangle and segment respectively,

divides out. And of course the weight of each element in

both is proportional to the area. Archimedes also, without

mentioning moments, in effect assumes that the sum of the

moments of each particle of a figure, acting where it is, is

equal to the moment of the whole figure applied as one mass

at its centre of gravity.

We will now take the case of any segment of a spheroid;

of revolution, because that will cover several propositions of

Archimedes as particular cases.

The ellipse with axes AA\ BBf
is a section made by the

plane of the paper in a spheroid with axis A A'. It is required

to find the volume of any right segment ADC of the spheroid

in terms of the right cone with the same base and height.

Let DC be the diameter of the circular base of the segment.

Join AB, AB', and produce them to meet the tangent at A' to

the ellipse in K, K', and DC produced in E, F.

Conceive a cylinder described with axis AA' and base the

circle on KKf
as diameter, and cones described with i(?as

axis and bases the circles on EF, DC as diameters.

Let N be any point on AG, and let M0PQNQ'P'0'Mf be

drawn through N parallel to BB' or DC as shown in the

figure.

Produce A'A to H so that HA = AA'.
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Now HA:AN=A'A:AN
= KA:AQ
= MN:NQ
= MN2 :MN.NQ.

It is now necessary to prove that MN.NQ = NP2 + NQ2

31

M

A

p/q/7 \\qKp' O'

B // x

n\\ \W \\l
B'

V \ J

/e \p G c/ \F

M

K V K'

By the property of the ellipse,

AN. NA' : NP2 = (iAA'f : (±BB f

)

2

= AN2 :NQ2
;

therefore NQ2
: NP2 = AN 2

: AN . NA'

= NQ 2 :NQ.QM,

whence NP2 = MQ . QN
Add NQ 2 to each side, and we have

NP2 + NQ 2 = MN.NQ.

Therefore, from above,

HA : AN = MN 2
: (NP2 + NQ 2

). (1)

But MN2
, NP2

, NQ2 are to one another as the areas of the

circles with MM', PP\ QQ' respectively as diameters, and these
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circles are sections made by the plane though JV at right

angles to A A' in the cylinder, the spheroid and the cone AEF
respectively.

Therefore, if HAA' be a lever, and the sections of the

spheroid and cone be both placed with their centres of gravity

at H, these sections placed at H balance, about A, the section

MM' of the cylinder where it is.

Treating all the corresponding sections of the segment of

the spheroid, the cone and the cylinder in the same way,

we find that the cylinder with axis AG, where it is, balances,

about A, the cone AEF and the segment ADC together, when
both are placed with their centres of gravity at H; and,

if W be the centre of gravity of the cylinder, i. e. the middle

point of AG,

HA : A W = (cylinder, axis AG) : (cone AEF+ segmt. ADC).

If we call V the volume of the cone A EF, and S that of the

segment of the spheroid, we have

(cylinder) : (T+8) = 3 V. -^ :(V+8)
9

while HA:AW= AA':±AG.

'2

Therefore AA' :\AG = 3 V.-I7T2 : (V + S),

and (V+S) = iV.

AA
'AG2

AA'
AG

whence 8 ~ 'K2AG~ l

)

Again, let V be the volume of the cone ADC.

Then V:V'=EG2 :DG*

BB'2

= -
r^r79 .AG

2 :DG 2
.

AA' 2

But DG2 :AG.GA' = BB'2
: AA'2

.

Therefore V: V = AG 2
: AG MA'

= AG:GA'.
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AG /3AA'
It follows that 8 = V . =!>(^7 - l)

%AA'-AG

= V.

A'G
,

±AA' + A'G
A'G

which is the result stated by Archimedes in Prop. 8.

The result is the same for the segment of a sphere. The

proof, of course slightly simpler, is given in Prop. 7.

In the particular case where the segment is half the sphere

or spheroid, the relation becomes

S = 2 Y\ (Props. 2, 3)

and it follows that the volume of the whole sphere or spheroid

is 4 7', where V is the volume of the cone ABB'; i.e. the

volume of the sphere or spheroid is two-thirds of that of the

circumscribing cylinder.

In order now to find the centre of gravity of the segment

of a spheroid, we must have the segment acting where it is,

not at H.

Therefore formula (1) above will not serve. But we found

that MN.NQ = (NP2 + NQ2
),

whence MN2
: {NP2 + NQ2

) = {NP2 + NQ 2
) : NQ 2

;

therefore HA :AN = (NP2 + NQ2
)

: NQ2
.

(This is separately proved by Archimedes for the sphere

in Prop. 9.)

From this we derive, as usual, that the cone AEF and the

segment ADC both acting where they are balance a volume

equal to the cone AEF placed with its centre of gravity at H.

Now the centre of gravity of the cone AEF is on the line

A G at a distance fAG from A. Let X be the required centre

of gravity of the segment. Then, taking moments about A,

we have V .HA = S. AX + V. %AG,

or V(AA'-iAG)=S.AX

^AA'
= y{^rn ^^> from above.

1523.2 X)
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Therefore AX: AG = (AA'-%AG) : $AA'-AG)

= (4AA'-3AG):(6AA'-4AG);

whence AX:XG = (4AA'- SAG) : (2AA'-AG)

= (AG + 4A'G):(AG + 2A'G),

which is the result obtained by Archimedes in Prop. 9 for the

sphere and in Prop. 10 for the spheroid.

In the case of the hemi-spheroid or hemisphere the ratio

AX : XG becomes 5 : 3, a result obtained for the hemisphere in

Prop. 6.

The cases of the paraboloid of revolution (Props. 4, 5) and

the hyperboloid of revolution (Prop. 1 1) follow the same course,

and it is unnecessary to reproduce them.

For the cases of the two solids dealt with at the end of the

treatise the reader must be referred to the propositions them-

selves. Incidentally, in Prop. 13, Archimedes finds the centre

of gravity of the half of a cylinder cut by a plane through

the axis, or, in other words, the centre of gravity of a semi-

circle.

We will now take the other treatises in the order in which

they appear in the editions.

On the Sphere and Cylinder, I, II.

The main results obtained in Book I are shortly stated in

a prefatory letter to Dositheus. Archimedes tells us that

they are new, and that he is now publishing them for the

first time, in order that mathematicians may be able to ex-

amine the proofs and judge of their value. The results are

(1) that the surface of a sphere is four times that of a great

circle of the sphere, (2) that the surface of any segment of a

sphere is equal to a circle the radius of which is equal to the

straight line drawn from the vertex of the segment to a point

on the circumference of the base, (3) that the volume of a

cylinder circumscribing a sphere and with height equal to the

diameter of the sphere is § of the volume of the sphere,

(4) that the surface of the circumscribing cylinder including

its bases* is also § of the surface of the sphere. It is worthy

of note that, while the first and third of these propositions

appear in the book in this order (Props. 33 and 34 respec-
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tively), this was not the order of their discovery ; for Archi-

medes tells us in The Method that •

' from the theorem that a sphere is four times as great as the

cone with a great circle of the sphere as base and with height

equal to the radius of the sphere I conceived the notion that

the surface of any sphere is four times as great as a great

circle in it ; for, judging from the fact that any circle is equal

to a triangle with base equal to the circumference and height

equal to the radius of the circle, I apprehended that, in like

manner, any sphere is equal to a cone with base equal to the

surface of the sphere and height equal to the radius '. >

Book I begins with definitions (of ' concave in the same

direction ' as applied to curves or broken lines and surfaces, of

a ' solid sector ' and a ' solid rhombus ') followed by five

Assumptions, all of importance. Of all lines which have the

same extremities the straight line is the least, and, if there are

twcTcurved or bent lines in a plane having the same extremi-

ties and concave in the same direction, but one is wholly

included by, or partly included by and partly common with,

the other, then that which is included is the lesser of the two.

Similarly with plane surfaces and surfaces concave in the

same direction. Lastly, Assumption 5 is the famous ' Axiom
of Archimedes ', which however was, according to Archimedes

himself, used by earlier geometers (Eudoxus in particular), to

the effect that Of unequal magnitudes the greater exceeds

the less by such a magnitude as, when added to itself, can be

made to exceed any assigned magnitude of the same kind
;

the axiom is of course practically equivalent to Eucl. V, Def. 4,

and is closely connected with the theorem of Eucl. X. 1.

As, in applying the method of exhaustion, Archimedes uses

both circumscribed and inscribed figures with a view to com-
pressing them into coalescence with the curvilinear figure to

be measured, he has to begin with propositions showing that,

given two unequal magnitudes, then, however near the ratio

of the greater to the less is to 1, it is possible to find two
straight lines such that the greater is to the less in a still less

ratio ( > 1), and to circumscribe and inscribe similar polygons to

a circle or sector such that the perimeter or the area of the

circumscribed polygon is to that of the inner in a ratio less

than the given ratio (Props. 2-6): also, just as Euclid proves

D 2
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that, if we continually double the number of the sides of the

regular polygon inscribed in a circle, segments will ultimately be

left which are together less than any assigned area, Archimedes

has to supplement this (Prop. 6) by proving that, if we increase

the number of the sides of a circumscribed regular polygon

sufficiently, we can make the excess of the area of the polygon

over that of the circle less than any given area. Archimedes

then addresses himself to the problems of finding the surface of

any right cone or cylinder, problems finally solved in Props. 13

(the cylinder) and 14 (the cone). Circumscribing and inscrib-

ing regular polygons to the bases of the cone and cylinder, he

erects pyramids and prisms respectively on the polygons as

bases and circumscribed or inscribed to the cone and cylinder

respectively. In Props. 7 and 8 he finds the surface of the

pyramids inscribed and circumscribed to the cone, and in

Props. 9 and 10 he proves that the surfaces of the inscribed

and circumscribed pyramids respectively ('excluding the base)

are less and greater than the surface of the cone (excluding

the base). Props. 11 and 12 prove the same thing of the

prisms inscribed and circumscribed to the cylinder, and finally

Props. 1 3 and 1 4 prove, by the method of exhaustion, that the

surface of the cone or cylinder (excluding the bases) is equal

to the circle the radius of which is a mean proportional

between the ' side ' (i. e. generator) of the cone or cylinder and

the radius or diameter of the base (i.e. is equal to irrs in the

case of the cone and 2nrs in the case of the cylinder, where

r is the radius of the base and s a generator). As Archimedes

here applies the method of exhaustion for the first time, we

will illustrate by the case of the cone (Prop. 14).

Let A be the base of the cone, G a straight line equal to its

c
E

D

radius, D a line equal to a generator of the cone, E a mean

proportional to C, D, and B a circle with radius equal to E.
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If S is the surface of the cone, we have to prove that 8= B.

For, if 8 is not equal to B, it must be either greater or less.

I. Suppose B < 8.

Circumscribe a regular polygon about B, and inscribe a similar

polygon in it, such that the former has to the latter a ratio less

than 8:B (Prop. 5). Describe about A a similar polygon and

set up from it a pyramid circumscribing the cone.

Then (polygon about A) : (polygon about B)

= C 2 :E 2

= C:D

t

= (polygon about A) : (surface of pyramid).

Therefore (surface of pyramid) = (polygon about B).

But (polygon about B) : (polygon in B) < 8 : B

;

therefore (surface of pyramid) : (polygon in B) < 8: B.

But this is impossible, since (surface of pyramid) > 8, while

(polygon in B) < B;
therefore B is not less than 8.

II. Suppose B > 8.

Circumscribe and inscribe similar regular polygons to B
such that the former has to the latter a ratio < B:8. Inscribe

in A a similar polygon, and erect on A the inscribed pyramid.

Then (polygon in A) : (polygon in B) — G2
: E 2

= C:D

> (polygon in A) : (surface of pyramid).

(The latter inference is clear, because the ratio of C:D is

greater than the ratio of the perpendiculars from the centre of

A and from the vertex of the pyramid respectively on any

side of the polygon in i; in other words, if /? < oc < \tv,

sina > sin/3.)

Therefore (surface of pyramid) > (polygon in B).

But (polygon about B) : (polygon in B) < B : S,

whence (a fortiori)

(polygon about B) : (surface of pyramid) < B : S,

which is impossible, for (polygon about B) > B, while (surface

of pyramid) < S.
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Therefore B is not greater than S.

Hence S, being neither greater nor less than B, is equal to B.

Archimedes next addresses himself to the problem of finding

the surface and volume of a sphere or a segment thereof, but

has to interpolate some propositions about ' solid rhombi

'

(figures made up of two right cones, unequal or equal, with

bases coincident and vertices in opposite directions) the neces-

sity of which will shortly appear.

Taking a great circle of the sphere or a segment of it, he

inscribes a regular polygon of an even number of sides bisected

B

C

F/

[
y

E

B 1

/k

c

G /L o / n/i

E»

JO'

Fig. 1.

by the diameter AA\ and approximates to the surface and

volume of the sphere or segment by making the polygon

revolve about A A' and measuring the surface and volume of

solid so inscribed (Props. 21-7). He then does the same for the

a circumscribed solid (Props. 28-32). Construct the inscribed

polygons as shown in the above figures. Joining BB', CC\ ...

,

CB\ DC' ... we see that BB\ CO' ... are all parallel, and so are

AB,CB', DC...
Therefore, by similar triangles, BF.FA = A'B:BA, and

BF:FA =B'F:FK
= CG : GK
= CG : GL

= E'I.IA' in Fig. 1

(= PM:MN in Fig. 2),



ON THE SPHERE AND CYLINDER, I 39

whence, adding antecedents and consequents, we have

(Fig. 1) (BB' + CC'+...+EE'):AA' = A'B:BA, (Prop. 21)

(Fig. 2) {BR + CO'+ . . . + \PP') :AM = A'B : BA. (Prop. 2 2)

When we make the polygon revolve about AA', the surface

of the inscribed figure so obtained is made up of the surfaces

of cones and frusta of cones; Prop. 14 has proved that the

surface of the cone ABB' is what we should write tt . AB . BF,

and Prop. 16 has proved that the surface of the frustum

BCC'B' is tt.BC(BF+CG). It follows that, since AB =
BC = ..., the surface of the inscribed solid is

7r.AB{±BB' + i(BB' + CC') + ...},

that is, tt . AB (BB' + CC + . . . + EE') (Fig. 1), (Prop. 24)

or rr.AB (BR + 00'+... + ±PP') (Fig. 2). (Prop. 35)

Hence, from above, the surface of the inscribed solid is

7r . A'B . AA' or tt . A'B . AM, and is therefore less than

tt . AA'2 (Prop. 25) or tt . A'A . AM, that is, tt . AP2 (Prop. 37).

Similar propositions with regard to surfaces formed by the

revolution about AA' of regular circumscribed solids prove

that their surfaces are greater than tt.AA' 2 and tt .AP 2

respectively (Props. 28-30 and Props. 39-40). The case of the

segment is more complicated because the circumscribed poly-

gon with its sides parallel to AB, BC ... DP circumscribes

the sector POP'. Consequently, if the segment is less than a

semicircle, as CAC, the base of the circumscribed polygon

(cc') is on the side of CC towards A, and therefore the circum-

scribed polygon leaves over a small strip of the inscribed. This

complication is dealt with in Props. 39-40. Having then

arrived at circumscribed and inscribed figures with surfaces

greater and less than n. AA' 2 and tt. AP 2 respectively, and
having proved (Props. 32, 41) that the surfaces of the circum-

scribed and inscribed figures are to one another in the duplicate

ratio of their sides, Archimedes proceeds to prove formally, by
the method of exhaustion, that the surfaces of the sphere and
segment are equal to these circles respectively (Props. 33 and

42); tt . AA' 2
is of course equal to four times the great circle

of the sphere. The segment is, for convenience, taken to be
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less than a hemisphere, and Prop. 43 proves that the same
formula applies also to a segment greater than a hemisphere.

As regards the volumes different considerations involving
* solid rhombi ' come in. For convenience Archimedes takes,

in the case of the whole sphere, an inscribed polygon of 4w
sides (Fig. 1). It is easily seen that the solid figure formed

by its revolution is made up of the following : first, the solid

rhombus formed by the revolution of the quadrilateral AB0Bf

(the volume of this is shown to be equal to the cone with base

equal to the surface of the cone ABB' and height equal to p,

the perpendicular from on AB, Prop. 18); secondly, the

extinguisher-shaped figure formed by the revolution of the

triangle BOG about AA' (this figure is equal to the difference

between two solid rhombi formed by the revolution of TBOB'
and TCOC respectively about AA', where T is the point of

intersection of CB, CrB' produced with A'A produced, and

this difference is proved to be equal to a cone with base equal

to the surface of the frustum of a cone described by BC in its

revolution and height equal to p the perpendicular from on

BC, Prop. 20) ; and so on ; finally, the figure formed by the

revolution of the triangle COD about AA' is the difference

between a cone and a solid rhombus, which is proved equal to

a cone with base equal to the surface of the frustum of a cone

described by CD in its revolution and height p (Prop. 19).

Consequently, by addition, the volume of the whole solid of

revolution is equal to the cone with base equal to its whole

surface and height p (Prop. 26). But the whole of the surface

of the solid is less than 4 nr 2
, and p< r ; therefore the volume

of the inscribed solid is less than four times the cone with

base wr 2 and height r (Prop. 27).

It is then proved in a similar way that the revolution of

the similar circumscribed polygon of &n sides gives a solid

the volume of which is greater than four times the same cone

(Props. 28-31 Cor.). Lastly, the volumes of the circumscribed

and inscribed figures are to one another in the triplicate ratio of

their sides (Prop. 32) ; and Archimedes is now in a position to

apply the method of exhaustion to prove that the volume of

the sphere is 4 times the cone with base irr2 and height r

(Prop. 34).

Dealing with the segment of a sphere*, Archimedes takes, for
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convenience, a segment less than a hemisphere and, by the

same chain of argument (Props. 38, 40 Corr., 41 and 42), proves

(Prop. 44) that the volume of the sector of the sphere bounded

by the surface of the segment is equal to a cone with base

equal to the surface of the segment and height equal to the

radius, i. e. the cone with base tt . AP 2 and height r (Fig. 2).

It is noteworthy that the proportions obtained in Props. 21,

22 (see p. 39' above) can be expressed in trigonometrical form.

If 4n is the number of the sides of the polygon inscribed in

the circle, and 2n the number of the sides of the polygon

inscribed in the segment, and if the angle AOP is denoted

by oc, the trigonometrical equivalents of the proportions are

respectively

/,\ . 77" . 27T , . ,' ,, 77 TT

(1) sin hsm- 1- ... + sm(2n— 1) —- = cot—

;

v ' 2n 2n 2n 4n

(2) 2 <sm-~ +sin h ... + sm (n — l)~> + sina
'

{ n n n)

= (1 — cos oc) cot
v ' 2n

Thus the two proportions give in effect a summation of the

series

sin + sin 2 + . . . + sin (n— 1) 6,

both generally where nO is equal to any angle oc less than tt

and in the particular case where n is even and = ir/n.

Props. 24 and 35 prove that the areas of the circles equal to

the surfaces of the solids of revolution described by the

polygons inscribed in the sphere and segment are the above
77- . OC .

series multiplied by 4irr2 sin — and nr2
. 2 sin — respectively

t: it u Kh

TT OC
and are therefore 47rr2 cos — and irr2 . 2 cos — (1 — cos a)

4:71 2n '

respectively. Archimedes's results for the surfaces of the

sphere and segment, 47rr2 and 2ttt2
{\ — cos ex), are the

limiting values of these expressions when n is indefinitely

• IT DC
increased and when therefore cos — and cos— become

4ti 2n

unity. And the two series multiplied by 47rr2 sin— and* 4n
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(X

ttt2 . 2 sin —- respectively are (when n is indefinitely increased)

precisely what we should represent by the integrals

47rr2 . \

and 7rr-.

sin0cZ0, or 47rr2
,

2sin#cZ0, or 27rr2
(l — cos a).

Book II contains six problems and three theorems. Of the

theorems Prop. 2 completes the investigation of the volume of

any segment of a sphere, Prop. 44 of Book I having only

brought us to the volume of the corresponding sector. If

ABB' be a segment of a sphere cut off by a plane at right

angles to A A', we learnt in I. 44 that the volume of the sector

OBAB' is equal to the cone with base equal to the surface

of the segment^nd height equal to the radius, i.e. \ti . AB2
. r,

where r is the radius. The volume of the segment is therefore

i7r.AB2 .r-i7r.BM2 .0M.

Archimedes wishes to express this as a cone with base the

same as that of the segment. Let AM, the height of the seg-

ment, = h.

Now AB2
: BM2 = A'A : A'M = 2r : (2r-h).

Therefore

^Tr(AB 2 .r-BM 2 .OM) = ln.BM2 \^^-(r-h)\

= ±n.BM2 Ji{~~\).3 y2r— h'

That is, the segment is equal to the cone with the same
base as that of the segment and height h(3r— h)/(2r — h).
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This is expressed by Archimedes thus. If HM is the height

of the required cone,

EM:AM = (OA' + A'M) : A'M, (1)

and similarly the cone equal to the segment A'BB' has the

height H'M, where

H'M : A'M = (OA + AM) : AM. (2)

His proof is, of course, not in the above form but purely

geometrical.

This proposition leads to the most important proposition in

the Book, Prop. 4, which solves the problem To cut a given

sphere by a plane in such a way that the volumes of the

segments are to one another in a given ratio.

Cubic equation arising out of II. 4.

If m : n be the given ratio of the cones which are equal to

the segments and the heights of which are h, h', we have

3r— h\ m n ,/3r— h's,/dr— /i\ _m -,, /6r— H\
\2r— h)

'
" n \2r-h')

and, if we eliminate h' by means of the relation h + h! = 2r,

we easily obtain the following cubic equation in h,

h'> — 3h2r+ r3 = 0.m + n

Archimedes in effect reduces the problem to this equation,

which, however, he treats as a particular case of the more
general problem corresponding to the equation

(r + h):b = c
2 :(2r-h) 2

,

where b is a given length and c
2 any given area,

or x2 (a — x) = be 2
, where x = 2r— h and Zr = a.

Archimedes obtains his cubic equation with one unknown
by means of a geometrical elimination of H, H' from the

m>
equation HM'= —AIM, where HM, HM have the values

n
determined by the proportions (1) and (2) above, after which
the one variable point M remaining corresponds to the one

unknown of the cubic equation. His method is, first, to find
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values for each of the ratios A'H' : H'M and H'H.A'H' which

are alike independent of H, H' and then, secondly, to equate

the ratio compounded of these two to the known value of the

ratio HH'iHM.

(ex) We have, from (2),

A'H : H'M = OA : (OA + AM). (3)

((3) From (1) and (2), separando,

AH:AM = OA':A'M, (4)

A'H': A'M = OA:AM. (5)

Equating the values of the ratio A'M\ AM given by (4). (5),

we have OA' : AH = A'H' : OA

= OH':OH,

whence HH : OR = OR : A'H', (since OA = OA')

or HH . A'H' = OH2
,

so that HH' : A'H' = OH'2
: A'H'2

. (6)

But, by (5), OA' : A'H' = AM: A'M,

and; componendo, OH' : A'H = AA' : A'M.

By substitution in (6),

HH' : A'H' = AA'2
: A'M2

. * (7)

Compounding with (3), we obtain

HH : H'M = (A A'2 :A'M2
) . (OA : OA + AM). (8)

[The algebraical equivalent of this is

m + n 4 r3

" (2r-h)2 (r + h)'

which reduces to

n

m + n 4r3

m 3h2r— h3

4m
or h?— 3h2

r-\ r3 = 0, as above.]m + n

Archimedes expresses the result (8) more simply by pro-

ducing OA to D so that OA = AD, and then dividing AD at
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E so that AD:DE = HH'.H'M or (m + n):n. We have

then OA = AD and OA + AM = i/D, so that (8) reduces to

AD:DE = (A A'* : it'if2
) . (AD : MD),

or MD :DE = AA /2
: A'M2

.

Now, says Archimedes, D is given, since AD — OA. Also,

J.i) : DE being a given ratio, DE is given. Hence the pro-

blem reduces itself to that of dividing A'D into two parts at

M such that

MD : (a given length) = (a given area) : A'M2
.

That is, the generalized equation is of the form

x 2 (a— x) = be 2
, as above.

(i) Archimedes's own solution of the cubic.

Archimedes adds that, ' if the problem is propounded in this

general form, it requires a Stopio-jios [i.e. it is necessary to

investigate the limits of possibility], but if the conditions are

added which exist in the present case [i.e. in the actual

problem of Prop. 4], it does not require a S^pia-fios' (in other

words, a solution is always possible). He then promises to

give ' at the end ' an analysis and synthesis of both problems

[i.e. the Stopio-fjio? and the problem itself]. The promised

solutions do not appear in the treatise as we have it, but

Eutocius gives solutions taken from ' an old book ' which he

managed to discover after laborious search, and which, since it

was partly written in Archimedes's favourite Doric, he with
fair reason assumed to contain the missing addendum by
Archimedes.

In the Archimedean fragment preserved by Eutocius the

above equation, x2 (a— x) = be2
, is solved by means of the inter-

section of a parabola and a rectangular hyperbola, the equations

of which may be written thus

c
2

x2 = — y, (a— x) y = ab.
a

The Siopicr/jLos takes the form of investigating the maximum
possible value of x2 (a — x), and it is proved that this maximum
value for a real solution is that corresponding to the value

x = | a. This is established by showing that, if be2 — /7a3
,

\
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the curves touch at the point for which x = §<x. If on the

other hand be 2 < -£j<i'\ it is proved that there are two real

solutions. In the particular case arising in Prop. 4 it is clear

that the condition for a real solution is satisfied, for the

Tfii

.expression corresponding to be2 is -^- -4r3
, and it is onlym + n

necessary that
m

4r3 should be not greater than 27 <x
3 orm + n

4r3
, which is obviously the case.

(ii) Solution of the cubic by Dionysodorus.

It is convenient to add here that Eutocius gives, in addition

to the solution by Archimedes, two other solutions of our

problem. One, by Dionysodorus, solves the cubic equation in

the less general form in which it is required for Archimedes's

proposition. This form, obtained from (8) above, by putting

A'M — x, is

Ar2 :x2 = (3 r— x)

:

n
m + n

r,

and the solution is obtained by drawing the parabola and

y

the rectangular hyperbola which we should represent by the

equations

r (3r—x) = y
2 and - - 2r2 = xy,m + n m + n °

referred to A'A and the perpendicular to it through A as axes

of x, y respectively.

(We make FA equal to OA, and draw the perpendicular

AH of such a length that

FA:AH=CE:ED = (m + n):n.)
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(iii) Solution of the original problem of II. 4 by Diodes.

Diodes proceeded in a different manner, satisfying, by

a geometrical construction, not the derivative cubic equation,

but the three simultaneous relations which hold in Archi-

medes's proposition, namely

HM:H'M = m:n

HA: h = r :h'

H'A': h' = r :h)

with the slight generalization that he substitutes for r in

these equations another length a.

The problem is, given a straight line AA', a ratio m : n, and

another straight line AK (= a), to divide AA' at a point M
and at the same time to find two points H, ffl on AA'

produced such that the above relations (with a in place

of r) hold.

The analysis leading to the construction is very ingenious.

Place AK (= a) at right angles to AA\ and draw A'K' equal

and parallel to it.

Suppose the problem solved, and the points M, H, H' all

found.

Join KM, produce it, and complete the rectangle KGEKf
.
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Draw QMN through M parallel to AK. Produce K'M to

meet KG produced in F.

By similar triangles,

FA:AM = K'A':A'M, or FA :h = a:h\

whence FA = AH (k, suppose).

Similarly A'E — A'W (Jc, suppose).

Again, by similar triangles,

(FA + AM) : (A'K' + A'M) = AM : A'M

= {AK + AM):(EA / + A'M),

or (Jc + h) : (a + h') = (a + h) : (Jc + h'),

i. e. (Jc + h) (Jc + £') = (a + h)(a + h'). (1)

Now, by hypothesis,

m : w = (Jc+ h) : (Jc' + h!)

= (k + k)(7c' + h'):(k' + h')
2

= (a + A) (a + ft') : (&' + ft')
2 [by ( 1 )]• (2)

Measure AR, A'R' on AA' produced both ways equal to a.

Draw RP, R'P' at right angles to RR' as shown in the figure.

Measure along MN the length MV equal to MA' or h', and

draw PP' through F, A' to meet EP, ET'.

Then QV=Jc' + h'
}
P'V= V2 (a + h')

y

PV= V2(a + Ji)
y

whence PV.P'V =2 (a + A) (a + h');

and, from (2) above,

2m:n=2(a + h) (a + h') : (fc' + A')
2

= PV.P'V:QV\ (3)

Therefore Q is on an ellipse in which PP/
is a diameter, and

QV is an ordinate to it.

Again, D GQNK is equal to a AA'K'K, whence

GQ.QN= AA'. A'K' = (h + h')a = 2m, (4)

and therefore Q is on the rectangular hyperbola with KF,
KK f

as asymptotes and passing through A'

.
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How this ingenious analysis was suggested it is not possible

to say. It is the equivalent of reducing the four unknowns

h, h', k, k' to two, by putting h = r + x, h! = r— x and k' = y,

and then reducing the given relations to two equations in x, y,

which are coordinates of a point in relation to Ox, Oy as axes,

where is the middle point of AA', and Ox lies along 0A\
while Oy is perpendicular to it.

Our original relations (p. 47) give

«

7/ ah' r— x
7

ah r + x , m h + k
y = k — -=- = a j k = -=-? = a > and — = —.—j-. •

° h r + x h r— x n h+k

We have at once, from the first two equations,

Icy = a y = a1
,

whence (r + x)y = a (r—x),

and (x + r) (y + a) = 2 ra,

which is the rectangular hyperbola (4) above.

* . m
Again,

v V r + x/

whence we obtain a cubic equation in x,

(r + x) 2 (r + a — x) = — (r— xf (r + a + x),

which gives

r + x
— (r—xy[ ) =(r + ar — x\
n v

\ r + x /
v

v, y a . y + r— x r + a + x
.but = —— whence =

r—x r + x r— x r + x

and the equation becomes

m— (y + r— x) 2 = (r + a) 2— x2
,

rh

which is the ellipse (3) above.

1523.2 E
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To return to Archimedes. Book II of our treatise contains

further problems : To find a sphere equal to a given cone or

cylinder (Prop. 1), solved by reduction to the finding of two

mean proportionals; to cut a sphere by a plane into two

segments having their surfaces in a given ratio (Prop. 3),

which is easy (by means of I. 42, 43) ;
given two segments of

spheres, to find a third segment of a sphere similar to one

of the given segments and having its surface equal to that of

the other (Prop. 6) ; the same problem with volume substituted

for surface (Prop. 5), which is again reduced to the finding

of two mean proportionals; from a given sphere to cut off

a segment having a given ratio to the cone with the same
base and equal height (Prop. 7). The Book concludes with

two interesting theorems. If a sphere be cut by a plane into

two segments, the greater of which has its surface equal to S
and its volume equal to V, while S', V are the surface and

volume of the lesser, then V:V < S 2
: S'2 but >S*:S'%

(Prop. 8) : and, of all segments of spheres which have their

surfaces equal, the hemisphere is the greatest in volume
(Prop. 9).

Measurement of a Circle.

The book on the Measurement of a Circle consists of three

propositions only, and is not in its original form, having lost

(as the treatise On the Sphere and Cylinder also has) prac-

tically all trace of the Doric dialect in which Archimedes

wrote ; it may be only a fragment of a larger treatise. The
three propositions which survive prove (1) that the area of

a circle is equal to that of a right-angled triangle in which

the perpendicular is equal to the radius, and the base to the

circumference, of the circle, (2) that the area of a circle is to

the square on its diameter as 11 to 14 (the text of this pro-

position is, however, unsatisfactory, and it cannot have been

placed by Archimedes before Prop. 3, on which it depends),

(3) that the ratio of the circumference of any circle to its

diameter (i.e. ir) is < 3^ but > 3^ . Prop. 1 is proved by
the method of exhaustion in Archimedes's usual form : he

approximates to the area of the circle in both directions

(a) by inscribing successive regular polygons with a number of
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sides continually doubled, beginning from a square, (6) by

circumscribing a similar set of regular polygons beginning

from a square, it being shown that, if the number of the

sides of these polygons be continually doubled, more than half

of the portion of the polygon outside the circle will be taken

away each time, so that we shall ultimately arrive at a circum-

scribed polygon greater than the circle by a space less than

any assigned area.

Prop. 3, containing the arithmetical approximation to 7r, is

the most interesting. The method amounts to calculating

approximately the perimeter of two regular polygons of 96

sides, one of which is circumscribed, and the other inscribed,;

to the circle ; and the calculation starts from a greater and/

a lesser limit to the value of V 3, which Archimedes assumes

without remark as known, namely

265 ^ ./ o ^ 1351
T53" <• V O <. -780"'

How did Archimedes arrive at these particular approxi-

mations? No puzzle has exercised more fascination upon

writers interested in the history of mathematics. De Lagny,

Mollweide, Buzengeiger, Hauber, Zeuthen, P. Tannery, Heiler-

mann, Hultsch, Hunrath, Wertheim, Bobynin : these are the

names of some of the authors of different conjectures. The
simplest supposition is certainly that of Hunrath and Hultsch,

who suggested that the formula used was

a± -— > \/(a2 ±b) > a±
2a v ~ ' - 2a±\

where a2
is the nearest square number above or below a1 ± b,

as the case may be. The use of the first part of this formula

by Heron, who made a number of sucb> approximations, is

proved by a passage in his Metrica 1
, where a rule equivalent

to this is applied to \/720 ; the second part of the formula is

used by the Arabian Alkarkhi (eleventh century) who drew
from Greek sources, and one approximation in Heron may be

obtained in this way.2 Another suggestion (that of Tannery

1 Heron, Metrica, i. 8.

2 Stereom. ii, p. 184. 19, Hultsch; p. 154. 19, Heib. y'54 = 7J=7I
;t

instead of 7-^j

.

E 2
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and Zeuthen) is that the successive solutions in integers of

the equations

x2 -3y2 = 1 I

x2 -3y2 = -2)

may have been found in a similar way to those of the

equations x2— 2y2 = +1 given by Theon of Smyrna after

the Pythagoreans. The rest of the suggestions amount for the

most part to the use of the method of continued fractions

more or less disguised.

Applying the above formula, we easily find

2-i> V3 >2-±,

or \ > \/3 > §.

Next, clearing of fractions, we consider 5 as an approxi-

mation to Vs . 3
2 or V27, and we have

5 + T
2
o > 3 V3 > 5 + i

2
T ,

whence f| > \/3 > if.

Clearing of fractions again, and taking 26 as an approxi-

mation to \/3 . 15 2 or \/675
5
we have

26-A > 15V3 >26-^\,

which reduces to
1 351 -^ A/Q -^ 265
7 80 -^ v ° <* TS3'

Archimedes first takes the case of the circumscribed polygon.

Let GA be the tangent at J. to a circular arc with centre 0.

Make the angle AOG equal to one-third of a right angle.

Bisect the angle AOC by OD, the angle AOD by OE, the

angle AOE by OF, and the angle AOF by OG. Produce GA
to AH, making AH equal to AG. The angle GOH is then

equal to the angle FOA which is ^jth °^ a right angle, so

that GH is the side of a circumscribed regular polygon with

96 sides. v

Now OA: AG[= V3 : l] > 265:153, (1)

and 0(7:0.4 = 2:1 = 306:153. (2)
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And, since OD bisects the angle COA,

CO:OA = CD: DA,

so that (CO + OA):OA = CA: DA,

or (CO + OA) :CA = OA: AD.

Hence OA : AD > 571 : 153,

53

by (1) and (2).

And OD2
: AD2 = (OA 2 + AD2

) : AD2

>(571 2 +153 2
): 153 2

> 349450 : 23409.

Therefore, says Archimedes,

0D:DA > 591 J: 153.

Next, just as we have found the limit of OD : AD
from 0C:CA and the limit of OA : AC, we find the limits

of OAiAEjmd 0E:AE from the limits of 0D:DA and
OA : AD, and so on. This gives ultimately the limit of

OAiAG.
Dealing with the inscribed polygon, Archimedes gets a

similar series of approximations. ABC being a semicircle, the

angle BAC is made equal to one-third of a right angle. Then,

if the angle BAC is bisected by AD, the angle BAD by AE,
the angle BAE by AF, and the angle BAF by AG, the

straight line BG is the side of an inscribed polygon with

96 sides.
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Now the triangles ADB, BDd, ACd are similar;

therefore AD : DB = BD:Dd=AC:Cd
— AB\ Bd, since AD bisects Z BAC,

= (AB + AC):(Bd + Cd)

= (AB + AC):BC.

But AG:GB < 1351 :780,

while BA : BG = 2 : 1 = 1560 : 780.

Therefore AD : DB < 2911 : 780.

Hence AB2 :BD2 < (2911 2 + 780 2):780 2

< 9082321 : 608400,
and, says Archimedes,

AB:BD < 3013|:780.

Next, just as a limit is found for AD : DB and AB : BD
from AB : BG and the limit of AG : GB, so we find limits for

AE : EB and AB : BE from the limits oiAB.BD and AD : DB,
and so on, and finally we obtain the limit of AB : BG.
We have therefore in both cases two series of terms a , alt

a
2 ... an and b , b

l}
b
2
...bn ,

for which the rule of formation is

a
Y
— a + b , a

2
= a

1
+ b

l , ...,

where b
x
= V (a* + c

2
), b

2
= v

/
(a2

2 + c
2
) ... ;

and in the first case

a — 265, b = 306, c = 153,

while in the second case

a = 1351, b = 1560, c = 780.
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The series of values found by Archimedes are shown in the

following table

:

a b

265 306

571 > |V(571 2 +153 2

)]

> 591J

162|>[V{(1162§) 2 +153 2
}] 153

>1172|

334i>[V{(2334i) 2 +153 2
}] 153

> 2339J

G n a b c

153 1351 1560 780

153 1 2911 < </(2911 2 + 7802
) 780

< 3013|J
5924ii

2 4 780)

1823

*

673i 153 4

< </(1823 2 +2402
) 240.

1 < 1838T
9
T

3661T
9
T ... 240 f

<\/(1007 2 + 66 2
) 66

< 1009|

< V{(2016|)2 + 662
} 66

< 2017J

1007

2016|

and, bearing in mind that in the first case the final ratio

a4 : c is the ratio OA : AG = 2 OA : OH, and in the second case

the final ratio 64 : c is the ratio AB : BG, while GH in the first

figure and BG in the second are the sides of regular polygons

of 96 sides circumscribed and inscribed respectively, we have

finally

96x153 96x66
> 7T >

4673J 2017J

Archimedes simply infers from this that

3^ >tt > 3ff

.

As a matter of fact - —^- = 3^
4673| 4673|

and % = i
46724 7

1 1
It is also to be observed that 3^ = 3 -\ > and it may71 7+ 10 J

have been arrived at by a method equivalent to developing

the fraction
6336

2017J
in the form of a continued fraction.

It should be noted that, in the text as we have it, the values

of b1} 62 , 63, fr
4
are simply stated in their final form without

the intermediate step containing the radical except in the first

* t Here the ratios of a to c are in the first instance reduced to lower
terms.
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case of all, where we are told that OD2 :AD2 > 34»9450 : 23409

and then that OD.DA > 591|:153. At the points marked
* and f in the table Archimedes simplifies the ratio a

2
: c and

«
3

: c before calculating b
2 , 63 respectively, by multiplying each

term in the first case by ^ and in the second case by J£.

He gives no explanation of the exact figure taken as the

approximation to the square root in each case, or of the

method by which he obtained it. We may, however, be sure

that the method amounted to the use of the formula (a±b) 2

= a2 + 2ab + b2
, much as our method of extracting the square

root also depends upon it.

We have already seen (vol. i, p. 232) that, according to

Heron, Archimedes made a still closer approximation to the

value of it.

On Conoids and Spheroids.

The main problems attacked in this treatise are, in Archi-

medes's manner, stated in his preface addressed to Dositheus,

which also sets out the premisses with regard to the solid

figures in question. These premisses consist of definitions and

obvious inferences from them. The figures are (1) the right-

angled conoid (paraboloid of revolution), (2) the obtuse-angled

conoid (hyperboloid of revolution), and (3) the spheroids

(a) the oblong, described by the revolution of an ellipse about

its ' greater diameter ' (major axis), (6) the flat, described by
the revolution of an ellipse about its ' lesser diameter ' (minor

axis). Other definitions are those of the vertex and axis of the

figures or segments thereof, the vertex of a segment being

the point of contact of the tangent plane to the solid which

is parallel to the base of the segment. The centre is only

recognized in the case of the spheroid ; what corresponds to

the centre in the case of the hyperboloid is the ' vertex of

the enveloping cone ' (described by the revolution of what
Archimedes calls the 'nearest lines to the section of the

obtuse-angled cone', i.e. the asymptotes of the hyperbola),

and the line between this point and the vertex of the hyper-

boloid or segment is called, not the axis or diameter, but (the

line) ' adjacent to the axis '. The axis of the segment is in

the case of the paraboloid the line through the vertex of the

segment parallel to the axis of the paraboloid, in the case



ON CONOIDS AND SPHEROIDS 57

of the hyperboloid the portion within the solid of the line

joining the vertex of the enveloping cone to the vertex of

the segment and produced, and in the case of the spheroids the

line joining the points of contact of the two tangent planes

parallel to the base of the segment. Definitions are added of

a ' segment of a cone ' (the figure cut off towards the vertex by
an elliptical, not circular, section of the cone) and a ' frustum

of a cylinder ' (cut off by two parallel elliptical sections).

Props. 1 to 1 8 with a Lemma at the beginning are preliminary

to the main subject of the treatise. The Lemma and Props. 1, 2

are general propositions needed afterwards. They include

propositions in summation,

2 {a + 2a+3a + ... + na} > n.na > 2{a + 2a + ... +{n— l)a}

(Lemma)
(this is clear from Sn — \n{n + \)a)

;

(ti + 1) (na) 2 + a(a + 2a + 3a+ ... + na)

= 3{a2 +(2a) 2 + (3a) 2 + ... + (na) 2
}

;

(Lemma to Prop. 2)

whence (Cor.)

3
{
a2 + (2 a)

2 + (3 a)
2 + . . . + (no) 2

} > n (na) 2

> 3 {a2 + (2a) 2 + ... + (n-la) 2
} ;

lastly, Prop. 2 gives limits for the sum of n terms of the

series ax + x2
, a . 2 x + (2 x)

2
, a . 3 x + (3 x)

2
, ..., in the form of

inequalities of ratios, thus

:

n { a . nx+ (nx)2
} : 2

l

n~ 1

{ a.rx + (rx) 2
}

> (a + nx) : (%a + ^nx)

> n { a . nx + (nx)2
} : 2j

w
{ a . rx + (rx) 2

}
.

Prop. 3 proves that, if QQ' be a chord of a parabola bisected

at Fby the diameter PV, then, if PV be of constant length,

the areas of the triangle PQQ' and of the segment PQQ' are

also constant, whatever be the direction of QQ'
; to prove it

Archimedes assumes a proposition ' proved in the conies ' and
by no means easy, namely that, if QD be perpendicular to PV,
and if p, pa be the parameters corresponding to the ordinates

parallel to QQ' and the principal ordinates respectively, then

QV:QP=p ipa .

Props. 4-6 deal with the area of an ellipse, which is, in the
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first of the three propositions, proved to be to the area of

the auxiliary circle as the minor axis to the major ; equilateral

polygons of 4 n sides are inscribed in the circle and compared
with corresponding polygons inscribed in the ellipse, which are

determined by the intersections with the ellipse of the double

ordinates passing through the angular points of the polygons

inscribed in the circle, and the method of exhaustion is then

applied in the usual way. Props. 7, 8 show how, given an ellipse

with centre C and a straight line CO in a plane perpendicular to

that of the ellipse and passing through an axis of it, (1) in the

case where OC is perpendicular to that axis, (2) in the case

where it is not, we can find an (in general oblique) circular

cone with vertex such that the given ellipse is a section of it,

or, in other words, how we can find the circular sections of the

cone with vertex which passes through the circumference of

the ellipse ; similarly Prop. 9 shows how to find the circular

sections of a cylinder with CO as axis and with surface passing

through the circumference of an ellipse with centre C, where

CO is in the plane through an axis of the ellipse and perpen-

dicular to its plane, but is not itself perpendicular to that

axis. Props. 11-18 give simple properties of the conoids and

spheroids, easily derivable from the properties of the respective

conies; they explain the nature and relation of the sections

made by planes cutting the solids respectively in different ways
(planes through the axis, parallel to the axis, through the centre

or the vertex of the enveloping cone, perpendicular to the axis,

or cutting it obliquely, respectively), with especial reference to

the elliptical sections of each solid, the similarity of parallel

elliptical sections, &c. Then with Prop. 19 the real business

of the treatise begins, namely the investigation of the volume

of segments (right or oblique) of the two conoids and the

spheroids respectively.

The method is, in all cases, to circumscribe and inscribe to

the segment solid figures made up of cylinders or ' frusta of

cylinders ', which can be made to differ as little as we please

from one another, so that the circumscribed and inscribed

figures are, as it were, compressed together and into coincidence

with the segment which is intermediate between them.

In each diagram the plane of the paper is a plane through

the axis of the conoid or spheroid at right angles to the plane
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of the section which is the base of the segment, and which

is a circle or an ellipse according as the said base is or is not

at right angles to the axis ; the plane of the paper cuts the

base in a diameter of the circle or an axis of the ellipse as

the case may be.

The nature of the inscribed and circumscribed figures will

be seen from the above figures showing segments of a para-

boloid, a hyperboloid and a spheroid respectively, cut off
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by planes obliquely inclined to the axis. The base of the

segment is an ellipse in which BB' is an axis, and its plane is

at right angles to the plane of the paper, which passes through

the axis of the solid and cuts it in a parabola, a hyperbola, or

an ellipse respectively. The axis of the segment is cut into a

number of equal parts in each case, and planes are drawn
through each point of section parallel to the base, cutting the

solid in ellipses, similar to the base, in which PP\ QQ\ &c, are

axes. Describing frusta of cylinders with axis AD and passing

through these elliptical sections respectively, we draw the

circumscribed and inscribed solids consisting of these frusta.

It is evident that, beginning from A, the first inscribed frustum

is equal to the first circumscribed frustum, the second to the

second, and so on, but there is one more circumscribed frustum

than inscribed, and the difference between the circumscribed

and inscribed solids is equal to the last frustum of which BB'
is the base, and ND is the axis. Since ND can be made as

small as we please, the difference between the circumscribed

and inscribed solids can be made less than any assigned solid

whatever. Hence we have the requirements for applying the

method of exhaustion.

Consider now separately the cases of the paraboloid, the

hyperboloid and the spheroid.

I. The paraboloid (Props. 20-22).

The frustum the base of which is the ellipse in which PP' is

an axis is proportional to PP'2 or PN 2
, i.e. proportional to

AJ\r. Suppose that the axis AD (= c)-is divided into n equal

parts. Archimedes compares each frustum in the inscribed

and circumscribed figure with the frustum of the whole cylinder

BF cut off' by the same planes. Thus

(first frustum in BF) : (first frustum in inscribed figure)

= BD2
: PN2

•

= AD: AN
= BD : TN.

Similarly

(second frustum in BF) : (second in inscribed figure)

= HN:SM,

and so on. The last frustum in the cylinder BF has none to
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correspond to it in the inscribed figure,, and we should write

the ratio as (BD ; zero).

Archimedes concludes, by means of a lemma in proportions

forming Prop. 1, that

(frustum BF) : (inscribed figure)

= {BD + HN+...):{TN+tiM+...+X(J)

= n2k:(k + 2k + 3k+ ...+n-lk),

where XO = k, so that BD = nh.

In like manner, he concludes that

(frustum BF) : (circumscribed figure)

= n2 k : (k-i- 2/v+ 3k + ... + nh).

But, by the Lemma preceding Prop. 1,

k+ 2/c + 3k+... +n-lk < %n2k t< k+ 2/v + 3A; + ... +nk,

whence

(frustum BF) : (inscr. fig.) > 2 > (frustum BF) : (circumscr. fig.).

This indicates the desired result, which is then confirmed by
the method of exhaustion, namely that

(frustum BF) =t 2 (segment of paraboloid),

or, if V be the volume of the ' segment of a cone ', with vertex

A and base the same as that of the segment,

(volume of segment) = § V.

Archimedes, it will be seen, proves in effect that, if h be

indefinitely diminished, and n indefinitely increased, while nh
remains equal to c, then

limit of k{k+2k + 3k+ ...+(n-l)k] = \c\

that is, in our notation,
re

JULx/JU — "n •

Prop. 23 proves that the volume is constant for a given

length of axis AD, whether the segment is cut off by a plane

perpendicular or not perpendicular to the axis, and Prop. 24

shows that the volumes of two segments are as the squares on
their axes.
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II. In the case of the hyperboloid (Props. 25, 26) let the axis

AD be divided into n parts, each of length h, and let AA'=a.
Then the ratio of the volume of the frustum of a cylinder on
the ellipse of which any double ordinate QQ' is an axis to the

volume of the corresponding portion of the whole frustum BF
takes a different form ; for, if AM = rh, we have

(frustum in BF) : (frustum on base QQ')

= BD2
: QM2

= AD.A'D:AM.A'M

= {a.nh + (nh) 2
} : {a .rh + (rh) 2

}.

By means of this relation Archimedes proves that

(frustum BF) : (inscribed figure)

= n{a. nh + (nh) 2
} : S^" 1 {a . rh + (rh) 2

},

and

(frustum BF) : (circumscribed figure)

= n{a.nk + (nh) 2
} -.^{a.rh + irh)

2
}.

But, by Prop. 2,

n{a.nh + (nh) 2
} : S,^1 {a .rh+(rh) 2

} > (a + nk):(%a + $nh)

> n{a.nh + (nh)2
} \^ x

n {a.rh + (rJi)
2
}.

From these relations it is inferred that

(frustum BF) : (volume of segment) = (a + nh) : (ia + ^nh),

or (volume of segment) : (volume of cone ABB')

= (AD+3CA):(AD + 2CA);

and this is confirmed by the method of exhaustion.

The result obtained by Archimedes is equivalent to proving

that, if k be indefinitely diminished while n is indefinitely

increased but nh remains always equal to b, then

limit of n (ab + b2
)
/

S

n = (a + b) / (±a + 1 b),

or limit of - Sn = b 2 (%a + J b),

where

$n = a(k + 2h+3h+...+nh) + {h2 + (2h) 2 + (3h) 2 +...+(nh) 2
}
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so that

hSn = ah(h+2h+...+nh) + h{h2 + (2h)2 +...+(nh) 2
}.

The limit of this latter expression is what we should write

(ax + x2
) dx = b2 (^a + ^ b),

Jo

and Archimedes's procedure is the equivalent of this integration.

III. In the case of the spheroid (Props. 29, 30) we take

a segment less than half the spheroid.

As in the case of the hyperboloid, ,.

(frustum in BF) : (frustum on base QQ')

= BD2
: QM2

= AD.A'D.AM.A'M-

but, in order to reduce the summation to the same as that in

Prop. 2, Archimedes expresses AM . A'M in a different form

equivalent to the following.

Let AD (=b) be divided into n equal parts of length h,

and suppose that AA' = a, CD = \c.

Then AD.A'D = %a2 -ic2
,

and AM.A'M = ±a2 -(ic + rh)2 (DM = rh)

= AD.A'D-{c.rh + (rh) 2
}

— ch^-b2 -{c .rh + (rh) 2
}.

Thus in this case we have

(frustum BF) : (inscribed figure)

= n (cb + b2
)

: [n (cb + b 2
)
- 2/

{

c.rh + (rh)
2

}

]

and

(frustum BF) : (circumscribed figure)

= n(cb + b2
) : [n (cb + b2

)

-

S^" 1 {c.rh+ (rh)2
}].

And, since b = nh, we have, by means of Prop. 2,

n(cb + b2
) :[n(cb + b2)-\n {c .rh + (rh) 2

}]

>(c+ b):{c + b-(ic + ib)}

> ^(c6 + 62):[7i(c6 + &2)^2
1

n- 1 {cr^ + (r^)2
}].
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The conclusion, confirmed as usual by the method of ex-

haustion, is that

(frustum BF) : (segment of spheroid)= (c + b) : { c + b - (Jc + § b) }

= (c + b):(ic + ib),

whence (volume of segment) : (volume of cone ABB')

= (ie + 2b):(c + b)

= (3GA-AD):(2GA-AD), since CA = %c + b.

As a particular case (Props. 27, 28), half the spheroid is

double of the corresponding cone.

Props. 31, 32, concluding the treatise, deduce the similar

formula for the volume of the greater segment, namely, in our

figure,

(greater segmt.) : (cone or segmt.of cone with same base and axis)

= (CA + AD):AD.

On Spirals.

The treatise On Spirals begins with a preface addressed to

Dositheus in which Archimedes mentions the death of Conon
as a grievous loss to mathematics, and then summarizes the

main results of the treatises On the Sphere and Cylinder and

On Conoids and Spheroids, observing that the last two pro-

positions of Book II of the former treatise took the place

of two which, as originally enunciated to Dositheus, were

wrong; lastly, he states the main results of the treatise

On Spirals, premising the definition of a spiral which is as

follows

:

' If a straight line one extremity of which remains fixed be

made to revolve at a uniform rate in a plane until it returns

to the position from which it started, and if, at the same time

as the straight line is revolving, a point move at a uniform
rate along the straight line, starting from the fixed extremity,

the point will describe a spiral in the plane.'

As usual, we have a series of propositions preliminary to

the main subject, first two propositions about uniform motion,
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then two simple geometrical propositions, followed by pro-

positions (5-9) which are all of one type. Prop. 5 states that,

given a circle with centre 0, a tangent to it at A, and c, the

Fig. 1.

circumference of any circle whatever, it is possible to draw

a straight line OPF meeting the circle in P and the tangent

in F such that

FP.OP < (arc AP) : c.

Archimedes takes D a straight line greater than c, draws

OH parallel to the tangent at A and then says ' let PH be

placed equal to D verging (uevovaa) towards A '. This is the

usual phraseology of the type of problem known as vtvais

where a straight line of given length has to be placed, between

two lines or curves in such a position that, if produced, it

passes through a given point (this is the meaning of verging).

Each of the propositions 5-9 depends on a vevo-is of this kind,

Fig. 2.

which Archimedes assumes as * possible ' without showiug how
it is effected- Except in the case of Prop. 5, the theoretical

solution cannot be effected by means of the straight line and

circle: it depends in general on the solution of an equation

of the fourth degree, which can be solved by means of the

F1523-2
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points of intersection of a certain rectangular hyperbola

and a certain parabola. It is quite possible, however, that

such problems were in practice often solved by a mechanical

method, namely by placing a ruler, by trial, in the position of

the required line : for it is only necessary to place the ruler

so that it passes through the given point and then turn it

round that point as a pivot till the intercept becomes of the

given length. In Props. 6-9 "we have a circle with centre 0,

a chord AB less than the diameter in it, OM the perpendicular

from on AB, BT the tangent at B, OT the straight line

through parallel to AB; D : E is any ratio less or greater,

as the case may be, than the ratio BM:M0. Props. 6, 7

(Fig. 2) show that it is possible to draw a straight line OFP

Fig. 3.

meeting AB in F and the circle in P such that FP : PB=D: E
(OP meeting AB in the case where D.E < BM:M0, and

meeting AB produced when D : E > BM : MO). In Props. 8, 9

(Fig. 3) it is proved that it is possible to draw a straight line

OFP meeting AB in F, the circle in P and the tangent at B in

G, such that FP:BG=D:E (OP meeting AB itself in the case

where D : E < BM : MO, and meeting AB produced in the

case where D:E > BM : MO).
We will illustrate by the constructions in Props. 7, 8,

as it is these propositions which are actually cited later.

Prop. 7. If D : E is any ratio > BM : MO, it is required (Fig. 2)

to draw OP'F' meeting the circle in Pf and AB produced in

Ff
so that

F/P/:PfB = D:E.

Draw OT parallel to AB, and let the tangent to the circle at

B meet OT in T.
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Then D:E > BM : MO, by hypothesis,

> OB : BT, by similar triangles.

Take a straight line P'H' (less than BT) such that 7) : E
= OB : P'lP, and place P'H' between the circle and OT
' verging towards B ' (construction assumed).

Then F'P' : P'B = OP' : P'H'

= OB : P'H'

= D:E.

Prop. 8. If D : E is any given ratio < BM : MO, it is required

to draw OFPG meeting AB in F, the circle in P, and the

tangent at B to the circle in G so that

FP : BG = D : E.

If OT is parallel to AB and meets the tangent at B in T,

BM: MO = 0B: BT, by similar triangles,

whence D:E< OB : BT.

Produce TB to C, making BO of such length that

D:E=0B:BO
t

so that BO > BT.

Describe a circle through the three points 0, T, C and let OB
produced meet this circle in K.

1 Then, since BC > BT, and OK is perpendicular to OT, it is

possible to place QG [between the circle TKC and BC] equal to

BK and verging towards ' (construction assumed).

f 2
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Let QGO meet the original circle in P and AB in F. Then
OFPG is the straight line required.

For CG.GT=OG.GQ = OG. BK.

But OF:OG = BT: GT, by parallels,

whence OF . GT = OG . BT.

Therefore CG . GT : OF . GT = OG . BK : OG . BT,

whence CG:OF=BK:BT
= BO:0B
= BG:OP.

Therefore OP : OF = BO: CG,

and hence PF:OP = BG: BO,

or PF:BG=OB:BO = D:E.

Pappus objects to Archimedes's use of the vevcris assumed in

Prop. 8, 9 in these words

:

1
it seems to be a grave error into which geometers fall

whenever any one discovers the solution of a plane problem
by means of conies or linear (higher) curves, or generally

solves it by means of a foreign kind, as is the case e.g. (1) with
the problem in the fifth Book of the Conies of Apollonius

relating to the parabola, and (2) when Archimedes assumes in

his work on the spiral a vtvo-is of a " solid " character with
reference to a circle ; for it is possible without calling in the

aid of anything solid to find the proof of the theorem given by
Archimedes, that is, to prove that the circumference of the

circle arrived at in the first revolution is equal to the straight

line drawn at right angles to the initial line to meet the tangent
to the spiral (i.e. the subtangent).'

There is, however, this excuse for Archimedes, that he only

assumes that the problem can be solved and does not assume

the actual solution. Pappus 1 himself gives a solution of the

particular vevcris by means of conies. Apollonius wrote two

Books of i>€V(rei?, and it is quite possible that by Archimedes's

time there may already have been a collection of such problems

to which tacit reference was permissible.

Prop. 10 repeats the result of the Lemma to Prop. 2 of On
1 Pappus, iv, pp. 298-302.
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Conoids and Spheroids involving the summation of the series

1
2 + 2 2

-f- 3 2 + ... + n2
. Prop 11 proves another proposition in

summation, namely that

(n-l) (na) 2
: {a 2 + (2a) 2 + (3a)2 + ... + (n-l)a) 2

}

> (na)2
:

{na . a + J (na — a)2
}

> (n-l)(na) 2
: {{2a)2 + (3a) 2 + ... + {na)*}.

The same proposition is also true if the terms of the series

are a2
,
(a + b)

2
,
(a + 2b) 2

... (a + n—lb) 2
, and it is assumed in

the more general form in Props. 25, 26.

Archimedes now introduces his Definitions, of the spiral

itself, the origin, the initial line, the first distance (= the

radius vector at the end of one revolution), the second distance

(= the equal length added to the radius vector during the

second complete revolution), and so on ; the first area (the area

bounded by the spiral described in the first revolution and

the ' first distance '), the second area (that bounded by the spiral

described in the second revolution and the ' second distance
'),

and so on; the first circle (the circle with the * first distance'

as radius), the second circle (the circle with radius equal to the

sum of the ' first ' and * second distances ', or twice the first

distance), and so on.

Props. 12, 14, 15 give the fundamental property of the

spiral connecting the length of the radius vector with the angle

through which the initial line has revolved from its original

position, and corresponding to the equation in polar coordinates

r = a 0. As Archimedes does not speak of angles greater

than 7r, or 2ir, he has, in the case of points on any turn after

the first, to use multiples of the circumference

of a circle as well as arcs of it. He uses the

'first circle' for this purpose. Thus, if P, Q
are two points on the first turn,

OP:OQ = (arc AKP') : (arc AKQ')
;

if P, Q are points on the nth turn of the

spiral, and c is the circumference of the first circle,

OP:OQ= {(n-l)c + arc AKP'} : {(n-l)c + arc AKQ'}.

Prop. 1 3 proves that, if a straight line touches the spiral, it
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touches it at one point only. For, if possible, let the tangent

at P touch the spiral at another point Q. Then, if we bisect

the angle POQ by 0L meeting PQ in L and the spiral in R,

OP + 0Q = 2 OR by the property of the spiral. But by
the property of the triangle (assumed, but easily proved)

0P + 0Q > 2 OX, so that 0L < OR, and some point of PQ
lies within the spiral. Hence PQ cuts the spiral, which is

contrary to the hypothesis.

Props. 16, 17 prove that the angle made by the tangent

at a point with the radius vector to that point is obtuse on the

' forward ' side, and acute on the ' backward ' side, of the radius

vector.

Props. 18-20 give the fundamental proposition about the

tangent, that is to say, they give the length of the subtangent

at any point P (the distance between and the point of inter-

section of the tangent with the perpendicular from to OP).

Archimedes always deals first with the first turn and then

with any subsequent turn, and with each complete turn before

parts or points of any particular turn. Thus he deals with

tangents in this order, (1) the tangent at A the end of the first

turn, (2) the tangent at the end of the second and any subse-

quent turn, (3) the tangent at any intermediate point of the

first or any subsequent turn. We will take as illustrative

the case of the tangent at any intermediate point P of the first

turn (Prop. 20).

If A be the initial line, P any point on the first turn, PT
the tangent at P and OT perpendicular to OP, then it is to be

proved that, if ASP be the circle through P with centre 0,

meeting PT in S, then

(subtangent OT) = (arc ASP).

I. If possible, let OT be greater than the arc ASP.
Measure off 0U such that 0U > arc ASP but < OT.

Then the ratio P0 :0U is greater than the ratio P0 : OT,

i. e. greater than the ratio of \PS to the perpendicular from

on PS.

Therefore (Prop. 7) we can draw a straight line OQF meeting

TP produced in F, and the circle in Q, such that

FQ:PQ = P0:0U.
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Let OF meet the spiral in Q\

Then we have, alternando, since PO = QO,

FQ:QO = PQ:OU

< (arc PQ) : (arc ASP), by hypothesis and a fortiori.

Componendo, FO :Q0 < (arc ASQ) : (arc ASP)

< OQ':OP.

But QO = OP ; therefore FO < OQ' ; which is impossible.

Therefore OT is not greater than the arc ASP.

II. Next suppose, if possible, that OT < arc ASP.

Measure OF along OT such that OV is greater than OTbut
less than the arc ASP.
Then the ratio PO : OV is less than the ratio PO : OT, i.e.

than the ratio of \PS to the perpendicular from on PS;

therefore it is possible (Prop. 8) to draw a straight line OF'RG
meeting PS, the circle PSA, and the tangent to the circle at P
in F\ R, G respectively, and such that

F'R:GP = PO:OV.
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Let OF'G meet the spiral in R'.

Then, since PO = RO, we have, alteraando,

F'R:RO= GP-.OV

> (arc PR) : (arc ASP), a fortiori,

whence F'O : RO < (arc ASR) : (arc ASP)

< OR: OP,

so that F'O < OR'; which is impossible.

Therefore OT is not less than the arc ASP. And it was

proved not greater than the same arc. Therefore

0T= (arc ASP).

As particular cases (separately proved by Archimedes), if

P be the extremity of the first turn and c
x
the circumference

of the first circle, the subtangent = c
x ; if P be the extremity

of the second turn and r
2
the circumference of the 'second

circle', the subtangent = 2c
2 ; and generally, if cn be the

circumference of the nth circle (the circle with the radius

vector to the extremity of the nth turn as radius), the sub-

tangent to the tangent at the extremity of the ?ith turn = ncn .

If P is a point on the nth turn, not the extremity, and the

circle with as centre and OP as radius cuts the initial line

in K, while p is the circumference of the circle, the sub-

tangent to the tangent at P = (n— l)p + arc KP (measured
' forward ')}

The remainder of the book (Props. 21-8) is devoted to

finding the areas of portions of the spiral and its several

turns cut off by the initial line or any two radii vectores.

We will illustrate by the general case (Prop. 26). Take
OB, OC, two bounding radii vectores, including an arc BC
of the spiral. With centre and radius OC describe a circle.

Divide the angle BOC into any number of equal parts by
radii of this circle. The spiral meets these radii in points

P,Q...Y,Z such that the radii vectores OB, OP, OQ ... OZ, OC

1 On the whole course of Archimedes's proof of the property of the

subtangent, see note in the Appendix.
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are in arithmetical progression. Draw arcs of circle? with

radii OB, OP, OQ ... as shown; this produces a figure circum-

scribed to the spiral and consisting of the sum of small sectors

of circles, and an inscribed figure of the same kind. As the

first sector in the circumscribed figure is equal to the second

sector in the inscribed, it is easily seen that the areas of the

circumscribed and inscribed figures differ by the difference

between the sectors OzO and OBp''; therefore, by increasing

the number of divisions of the angle BOC, we can make the

difference between the areas of the circumscribed and in-

scribed figures as small as we please ; we have, therefore, the

elements necessary for the application of the method of

exhaustion.

If there are n radii OB, OP ... 00, there are (n— 1) parts of

the angle BOO. Since the angles of all the small sectors are

equal, the sectors are as the square on their radii.

Thus (whole sector Ob'C) : (circumscribed figure)

= (n- l)OC 2
: (OP2 + OQ2 +... + OC 2

),

and (whole sector Ob'O) : (inscribed figure)

= (n~ l)OC 2
: (OB2 + OP2 + OQ2 + ... + OZ 2

).
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And OB, OP, OQ, ... OZ, 00 is an arithmetical progression
of n terms; therefore (cf. Prop. 11 and Cor.),

(n-l)OC 2
: (OP2 + OQ2 + ... + OC 2

)

< OC 2
: {00. OB + ^(00-OB) 2

}

< {n-\)OC 2 :(OB 2 + OP2 +.,. + OZ2
).

Compressing the circumscribed and inscribed figures together
in the usual way, Archimedes proves by exhaustion that

(sector Ob'C) : (area of spiral OBC)

= OC 2
: {00 . OB + ^(00-OB) 2

}.

If OB = b, 00 = c, and (c—b) — (n— \)h, Archimedes's

result is the equivalent of saying that, when h diminishes and
n increases indefinitely, while c— b remains constant,

limit of h{V + (b + h) 2 + {b + 2h) 2 +...+{b +^^h)2
}

= (c-b){cb + i(c-b) 2
}

= |(c3-63
);

that is, with our notation,

I x2dx = J(c
3—

6

3
).

h
In particular, the area included by the first turn and the

initial line is bounded by the radii vectores and 27m;
the area, therefore, is to the circle with radius 2ira as §(2 7ra)2

to (27ra)2
, that is to say, it is J of the circle or §7r(27ra) 2

.

This is separately proved in Prop. 24 by means of Prop. 10

and Corr. 1, 2.

The area of the ring added while the radius vector describes

the second turn is the area bounded by the radii vectores 2na
and 4.7ra, and is to the circle with radius 47ra in the ratio

of {^2ri + i(r2~ r
i)

2
} ^° r

2
2

>
wnere r

i
= 2rra and r

2 = 47ra;

the ratio is 7:12 (Prop. 25).

If _Rj_ be the area of the first turn of the spiral bounded by

the initial line, B
2
the area of the ring added by the second

complete turn, R
3
that of the ring added by the third turn,

and so on, then (Prop. 27)

i?
3
= 2£

2 , R
4
= 3R

2 , R
5
= 4R

2
,...Rn = {n-l)R

2
.

Also R
2
= 6i^.
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Lastly, if E be the portion of the sector b'OG bounded by

b'B, the arc b'zG of the circle and the arc BG of the spiral, and

F the portion cut oft' between the arc BG of the spiral, the

radius OG and the arc intercepted between OB and OC of

the circle with centre and radius OB, it is proved that

E:F= {OB + %(OC-OB)} : {OB + $(OC-OB)} (Prop. 28).

On Plane Equilibriums, I, II.

In this treatise we have the fundamental principles of

mechanics established by the methods of geometry in its

strictest sense. There were doubtless earlier treatises on

mechanics, but it may be assumed that none of them had

been worked out with such geometrical rigour. Archimedes

begins with seven Postulates including the following prin-

ciples. Equal weights at equal distances balance ; if unequal

weights operate at equal distances, the larger weighs down
the smaller. If when equal weights are in equilibrium some-

thing be added to, or subtracted from, one of them, equilibrium

is not maintained but the weight which is increased or is not

diminished prevails. When equal and similar plane figure^

coincide if applied to one another, their centres of gravity

similarly coincide ; and in figures which are unequal but

similar the centres of gravity will be ' similarly situated '.

In any figure the contour of which is concave in one and the

same direction the centre of gravity must be within the figure.

Simple propositions (1-5) follow, deduced by reductio ad
absurdum; these lead to the fundamental theorem, proved

first for commensurable and then by reductio ad absurdum
for incommensurable magnitudes, that Two magnitudes,

whether commensurable or incommensurable, balance at dis-

tances reciprocally proportional to the magnitudes (Props.

6, 7). Prop. 8 shows how to find the centre of gravity of

a part of a magnitude when the centres of gravity of the

other part and of the whole magnitude are given. Archimedes

then addresses himself to the main problems of Book I, namely
to find the centres of gravity of (1) a parallelogram (Props.

9, 10), (2) a triangle (Props. 13, 14), and (3) a parallel-

trapezium (Prop. 15), and here we have an illustration of the

extraordinary rigour which he requires in his geometrical
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proofs. We do not find him here assuming, as in The Method,

that, if all the lines that can be drawn in a figure parallel to

(and including) one side have their middle points in a straight

line, the centre of gravity must lie somewhere on that straight

line ; he is not content to regard the figure as made up of an

infinity of such parallel lines; pure geometry realizes that

the parallelogram is made up of elementary parallelograms,

indefinitely narrow if you please, but still parallelograms, and

the triangle of elementary trapezia, not straight lines, so

that to assume directly that the centre of gravity lies on the

straight line bisecting the parallelograms would really be

a petitio principii. Accordingly the result, no doubt dis-

covered in the informal way, is clinched by a proof by reductio

ad absurdum in each case. In the case of the parallelogram

ABCD (Prop. 9), if the centre of gravity is not on the straight

line EF bisecting two opposite sides, let it be at H. Draw
HK parallel to AD. Then it is possible by bisecting AE, ED,
then bisecting the halves, and so on, ultimately to reach

a length less than K.H. Let this be done, and through the

points of division of AD draw parallels to AB or DC making

a number of equal and similar parallelograms as in the figure.

The centre of gravity of each of these parallelograms is

similarly situated with regard to it. Hence we have a number
of equal magnitudes with their centres of gravity at equal

distances along a straight line. Therefore the centre of

gravity of the whole is on the line joining the centres of gravity

of the two middle parallelograms (Prop. 5, Cor. 2). But this

is impossible, because H is outside those parallelograms.

Therefore the centre of gravity cannot but lie on EF.
Similarly the centre of gravity lies on the straight line

bisecting the other opposite sides AB, CD ; therefore it lies at

the intersection of this line^ with EF, i.e. at the point of

intersection of the diagonals.
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The proof in the case of the triangle is similar (Prop. 13).

Let AD be the median through A. The centre of gravity

must lie on AD.
For, if not, let it be at H, and draw HI parallel to BC.

Then, if we bisect DC, then bisect the halves, and so on,

we shall arrive at a length DE less than IH. Divide BC into

lengths equal to DE, draw parallels to DA through the points

of division, and complete the small parallelograms as shown in

the figure.

The centres of gravity of the whole parallelograms SN, TP,

FQ lie on AD (Prop. 9) ; therefore the centre of gravity of the

figure formed by them all lies on AD; let it be 0. Join OH^
and produce it to meet in Fthe parallel through C to AD.
Now it is easy to see that, if n be the number of parts into

which DC, AC are divided respectively,

(sum of small As AMR, MLS ... ARN, NUP ...):{& ABC)

= n.AN*:AC2

= 1 : n
;

whence

(sum of small As) : (sum of parallelograms) = 1 : (n— 1).

Therefore the centre of gravity of the figure made up of all

the small triangles is at a point X on OH produced such that

XH=(n-l)OH.

But VII: HO < CE : ED or (n - 1) : 1 ; therefore XH > VH
It follows that the centre of gravity of all the small

triangles taken together lies at X notwithstanding that all

the triangles lie on one side of the parallel to AD drawn
through X : which is impossible.
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Hence the centre of gravity of the whole triangle cannot

but lie on AD.
It lies, similarly, on either of the other two medians ; so

that it is at the intersection of any two medians (Prop. 14).

Archimedes gives alternative proofs of a direct character,

both for the parallelogram and the triangle, depending on the

postulate that the centres of gravity of similar figures are

' similarly situated ' in regard to them (Prop. 1 for the

parallelogram, Props. 11, 12 and part 2 of Prop. 13 for the

triangle).

The geometry of Prop. 15 deducing the centre of gravity of

a trapezium is also interesting. It is proved that, if AD, BG
are the parallel sides [AD being the smaller), and EF is the

straight line joining their middle points, the centre of gravity

is at a point G on EF such that

GE:GF=(2BC + AD):(2AD + BC).

Book II of the treatise is entirely devoted to finding the

centres of gravity of a parabolic segment (Props. 1-8) and

of a portion of it cut off by a parallel to the base (Props. 9, 10).

Prop. 1 (really a particular case of I. 6, 7) proves that, if P, P'

be the areas of two parabolic segments and D, E their centres

of gravity, the centre of gravity of both taken together is

at a point C on DE such that

P:P'=CE:CD.
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This is merely preliminary. Then begins the real argument,

the course of which is characteristic and deserves to be set out.

Archimedes uses a series of figures inscribed to the segment,

as he says, 'in the recognized manner' (yvcopificos). The rule

is as follows. Inscribe in the segment the triangle ABB' with

the same base and height; the vertex A is then the point

of contact of the tangent parallel to BB'. Do the same with

the remaining segments cut off by AB, AB', then with the

segments remaining, and so on. If BRQPAP'Q'R'B' is such

a figure, the diameters through Q, Q', P, P', R, R' bisect the

straight lines AB, AB', AQ, AQ', QB, Q'B' respectively, and

BB' is divided by the diameters into parts which are all

equal. It is easy to prove also that PP', QQ', RR' are all

parallel to BB', and that AL : LM: MN: NO = 1 : 3 : 5 : 7, the

same relation holding if the number of sides of the polygon

is increased; i.e. the segments of AO are always in the ratio

of the successive odd numbers (Lemmas to Prop. 2). The

centre of gravity of the inscribed figure lies on iO (Prop. 2).

If there be two parabolic segments, and two figures inscribed

in them ' in the recognized manner ' with an equal number of

sides, the centres of gravity divide the respective axes in the

same proportion, for the ratio depends on the same ratio of odd

numbers 1:3:5:7... (Prop. 3). The centre of gravity of the

parabolic segment itself lies on the diameter AO (this is proved

in Prop. 4 by reductio ad absurdum in exactly the same way
as for the triangle in I. 13). It is next proved (Prop. 5) that

the centre of gravity of the segment is nearer to the vertex A
than the centre of gravity of the inscribed figure is ; but that

it is possible to inscribe in the segment in the recognized

manner a figure such that the distance between the centres of

gravity of the segment and of the inscribed figure is less than

any assigned length, for we have only to increase the number
of sides sufficiently (Prop. 6). Incidentally, it is observed in

Prop. 4 that, if in any segment the triangle with the same
base and equal height is inscribed, the triangle is greater than

half the segment, whence it follows that, each time we increase

the number of sides in the inscribed figure, we take away
more than half of the segments remaining over ; and in Prop. 5

that corresponding segments on opposite sides of the axis, e. g.

QRB, Q'R'B' have their axes equal and therefore are equal in
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area. Lastly (Prop. 7), if there be two parabolic segments,

their centres of gravity divide their diameters in the same
ratio (Archimedes enunciates this of similar segments only,

but it is true of any two segments and is required of any two
segments in Prop. 8). Prop. 8 now finds the centre of gravity

of any segment by using the last proposition. It is the

geometrical equivalent of the solution of a simple equation in

the ratio (m, say) of AG to AO, where G is the centre of

gravity of the segment.

Since the segment = § (A ABB'), the sum of the two seg-

ments AQB, AQ'B'= ^(AABB').
Further, if QD, Q'D' are the diameters of these segments,

QD, Q'D' are equal, and, since the centres

of gravity H, H' of the segments divide

QD, Q'D' proportionally, HH' is parallel

to QQ', and the centre of gravity of the

two segments together is at K, the point

where HH' meets AO.
Now AO — 4:AV (Lemma 3 to Prop.

2), and QD = ^A0-AV=AV. But

H divides QD in the same ratio as G
divides AO (Prop. 7); therefore

VK = QH = m . QD = m. AV.

Taking moments about A of the segment, the triangle ABB'
and the sum of the small segments, we have (dividing out by
AV and A ABB')

§(l+m) + §. 4 = § .4m,

or 15m = 9,

and m = -|

.

That is, AG = %A0, or AG : GO = 3 : 2.

The final proposition (10) finds the centre of gravity of the

portion of a parabola cut off between two parallel chords PP',

BB'. If PP' is the shorter of the chords and the diameter

bisecting PP', BB' meets them in N, respectively, Archi-

medes proves that, if NO be divided into five equal parts of

which LM is the middle one (L being nearer to N than M is),
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the centre of gravity G of the portion of the parabola between

PP' and BBf
divides LM in such a way that

LG:GM = B0 2 .(2PN + BO):PN2 .(2BO + PN).

The geometrical proof is somewhat difficult, and uses a very

remarkable Lemma which forms Prop. 9. If a, 6, c, d, x, y are

straight lines satisfying the conditions

a b c , 7 \

T = - = -j (a > b > c > a),
b c d x

d x

a— d -| (a— c)

and
5a+106 + 10c + 5d a — c

then must x + y = fa. /

The proof is entirely geometrical, but amounts of course to

the elimination of three quantities b, c, d from the above four

equations.

The Sand-reckoner (Psammites or Arenarius).

I have already described in a previous chapter the remark-

able system, explained in this treatise and in a lost work,

'Apyai, Principles, addressed to Zeuxippus, for expressing very

large numbers which were beyond the range of the ordinary

Greek arithmetical notation. Archimedes showed that his

system would enable any number to be expressed up to that

which in our notation would require 80,000 million million

ciphers and then proceeded to prove that this system more
than sufficed to express the number of grains of sand which
it would take to fill the universe, on a reasonable view (as it

seemed to him) of the size to be attributed to the universe.

Interesting as the book is for the course of the argument by
which Archimedes establishes this, it is, in addition, a docu-

ment of the first importance historically. It is here that we
learn that Aristarchus put forward the Copernican theory of

the universe, with the sun in the centre and the planets

including the earth revolving round it, and that Aristarchus

further discovered the angular diameter of the sun to be yjo^h
of the circle of the zodiac or half a degree. Since Archimedes,

in order to calculate a safe figure (not too small) for the size

1523.2 Q
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of the universe, has to make certain assumptions as to the

sizes and distances of the sun and moon and their relation

to the size of the universe, he takes the opportunity of

quoting earlier views. Some have tried, he says, to prove

that the perimeter of the earth is about 300,000 stades; in

order to be quite safe he will take it to be about ten times

this, or 3,000,000 stades, and not greater. The diameter of

the earth, like most earlier astronomers, he takes to be

greater than that of the moon but less than that of the sun.

Eudoxus, he says, declared the diameter of the sun to be nine

times that of the moon, Phidias, his own father, twelve times,

while Aristarchus tried to prove that it is greater than 1 8 but

less than 20 times the diameter of the moon ; he will again be

on the safe side and take it to be 30 times, but not more. The
position is rather more difficult as regards the ratio of the

distance of the sun to the size of the universe. Here he seizes

upon a dictum of Aristarchus that the sphere of the fixed

stars is so great that the circle in which he supposes the earth

to revolve (round the sun) ' bears such a proportion to the

distance of the fixed stars as the centre of the sphere bears to

its surface '. If this is taken in a strictly mathematical sense,

it means that the sphere of the fixed stars is infinite in size,

which would not suit Archimedes's purpose ; to get another

meaning out of it he presses the point that Aristarchus's

words cannot be taken quite literally because the centre, being

without magnitude, cannot be in any ratio to any other mag-
nitude ; hence he suggests that a reasonable interpretation of

the statement would be to suppose that, if we conceive a

sphere with radius equal to the distance between the centre

of the sun and the centre of the earth, then

(diam. of earth) : (diam. of said sphere)

= (diam. of said sphere) : (diam. of sphere of fixed stars).

This is, of course, an arbitrary interpretation ; Aristarchus

presumably meant no such thing, but merely that the size of

the earth is negligible in comparison with that of the sphere

of the fixed stars. However, the solution of Archimedes's

problem demands some assumption of the kind, and, in making

this assumption, he was no doubt aware that he was taking

a liberty with Aristarchus for the sake of giving his hypo-

thesis an air of authority.
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Archimedes has, lastly, to compare the diameter of the sun

with the circumference of the circle described by its centre.

Aristarchus had made the apparent diameter of the sun yloth

of the said circumference ; Archimedes will prove that the

said circumference cannot contain as many as 1,000 sun's

diameters, or that the diameter of the sun is greater than the

side of a regular chiliagon inscribed in the circle. First he

made an experiment of his own to determine the apparent

diameter of the sun. With a small cylinder or disc in a plane

at right angles to a long straight stick and moveable along it,

he observed the sun at the moment when it cleared the

horizon in rising, moving the disc till it just covered and just

failed to cover the sun as he looked along the straight stick.

He thus found the angular diameter to lie between TJ^R and

zjioR, where R is a right angle. But as, under his assump-

tions, the size of the earth is not negligible in comparison with

the sun's circle, he had to allow for parallax and find limits

for the angle subtended by the sun at the centre of the earth.

This he does by a geometrical argument very much in the

manner of Aristarchus.

Let the* circles with centres 0, C represent sections of the sun

and earth respectively, E the position of the observer observing

G 2
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the sun when it has just cleared the horizon. Draw from E
two tangents EP, EQ to the circle with centre 0, and from

G let GF, GG be drawn touching the same circle. With centre

G and radius GO describe a circle : this will represent the path

of the centre of the sun round the earth. Let this circle meet

the tangents from G in A, B, and join AB meeting GO in M.
Archimedes's observation has shown that

and he proceeds to prove that AB is less than the side of a

regular polygon of 656 sides inscribed in the circle AOB,
but greater than the side of an inscribed regular polygon of

1,000 sides, in other words, that

T^R>lFCG > ^R.
The first relation is obvious, for, since GO > E0,

Z PEQ > Z FCG.

Next, the perimeter of any polygon inscribed in the circle

AOB is less than ^f- GO (i.e. -\
2
- times the diameter)

;

Therefore AB < ^ • -\
4- CO or T *|g GO,

and, a fortiori, AB < tJq CO.

Now, the triangles GAM, COF being equal in all respects,

AM= OF, so that AB=20F= (diameter of sun) > GH+ OK,
since the diameter of the sun is greater than that of the earth

;

therefore CH+OK < ^CO, and HK > ^G0.
And GO > GF, while HK < EQ, so that EQ > T%%CF.

We can now compare the angles OCF, OEQ
;

Z OOF
Z OEQ

tan OGF
>

tan OEQJ

EQ
GF

> to
9
o' a fortiori.

Doubling the angles, we have

IFCG> T%%.IPEQ

> 2o
9
o
9
(jo-ft> since I PEQ > ^B,

^ 203 11"
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Hence AB is greater than the side of a regular polygon of

812 sides, and a fortiori greater than the side of a regular

polygon of 1,000 sides, inscribed in the circle AOB.
The perimeter of the chiliagon, as of any regular polygon

with more sides than six, inscribed in the circle AOB is greater

than 3 times the diameter of the sun's orbit, but is less than

1,000 times the diameter of the sun, and a fortiori less than

30,000 times the diameter of the earth;

therefore (diameter of sun's orbit) < 10,000 (diam. of earth)

< 10,000,000,000 stades.

But (diam. of earth) : (diam. of sun's orbit)

= (diam. of sun's orbit) : (diam. of universe)

;

therefore the universe, or the sphere of the fixed stars, is less

than 10,000 3 times the sphere in which the sun's orbit is a

great circle.

Archimedes takes a quantity of sand not greater than

a poppy-seed and assumes that it contains not more than 10,000

grains ; the diameter of a poppy-seed he takes to be not less

than Jfrth of a finger-breadth ; thus a sphere of diameter

1 finger-breadth is not greater than 64,000 poppy-seeds and

therefore contains not more than 640,000,000 grains of sand

('6 units of second order + 40,000,000 units of first order')

and a fortiori not more than 1,000,000,000 ('10 units of

second order of numbers '). Gradually increasing the diameter

of the sphere by multiplying it each time by 100 (making the

sphere 1,000,000 times larger each time) and substituting for

10,000 finger-breadths a stadium (< 10,000 finger-breadths),

he finds the number of grains of sand in a sphere of diameter

10,000,000,000 stadia to be less than ' 1,000 units of seventh

order of numbers ' or 10 51
, and the number in a sphere 10,0003

times this size to be less than ' 10,000,000 units of the eighth

order of numbers ' or 1
63

.

The Quadrature of the Parabola.

In the preface, addressed to Dositheus after the death of

Conon, Archimedes claims originality for the solution of the

problem of finding the area of a segment of a parabola cut off

by any chord, which he says he first discovered by means of

mechanics and then confirmed by means of geometry, using

the lemma that, if there are two unequal areas (or magnitudes
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generally), then however small the excess of the greater over

the lesser, it can by being continually added to itself be made
to exceed the greater ; in other words, he confirmed the solution

by the method of exhaustion. One solution by means of

mechanics is, as we have seen, given in The Method ; the

present treatise contains a solution by means of mechanics

confirmed by the method of exhaustion (Props. 1-17), and

then gives an entirely independent solution by means of pure

geometry, also confirmed by exhaustion (Props. 18-24).

I. The mechanical solution depends upon two properties of

the parabola proved in Props. 4, 5. If Qq be the base, and P

the vertex, of a parabolic segment, P is the point of contact

of the tangent parallel to Qq, the diameter PV through P
bisects Qq in V, and, if VP produced meets the tangent at Q
in T, then TP = PV. These properties, along with the funda-

mental property that QV 2 varies as PV, Archimedes uses to

prove that, if EO be any parallel to TV meeting QT
}
QP

(produced, if necessary), the curve, and Qq in E, F, R,

respectively, then
QV:VO = OF:FR,

and QO:Oq = ER : RO. (Props. 4, 5.)

Now suppose a parabolic segment QR
Y q so placed in relation

to a horizontal straight line QA through Q that the diameter

bisecting Qq is at right angles to QA, i.e. vertical, and let the

tangent at Q meet the diameter qO through q in E. Produce

QO to A, making OA equal to OQ.

Divide Qq into any number of equal parts at
1 , 2

. . . n ,

and through these points draw parallels to OE, i. e. vertical

lines meeting OQ in Hlt H2 , ..., EQ in Elf E2 , ..., and the
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curve in R19 R2 , .... Join QR
l ,
and produce it to meet OE in

F, QR2
meeting

l
E

l
in Fly

and so on.

O Ht H2 H3 Htj a

Now Archimedes has proved in a series of propositions

(6-13) that, if a trapezium such as O
l
E

1
E

2 2
is suspended

from H
l
H

2 , and an area P suspended at A balances
1
E

1
E

2 2

so suspended, it will take a greater area than P suspended at

A to balance the same trapezium suspended from H
2
and

a less area than P to balance the same trapezium suspended

from H
l

. A similar proposition holds with regard to a triangle

such as EnHnQ suspended where it is and suspended at Q and
Hn respectively.

Suppose (Props. 14, 15) the triangle QqE suspended where

it is from OQ, and suppose that the trapezium E0
1 , suspended

where it is, is balanced by an area F^ suspended at A, the

trapezium E
1 2> suspended where it is, is balanced by P

2

suspended at A, and so on, and finally the triangle EnOn Q,

suspended where it is, is balanced by Pn+1 suspended at A
;

then P
l
+P

2 + ... -f Pn+1 at A balances the whole triangle, so that

P
1 + P2 +... + Pn+1 =iAEqQ,

since the whole triangle may be regarded as suspended from
the point on OQ vertically above its centre of gravity.

Now AO:OH
l
= QO:OH

1

= Qq qC*!

= E^-.O^, by Prop. 5,

= (trapezium EO^j : (trapezium FOJ,
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that is, it takes the trapezium FO
l
suspended at A to balance

the trapezium E0
1
suspended at Hv And P

1
balances E0

l

where it is.

Therefore (FOJ > P
x
.

Similarly (^1^2) > ^2> anc^ so on -

Again AO:OH
1
= E

1 1
:0

1
B

1

= (trapezium E
1 2)

: (trapezium _R
1 2),

that is, (B>i0 2 )
at A will balance {E^O^} suspended at HXi

while P
2
at A balances (Efi.^ suspended where it is,

whence P
2 > Rfi^.

Therefore (P
x 2) > P2 > (R^.J,

(P
2 3) > P > P

2 3 , and so on;

and finally, AEn n Q > Pn+1 > ARn n Q.

By addition,

(R
1 2

)+(R
2
Os) + ...+(ARnOnQ)<P2 + Ei +...+Pn+1 ;

therefore, a fortiori,

(R
1 2) + (R

2 i) + ... + ARn KQ < P
1 + P2 + ... +PH+l

< (F0
1) + (F1 i) + ... + AEn nQ.

That is to say, we have an inscribed figure consisting of

trapezia and a triangle which is less, and a circumscribed

figure composed in the same way which is greater, than

P
J + P2 + ...+Pn+1 , i.e. iAEqQ.

It is therefore inferred, and proved by the method of ex-

haustion, that the segment itself is equal to %AEqQ (Prop. 16).

In order to enable the method to be applied, it has only

to be proved that, by increasing the number of parts in Qq
sufficiently, the difference between the circumscribed and

inscribed figures can be made as small as we please. This

can be seen thus. We have first to show that all the parts, as

qF, into which qE is divided are equal.

We have E
l 1

:0
1
R

1
= Q0: 0^ = (n+l):l,

or 0, R, = .E,0,, whence also 9S = . 0,^.
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And E
2 2

:
2
R

2
= QO : 0H

2
= (n + 1) : 2,

or 2R2
=-?—.0

2E2 .
2 2 w + 1

2 2

It follows that
2
S = SR

2 , and so on.

Consequently
1
R

1 , 2
R2f 3

R
3 ... are divided into 1,2,3 ...

equal parts respectively by the lines from Q meeting qE.

It follows that the difference between the circumscribed and

inscribed figures is equal to the triangle FqQ, which can be

made as small as we please by increasing the number of

divisions in Qq, i.e. in qE.

Since the area of the segment is equal to JA Eq Q, and it is

easily proved (Prop. 17) that AEqQ = 4 (triangle with same

base and equal height with segment), it follows that the area

of the segment = § times the latter triangle.

It is easy to see that this solution is essentially the same as

that given in The Method (see pp. 29-30, above), only in a more

orthodox form (geometrically speaking). For there Archi-

medes took the sum of all the straight lines, as
1
R

l , 2
R

2
...

,

as making up the segment notwithstanding that there are an

infinite number of them and straight lines have no breadth.

Here he takes inscribed and circumscribed trapezia propor-

tional to the straight lines and having finite breadth, and then

compresses the figures together into the segment itself by

increasing indefinitely the number of trapezia in each figure,

i.e. diminishing their breadth indefinitely.

The procedure is equivalent to an integration, thus

:

If X denote the area of the triangle FqQ, we have, if n be

the number of parts in Qq,

(circumscribed figure)

= sum of As QqF, QR
1
F

1 ,
QR

2
F

2 ,
...

= sum of AsQqF, QO^, Q0 2 S, ...

(n-1) 2 (n-2)'

1

= ^^.X(X2 + 2 2Z 2 + 3 2X2 +... + ?i
2^ 2

).nlX A v

Similarly, we find that

(inscribed figure) = -^= . X {

X

2 + 2 2X 2 + . . . + (n - 1
)

2X 2
}

.
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Taking the limit, we have, if A denote the area of the

triangle EqQ, so that A = nX,

area of segment =
A'

X2dX

= |A
II. The purely geometrical method simply exhausts the

parabolic segment by inscribing successive figures ' in the

recognized manner' (see p. 79, above). For this purpose

it is necessary to find, in terms of the triangle with the same

base and height, the area added to the

inscribed figure by doubling the number of

sides other than the base of the segment.

Let QPq be the triangle inscribed ' in the

recognized manner ', P being the point of

contact of the tangent, parallel to Qq, and

PV the diameter bisecting Qq. If QV, Vq

be bisected in M, m, and RM, rm be drawn

parallel to PI7" meeting the curve in R, r,

the latter points are vertices of the next

figure inscribed ' in the recognized manner',

for RY, ry are diameters bisecting PQ, Pq
respectively.

Now QV 2 = 4RW2
, so that PV = 4PW, or RM=3PW.

YM=±PV 2PW, so that YM = .2RY.

APRQ = ±APQM= i A PQV.

But

Therefore

Similarly

APrq = ±APVq; whence (APRQ + APrq)=±PQq. (Prop. 21.)

In like manner it can be proved that the next addition

to the inscribed figure adds J of the sum of As PRQ, Prq,

and so on.

Therefore the area of the inscribed figure

= {1+4+ (i)
2 + ...}- APQg. (Prop. 22.)

Further, each addition to the inscribed figure is greater

than half the segments of the parabola left over before the

addition is made. For, if we draw the tangent at P and

complete the parallelogram EQqe with side EQ parallel to PV,
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the triangle PQq is half of the parallelogram and therefore

more than half the segment. And so on (Prop. 20).

We now have to sum n terms of the above geometrical

series. Archimedes enunciates the problem in the form, Given

a series of areas A, B, G, D . . . Z, of which A is the greatest, and

each is equal to four times the next in order, then (Prop. 23)

A + B.+ C+...+Z+iZ = §A.

The algebraical equivalent of this is of course

1 — (±)n

i +i+(iY+ .••+(i)
re-1 = i-HlT1 = -rrr-

1 4

To find the area of the segment, Archimedes, instead of

taking the limit, as we should, uses the method of reductio ad

absurdum.

Suppose K = § . APQq.

(1) If possible, let the area of the segment be greater than K.

We then inscribe a figure ' in the recognized manner ' such

that .the segment exceeds it by an area less than the excess of

the segment over K. Therefore the inscribed figure must be

greater than K, which is impossible since

A + B + G+...+Z< §A,

where A = APQq (Prop. 23).

(2) If possible, let the area of the segment be less than K. *

If then APQq = A, B — \A, G —\B, and so on, until we
arrive at an area X less than the excess of K over the area of

the segment, we have

A+B + C+ ... +X+iX = %A = K.

Thus K exceeds A -f B + C + ... +X by an area less than X,

and exceeds the segment by an area greater than X.

It follows that A + B + G+ ... +X> (the segment) ; which

is impossible (Prop. 22).

Therefore the area of the segment, being neither greater nor

less than K, is equal to K or %APQq.

On Floating Bodies, I, II.

In Book I of this treatise Archimedes lays down the funda-

mental principles of the science of hydrostatics. These are
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deduced from Postulates which are only two in number. The
first which begins Book I is this

:

' let it be assumed that a fluid is of such a nature that, of the

parts of it which lie evenly and are continuous, that which is

pressed the less is driven along by that which is pressed the

more ; and each of its parts is pressed by the fluid which is

perpendicularly above it except when the fluid is shut up in

anything and pressed by something else '

;

the second, placed after Prop. 7, says

' let it be assumed that, of bodies which are borne upwards in

a fluid, each is borne upwards along the perpendicular drawn
through its centre of gravity '.

Prop. 1 is a preliminary proposition about a sphere, and

then Archimedes plunges in medias res with the theorem

(Prop. 2) that ' the surface of any fluid at rest is a sphere the

centre of which is the same as that of the earth ', and in the

whole of Book I the surface of the fluid is always shown in

the diagrams as spherical. The method of proof is similar to

what we should expect in a modern elementary textbook, the

main propositions established being the following. A solid

which, size for size, is of equal weight with a fluid will, if let

down into the fluid, sink till it is just covered but not lower

(Prop. 3) ; a solid lighter than a fluid will, if let down into it,

be only partly immersed, in fact just so far that the weight

of the solid is equal to the weight of the fluid displaced

(Props. 4, 5), and, if it is forcibly immersed, it will be driven

upwards by a force equal to the difference between its weight

and the weight of the fluid displaced (Prop. 6).

The important proposition follows (Prop. 7) that a solid

heavier than a fluid will, if placed in it, sink to the bottom of

the fluid, and the solid will, when weighed in the fluid, be

lighter than its true weight by the weight of the fluid

displaced.

The problem of the Crown.

This proposition gives a method of solving the famous

problem the discovery of which in his bath sent Archimedes

home naked crying evprjKa, evprjKa, namely the problem of
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determining the proportions of gold and silver in a certain

crown.

Let W be the weight of the crown, w
1
and iv

2
the weights of

the gold and silver in it respectively, so that W = w
x
+ w2

.

(1) Take a weight IT of pure gold and weigh it in the fluid.

The apparent loss of weight is then equal to the weight of the

fluid displaced ; this is ascertained by weighing. Let it be F
x

.

It follows that the weight of the fluid displaced by a weight

w
w

x
of gold is ~ . Fr

(2) Take a weight W of silver, and perform the same

operation. Let the weight of the fluid displaced be F
2

.

Then the weight of the fluid displaced by a weight w
2

of

silver is -— • F .

W l

(3) Lastly weigh the crown itself in the fluid, and let F be

loss of weight or the weight of the fluid displaced.

We have then ^ . F
x + ^ . F

2
= F,

that is, w
1
F

1 +w2
F

2
= (w

x
+w2)

F,

, w, F2
-F

whence —- = -=f
—

7T
-

w
2

F-F
1

According to the author of the poem de fondevibus et men-
suris (written probably about A.D. 500) Archimedes actually

used a method of this kind. We first take, says our authority,

two equal weights of gold and silver respectively and weigh

them against each other when both are immersed in water

;

this gives the relation between their weights in water, and

therefore between their losses of weight in water. Next we
take the mixture of gold and silver and an equal weight of

silver, and weigh them against each other in water in the

same way.

Nevertheless I do not think it probable that this was the

way in which the solution of the problem was discovered. As
we are told that Archimedes discovered it in his bath, and
that he noticed that, if the bath was full when he entered it,

so much water overflowed as was displaced by his body, he is

more likely to have discovered the solution by the alternative
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method attributed to him by Vitruvius,1 namely by measuring
successively the volumes of fluid displaced by three equal

weights, (1) the crown, (2) an equal weight of gold, (3) an
equal weight of silver respectively. Suppose, as before, that

the weight of the crown is W and that it contains weights

w
x
and w

2
of gold and silver respectively. Then

(1) the crown displaces a certain volume of the fluid, V, say
;

(2) the weight W of gold displaces a volume Yv say, of the

fluid

;

IV
therefore a weight w

1
of gold displaces a volume ~. V

x
of

the fluid;

(3) the weight W of silver displaces V
2 , say, of the fluid;

therefore a weight w
2
of silver displaces =| • V

2
.

It follows that V = ^ • Vt + ^ • K,W l W 2

whence we derive (since W = w
1
+ w2 )

w
1 _ V

%
-V

w
2
~ V- V; •

the latter ratio being obviously equal to that obtained by the

other method.

The last propositions (8 and 9) of Book I deal with the case

of any segment of a sphere lighter than a fluid and immersed
in it in such a way that either (1) the curved surface is down-
wards and the base is entirely outside the fluid, or (2) the

curved surface is upwards and the base is entirely submerged,

and it is proved that in either case the segment is in stable

equilibrium when the axis is vertical. This is expressed here

and in the corresponding propositions of Book II by saying

that, ' if the figure be forced into such a position that the base

of the segment touches the fluid (at one point), the figure will

not remain inclined but will return to the upright position '.

Book II, which investigates fully the conditions of stability

of a right segment of a paraboloid of revolution floating in

a fluid for different values of the specific gravity and different

ratios between the axis or height of the segment and the

1 De architectural ix. 3.
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principal parameter of the generating parabola, is a veritable

tour de force which must be read in full to be appreciated.

Prop. 1 is preliminary, to the effect that, if a solid lighter than

a fluid be at rest in it, the weight of the solid will be to that

of the same volume of the fluid as the immersed portion of

the solid is to the whole. The results of the propositions

about the segment of a paraboloid may be thus summarized.

Let h be the axis or height of the segment, p the principal

parameter of the generating parabola, s the ratio of the

specific gravity of the solid to that of the fluid (s always < 1 ).

The segment is supposed to be always placed so that its base

is either entirely above, or entirely below, the surface of the

fluid, and what Archimedes proves in each case is that, if

the segment is so placed with its axis inclined to the vertical

at any angle, it will not rest there but will return to the

position of stability.

I. If h is not greater than •§£>, the position of stability is with

the axis vertical, whether the curved surface is downwards or

upwards (Props. 2, 3).

II. If h is greater than f p, then, in order that the position of

stability may be with the axis vertical, s must be not less

than (h — %p)
2/h2 if the curved surface is downwards, and not

greater than {h2— (h— ^p)
2}/h2 if the curved surface is

upwards (Props. 4, 5).

III. If h>%p, but A/^p<15/4, the segment, if placed with

one point of the base touching the surface, will never remain

there whether the curved surface be downwards or upwards
(Props. 6, 7). (The segment will move in the direction of

bringing the axis nearer to the vertical position.)

IV. If h>%p, but h/±p< 15/ 4, and if s is less than
(h— ^pf/h2 in the case where the curved surface is down-
wards, but greater than {h2—(h— ^

r

p)
2 }/li2 in the case where

the curved surface is upwards, then the position of stability is

one in which the axis is not vertical but inclined to the surface

of the fluid at a certain angle (Props. 8, 9). (The angle is drawn
in an auxiliary figure. The construction for it in Prop. 8 is

equivalent to the solution of the following equation in $,
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where k is the axis of the segment of the paraboloid cut off by

the surface of the fluid.)

V. Prop. 10 investigates the positions of stability in the cases

where A/J_p>15/4, the base is entirely above the surface, and

s has values lying between five pairs of ratios respectively.

Only in the case where s is not less than (h— -| iSf/h? is the

position of stability that in which the axis is vertical.

BAB
1
is a section of the paraboloid through the axis AM.

G is a point on AM such that AG = 2 CM, K is a point on G

A

such that AM:CK = 15:4. CO is measured along GA such

that CO = §£>, and R is a point on AM such that MR = § CO.

A
2

is the point in which the perpendicular to AM from K
meets AB, and A

z
is the middle point of AB. BA

2
B

2 , BA Z
M

are parabolic segments on A
2
M

2 , A Z
M

Z
(parallel to AM) as axes

and similar to the original segment. (The parabola BA 2
B

2

is proved to pass through C by using the above relation

AM: CK =15:4 and applying Prop. 4 of the Quadrature of

the Parabola) The perpendicular to AM from meets the

parabola BA
2
B2

in two points P
2 , Q2 ,

and straight lines

through these points parallel to AM meet the other para-

bolas in Plt Q1
and P

3 , Q, respectively. P
X
T and Q, U are

tangents to the original parabola meeting the axis MA pro-

duced in T, U. Then

(i) if s is not less than AR2 :AM2 or (h-%p)2 :h2
,
there is

stable equilibrium when AM is vertical

;
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(ii) if s<ARz :AM2 but >QX Q
2 :AM 2

, the solid will not rest

with its base touching the surface of the fluid in one point

only, but in a position with the base entirely out of the fluid

and the axis making with the surface an angle greater

than U
;

(iiia) if s — QX Q
2

'- AM 2
, there is stable equilibrium with one

point of the base touching the surface and AM inclined to it

at an angle equal to U;

(iiib) if s = P
X
P 2

: AM2
, there is stable equilibrium with one

point of the base touching the surface and with AM inclined

to it at an angle equal to T
;

(iv) if s>P
1
P

3
2 :AM2 but <QY Q

2 :AM2
, there will be stable

equilibrium in a position in which the base is more submerged
;

(v) if skP^ 2
: AM2

, there will be stable equilibrium with

the base entirely out of the fluid and with the axis AM
inclined to the surface at an angle less than T.

It remains to mention the traditions regarding other in-

vestigations by Archimedes which have reached us in Greek

or through the Arabic.

(a) The Cattle-Problem.

This is a difficult problem in indeterminate analysis. It is

required to find the number of bulls and cows of each of four

colours, or to find 8 unknown quantities. The first part of

the problem connects the unknowns by seven simple equations
;

and the second part adds two more conditions to which the

unknowns must be subject. If W, iv be the numbers of white

bulls and cows respectively and (X, x), (F, y), (Z, z) represent

the numbers of the other three colours, we have first the

following equations

:

(i)

(H)

1523.2

F=(|+i)z + r, (a)

X=H + i)Z+T, m
*=(* +)F+ 7, (y)

w= d+i)(X+x), (S)

x = (i+i)(Z+z), («)

« = (*+t)(r+y). (0

y = {i+¥)(W+w). (v)

H
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Secondly, it is required that

TF+X = a square, (0)

Y+ Z = a triangular number. (i)

There is an ambiguity in the text which makes it just possible

that W+X need only be the product of two whole numbers
instead of a square as in (0). Jul. Fr. Wurm solved the problem

in the simpler form to which this change reduces it. The
complete problem is discussed and partly solved by Amthor. 1

The general solution of the first seven equations is

W= 2.3.7.53. 4657 n = 10366482?!,

X = 2.3 2 .89.4657?i = 746051471,

Y= 3 4
. 11 .4657>i = 414938771,

Z = 2 2
. 5.79.465771 = 735806071,

W— 2 3
. 3. 5. 7.23.373™= 7206360?!,

X = 2. 3 2
. 17. 1599171 = 489324671,

y= 3 2
. 13. 4648971 = 543921371,

Z = 2 2
. 3. 5. 7. 11. 76171= 351582071.

It is not difficult to find such a value of ti that W-\- X = a

square number; it is n — 3 . 11 . 29 . 4657£ 2 = 4456749£ 2
,

where £ is any integer. We then have to make Y+Z
a triangular number, i.e. a number of the form J#(#+l).
This reduces itself to the solution of the ' Pellian ' equation

£
2 -4729494u 2 = 1,

which leads to prodigious figures; one of the eight unknown
quantities alone would have more than 206,500 digits!

(/?) On semi-regular polyhedra.

In addition, Archimedes investigated polyhedra of a certain

type. This we learn from Pappus. 2 The polyhedra in question

are semi-regular, being contained by equilateral and equi-

1 Zeitschrift fur Math. u. Physik (Hist.-litt. Abt.) xxv. (1880), pp.
156 sqq.

2 Pappus, v, pp. 352-8.
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angular, but not similar, polygons; those discovered by

Archimedes were 13 in number. If we for convenience

designate a polyhedron contained by m regular polygons

of a. sides, n regular polygons of /5 sides, &c, by (ma , %...),

the thirteen Archimedean polyhedra, which we will denote by

Pv P2 ...Pl3 , are as follows:

Figure with 8 faces: P
1
= (43 , 4

6 ).

Figures with 14 faces: P
2
= (83 , 6

4 ),
P

3
= (6 4 , 8

6 ),

P
4
= (83 , 6

8 ).

Figures with 26 faces : P
5
= (83 , 18

4),
P

6
= (124 , 8

C , 6
8 ).

Figures with 32 faces: P
7
= (203 , 12

5 ), P8
= (12

5 , 20
6 ),

P
9
= (203 , 1210).

Figure with 38 faces: P
10
= (32 3 , 6

4).

Figures with 62 faces: Pn= (203 , 304 , 12 5 ),

P
J2= (304 ,206 ,12 10).

Figure with 92 faces : P
13
= (803 , 12

5).

Kepler 1 showed how these figures can be obtained. A
method of obtaining some of them is indicated in a fragment

of a scholium to the Vatican MS. of Pappus. If a solid

angle of one of the regular solids be cut off symmetrically by
a plane, i.e. in such a way that the plane cuts off the same

length from each of the edges meeting at the angle, the

section is a regular polygon which is a triangle, square or

pentagon according as the solid angle is formed of three, four,

or five plane angles. If certain equal portions be so cut off

from all the solid angles respectively, they will leave regular

polygons inscribed in the faces of the solid ; this happens

(A) when the cutting planes bisect the sides of the faces and
so leave in each face a polygon of the same kind, and (B) when
the cutting planes cut off a smaller portion from each angle in

such a way that a regular polygon is left in each face which
has double the number of sides (as when we make, say, an

octagon out of a square by cutting off the necessary portions,

*

1 Kepler, Harmonice mundi in Opera (1864), v, pp. 123-6.

H 2
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symmetrically, from the corners). We have seen that, accord-

ing to Heron, two of the semi-regular solids had already been

discovered by Plato, and this would doubtless be his method.

The methods (A) and (B) applied to the five regular solids

give the following out of the 13 semi-regular solids. We
obtain (1) from the tetrahedron, P

1
by cutting off angles

so as to leave hexagons in the faces
; (2) from the cube, P

2
by

leaving squares, and P4
by leaving octagons, in the faces

;

(3) from the octahedron, P
2
by leaving triangles, and P

3 by
leaving hexagons, in the faces

; (4) from the icosahedron,

Bj by leaving triangles, and P
s
by leaving hexagons, in the

faces; (5) from the dodecahedron, P
7
by leaving pentagons,

and P
9
by leaving decagons in the faces.

Of the remaining six, four are obtained by cutting off all

the edges symmetrically and equally by planes parallel to the

edges, and then cutting off angles. Take first the cube.

(1) Cut off from each four parallel edges portions which leave

an octagon as the section of the figure perpendicular to the

edges ; then cut off equilateral triangles from the corners

(see Fig. 1) ; this gives P
5
containing 8 equilateral triangles

and 18 squares. (P
5

is also obtained by bisecting all the

edges of P
2
and cutting off corners.) (2) Cut off from the

edges of the cube a smaller portion so as to leave in each

face a square such that the octagon described in it has its

side equal to the breadth of the section in which each edge is

cut ; then cut off hexagons from each angle (see Fig. 2) ; this

""i "Jr"
"\r--j--

t I

! 1

Fig. 1. Fig. 2.

gives 6 octagons in the faces, 1 2 squares under the edges and

8 hexagons at the corners; that is, we have P
6

. An exactly
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similar procedure with the icosahedron and dodecahedron

produces Pn and P
l2

(see Figs. 3, 4 for the case of the icosa-

hedron).

Fig. 3. Fig. 4.

The two remaining solids P
10 , Pl3 cannot be so simply pro-

duced. They are represented in Figs. 5, 6, which I have

Fig. 5. Fig. 6.

taken from Kepler. P
l0

is the snub cube in which each

solid angle is formed by the angles of four equilateral triangles

and one square; P
13

is the snub dodecahedron, each solid

angle of which is formed by the angles of four equilateral

triangles and one regular pentagon.

We are indebted to Arabian tradition for

(y) The Liber Assumptorum.

Of the theorems contained in this collection many are

so elegant as to afford a presumption that they may really

be due to Archimedes. In three of them the figure appears

which was called apftrjXos, a shoemaker's knife, consisting of

three semicircles with a common diameter as shown in the

annexed figure. If JV* be the point at which the diameters
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of the two smaller semicircles adjoin, and NP be drawn at

right angles to AB meeting the external semicircle in P, the

•area of the dpftrjXos (included between the three semicircular

arcs) is equal to the circle on PJST as diameter (Prop. 4). In

Prop. 5 it is shown that, if a circle be described in the space

between the arcs AP, AN and the straight line PN touching

all three, and if a circle be similarly described in the space

between the arcs PB, NB and the straight line PN touching

all three, the two circles are equal. If one circle be described

in the ap/3r]\os touching all three semicircles, Prop. 6 shows

that, if the ratio of AN to NB be given, we can find the

relation between the diameter of the circle inscribed to the

apfi-qXos and the straight line AB ; the proof is for the parti-

cular case AN — %BN, and shows that the diameter of the

inscribed circle = ~
§ AB.

'

Prop. 8 is of interest in connexion with the problem of

trisecting any angle. If AB be any chord of a circle with

centre 0, and BG on AB produced be made equal to the radius,

draw GO meeting the circle in D, E ; then will the arc BD be

one-third of the arc AE (or BF, if EF be the chord through E
parallel to AB). The problem is by this theorem reduced to

a vevaLS (cf. vol. i, p. 241).
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Lastly, we may mention the elegant theorem about the

area of the Salinon (presumably 'salt-cellar') in Prop. 14.

ACB is a semicircle on AB a,s diameter, AD, EB are equal

lengths measured from A and B on AB. Semicircles are

drawn with AD, EB as diameters on the side towards C, and

a semicircle with DE as diameter is drawn on the other side of

AB. CF is the perpendicular to AB through 0, the centre

of the semicircles ACB, DFE. Then is the area bounded by
all the semicircles (the Salinon) equal to the circle on CF
as diameter.

The Arabians, through whom the Book of Lemmas has

reached us, attributed to Archimedes other works (1) on the

Circle, (2) on the Heptagon in a Circle, (3) on Circles touch-

ing one another, (4) on Parallel Lines, (5) on Triangles, (6) on

the properties of right-angled triangles, (7) a book of Data,

(8) De clepsydris: statements which we are not in a position

to check. But the author of a book on the finding of chords

in a circle, 1 Abu'l Raihan Muh. al-Biruni, quotes some alterna-

tive proofs as coming from the first of these works.

(8) Formula for area of triangle.

More important, however, is the mention in this same work
of Archimedes as the discoverer of two propositions hitherto

attributed to Heron, the first being the problem of finding

the perpendiculars of a triangle when the sides are given, and

the second the famous formula for the area of a triangle in

terms of the sides,

V{s(s— a)(s—b) (s — c)}.

1 See Bibliotheca mathematical xi
3 , pp. 11-78.
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Long as the present chapter is, it is nevertheless the most

appropriate place for Eratosthenes of Cyrene. It was to him
that Archimedes dedicated The Method, and the Cattle-Problem

purports, by its heading, to have been sent through him to

the mathematicians of Alexandria. It is evident from the

preface to The Method that Archimedes thought highly of his

mathematical ability. He was, indeed, recognized by his con-

temporaries as a man of great distinction in all branches of

knowledge, though in each subject he just fell short of the

highest place. On the latter ground he was called Beta, and

another nickname applied to him, Pentathlos, has the same

implication, representing as it does an all-round athlete who
was not the first runner or wrestler but took the second prize

in these contests as well as in others. He was very little

younger than Archimedes ; the date of his birth was probably

284 b.c. or thereabouts. He was a pupil of the philosopher

Ariston of Chios, the grammarian Lysanias of Cyrene, and

the poet Callimachus ; he is said also to have been a pupil of

Zeno the Stoic, and he may have come under the influence of

Arcesilaus at Athens, where he spent a considerable time.

Invited, when about 40 years of age, by Ptolemy Euergetes

to be tutor to his son (Philopator), he became librarian at

Alexandria ; his obligation to Ptolemy he recognized by the

column which he erected with a graceful epigram inscribed on

it. This is the epigram, with which we are already acquainted

(vol. i, p. 260), relating to the solutions, discovered up to date,

of the problem of the duplication of the cube, and commend-
ing his own method by means of an appliance called [ito-oXafiov,

itself represented in bronze on the column.

Eratosthenes wrote a book with the title HXarccvLKos, and,

whether it was a sort of commentary on the Timaeus of

Plato, or a dialogue in which the principal part was played by
Plato, it evidently dealt with the fundamental notions of

mathematics in connexion with Plato's philosophy. It was

naturally one of the important sources of Theon of Smyrna's

work on the mathematical matters which it was necessary for

the student of Plato to know ; and Theon cites the work
twice by name. It seems to have begun with the famous

problem of Delos, telling the story quoted by Theon how the

god required, as a means of stopping a plague, that the altar
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there, which was cubical in form, should be doubled in size.

The book evidently contained a disquisition on fvofortion

(dvaXoyia)} a quotation by Theon on this subject shows that

Eratosthenes incidentally dealt with the fundamental defini-

tions of geometry and arithmetic. The principles of music

were discussed in the same work.

We have already described Eratosthenes' s solution of the

problem of Delos, and his contribution to the theory of arith-

metic by means of his sieve (koctkivov) for finding successive

prime numbers.

He wrote also an independent work n means. This was in

two Books, and was important enough to be mentioned by
Pappus along with works by Euclid, Aristaeus and Apol-

lonius as forming part of the Treasury of Analysis 1
; this

proves that it was a systematic geometrical treatise. Another

passage of Pappus speaks of certain loci which Eratosthenes

called 'loci with reference to means' (tottol npb? fxeaoTriTas)
2

;

these were presumably discussed in the treatise in question.

What kind of loci these were is quite uncertain ; Pappus (if it

is not an interpolator who speaks) merely says that these loci

' belong to the aforesaid classes of loci ', but as the classes are

numerous (including ' plane ',
' solid ', ' linear ', ' loci on surfaces ',

&c), we are none the wiser. Tannery conjectured that they

were loci of points such that their distances from three fixed

straight lines furnished a * mediete", i.e. loci (straight lines

and conies) which we should represent in trilinear coordinates

by such equations as 2y = x + z, y
2= xz, y(x + z) = 2 xz,

x(x— y) = z(y — z), x(x — y) = y(y — z), the first three equations

representing the arithmetic, geometric and harmonic means,

while the last two represent the ' subcontraries ' to the

harmonic and geometric means respectively. Zeuthen has

a different conjecture.3 He points out that, if QQ' be the

polar of a given point G with reference to a conic, and GPOP'
be drawn through G meeting QQ' in and the conic in P, P',

then GO is the harmonic mean to GP, GP' ; the locus of for

all transversals CPPf
is then the straight line QQ'. If A, G

are points on PP' such that CA is the arithmetic, and GG the

1 Pappus, vii, p. 636. 24. 2 lb., p. 662. 15 sq.
8 Zeuthen, Die Lehre von den Kegelschnitten im Altertum, 1886, pp.

320, 321.
P
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geometric mean between OP, GP'
'
, the loci of A, G respectively

are conies. Zeuthen therefore suggests that these loci and
the corresponding loci of the points on GPP' at a distance

from G equal to the subcontraries of the geometric and

harmonic means between GP and GP' are the 'loci with

reference to means ' of Eratosthenes ; the latter two loci are

'linear', i.e. higher curves than conies. Needless to say, we
have no confirmation of this conjecture.

Eratosthenes s measurement of the Earth.

But the most famous scientific achievement of Eratosthenes

was his measurement of the earth. Archimedes mentions, as

we have seen, that some had tried to prove that the circum-

ference of the earth is about 300,000 stades. This was

evidently the measurement based on observations made at

Lysimachia (on the Hellespont) and Syene. It was observed

that, while both these places were on one meridian, the head

of Draco was in the zenith at Lysimachia, and Cancer in the

zenith at Syene ; the arc of the meridian separating the two

in the heavens was taken to be 1/I5th of the complete circle.

^ . The distance between the two towns

was estimated at 20,000 stades, and

accordingly the whole circumference of

the earth was reckoned at 300,000

stades. Eratosthenes improved on this.

He observed (1) that at Syene, at

noon, at the summer solstice, the

sun cast no shadow from an upright

gnomon (this was confirmed by the

observation that a well dug at the

same place was entirely lighted up at

the same time), while (2) at the same moment the gnomon fixed

upright at Alexandria (taken to be on the same meridian with

Syene) cast a shadow corresponding to an angle between the

gnomon and the sun's rays of l/50th of a complete circle or

four right angles. The sun's rays are of course assumed to be

parallel at the two places represented by S and A in the

annexed figure. If a be the angle made at A by the sun's rays

with the gnomon (OA produced), the angle SOA is also equal to
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a, or l/50th of four right angles. Now the distance from S
to A was known by measurement to be 5,000 stades ; it

followed that the circumference of the earth was 250,000

stades. This is the figure given by Cleomedes, but Theon of

Smyrna and Strabo both give it as 252,000 stades. The
reason of the discrepancy is not known ; it is possible that

Eratosthenes corrected 250,000 to 252,000 for some reason,

perhaps in order to get a figure divisible by 60 and, inci-

dentally, a round number (700) of stades for one degree. If

Pliny is right in saying that Eratosthenes made 40 stades

equal to the Egyptian v^lvos, then, taking the a-^olvos at

12,000 Royal cubits of 0-525 metres, we get 300 such cubits,

or 157-5 metres, i.e. 516*73 feet, as the length of the stade.

On this basis 252,000 stades works out to 24,662 miles, and

the diameter of the earth to about 7,850 miles, only 50 miles

shorter than the true polar diameter, a surprisingly close

approximation, however much it owes to happy accidents

in the calculation.

We learn from Heron's Dioptra that the measurement of

the earth by Eratosthenes was given in a separate work On
the Measurement of the Earth. According to Galen 1 this work
dealt generally with astronomical or mathematical geography,

treating of ' the size of the equator, the distance of the tropic

and polar circles, the extent of the polar zone, the size and
distance of the sun and moon, total and partial eclipses of

these heavenly bodies, changes in the length of the day
according to the different latitudes and seasons'. Several

details are preserved elsewhere of results obtained by
Eratosthenes, which were doubtless contained in this work.

He is supposed to have estimated the distance between the

tropic circles or twice the obliquity of the ecliptic at ll/83rds

of a complete circle or 47° 42' 39"; but from Ptolemy's

language on this subject it is not clear that this estimate was
not Ptolemy's own. What Ptolemy says is that he himself

found the distance between the tropic circles to lie always

between 47° 40' and 47° 45', 'from which we obtain about

(cr^eSou) the same ratio as that of Eratosthenes, which

Hipparchus also used. For the distance between the tropics

becomes (or is found to be, yivtrai) very nearly 1 1 parts

Galen, Instit. Logica, 12 (p. 26 Kalbfleisch).
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out of 83 contained in the whole meridian circle'. 1 The
mean of Ptolemy's estimates, 4 7° 42' 30", is of course nearly

ll/83rds of 360°. It is consistent with Ptolemy's language

to suppose that Eratosthenes adhered to the value of the

obliquity of the ecliptic discovered before Euclid's time,

namely 24°, and Hipparchus does, in his extant Commentary
on the Phaenomena of Aratus and Eudoxus, say that the

summer tropic is ' very nearly 24° north of the equator'.

The Doxographi state that Eratosthenes estimated the

distance of the moon from the earth at 780,000 stades and

the distance of the sun from the earth at 804,000,000 stades

(the versions of Stobaeus and Joannes Lydus admit 4,080,000

as an alternative for the latter figure, but this obviously

cannot be right). Macrobius 2 says that Eratosthenes made
the 'measure' of the sun to be 27 times that of the earth.

It is not certain whether measure means ' solid content ' or

' diameter ' in this case ; the other figures on record make the

former more probable, in which case the diameter of the sun

would be three times that of the earth. Macrobius also tells

us that Eratosthenes's estimates of the distances of the sun

and moon were obtained by means of lunar eclipses.

Another observation by Eratosthenes, namely that at Syene

(which is under the summer tropic) and throughout a circle

round it with a radius of 300 stades the upright gnomon
throws no shadow at noon, was afterwards made use of by

Posidonius in his calculation of the size of the sun. Assuming

that the circle in which the sun apparently moves round the

earth is 1 0,000 times the size of a circular section of the earth

through its centre, and combining with this hypothesis the

datum just mentioned, Posidonius arrived at 3,000,000 stades

as the diameter of the sun.

Eratosthenes wrote a poem called Hermes containing a good

deal of descriptive astronomy; only fragments of this have

survived. The work Gatasterismi (literally ' placings among
the stars ') which is extant can hardly be genuine in the form

in which it has reached us ; it goes back, however, to a genuine

work by Eratosthenes which apparently bore the same name

;

alternatively it is alluded to as KaTaXoyoi or by the general

1 Ptolemy, Syntaxis, i. 12, pp. 67. 22-68. 6.
2 Macrobius, In Somn. Scijp. i. 20. 9.
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word 'A(rrpovo\iia (Suidas), which latter word is perhaps a mis-

take for 'Ao-TpoOeo-La corresponding to the title 'Ao-rpodeo-iai

^coSlcou found in the manuscripts. The work as we have it

contains the story, mythological and descriptive, of the con-

stellations, &c., under forty-four heads ; there is little or

nothing belonging to astronomy proper.

Eratosthenes is also famous as the first to attempt a scientific

chronology beginning from the siege of Troy; this was the

subject of his Xpovoypacpicu, with which must be connected

the separate 'OXv/nTioisTKai in several books. Clement of

Alexandria gives a short resumS of the main results of the

former work, and both works were largely used by Apollo-

dorus. Another lost work was on the Octaeteris (or eight-

years' period), which is twice mentioned, by Geminus and

Achilles ; from the latter we learn that Eratosthenes re-

garded the work on the same subject attributed to Eudoxus

as not genuine. His Geographica in three books is mainly

known to us through Suidas's criticism of it. It began with

a history of geography down to his own time ; Eratosthenes

then proceeded to mathematical geography, the spherical form

of the earth, the negligibility in comparison with this of the

unevennesses caused by mountains and valleys, the changes of

features due to floods, earthquakes and the like. It would

appear from Theon of Smyrna's allusions that Eratosthenes

estimated the height of the highest mountain to be 10 stades

or about 1/ 8000th part of the diameter of the earth.
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CONIC SECTIONS. APOLLONIUS OF PERGA

A. HISTORY OF CONICS UP TO APOLLONIUS

Discovery of the conic sections by Menaechmus.

We have seen that Menaechmus solved the problem of the

two mean proportionals (and therefore the duplication of

the cube) by means of conic sections, and that he is credited

with the discovery of the three curves ; for the epigram of

Eratosthenes speaks of ' the triads of Menaechmus ', whereas

of course only two conies, the parabola and the rectangular

hyperbola, actually appear in Menaechmus's solutions. The
question arises, how did Menaechmus come to think of obtain-

ing curves by cutting a cone ? On this we have no informa-

tion whatever. Democritus had indeed spoken of a section of

a cone parallel and very near to the base, which of course

would be a circle, since the cone would certainly be the right

circular cone. But it is probable enough that the attention

of the Greeks,.whose observation nothing escaped, would be

attracted to the shape of a section of a cone or a cylinder by
a plane obliquely inclined to the axis when it occurred, as it

often would, in real life ; the case where the solid was cut

right through, which would show an ellipse, would presum-

ably be noticed first, and some attempt would be made to

investigate the nature and geometrical measure of the elonga-

tion of the figure in relation to the circular sections of the

same solid ; these would in the first instance be most easily

ascertained when the solid was a right cylinder ; it would
then be a natural question to investigate whether the curve

arrived at by cutting the cone had the same property as that

obtained by cutting the cylinder. As we have seen, the
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observation that an ellipse can be obtained from a cylinder

as well as a cone is actually made by Euclid in his Phaeno-

mena: 'if, says Euclid, 'a cone or a cylinder be cut by

a plane not parallel to the base, the resulting section is a

section of an acute-angled cone which is similar to a Ovpeos

(shield).' After this would doubtless follow the question

what sort of curves they are which are produced if we

cut a cone by a plane which does not cut through the

cone completely, but is either parallel or not parallel to

a generator of the cone, whether these curves have the

same property with the ellipse and with one another, and,

if not, what exactly are their fundamental properties respec-

tively.

As it is, however, we are only told how the first writers on

conies obtained them in actual practice. We learn on the

authority of Geminus x that the ancients defined a cone as the

surface described by the revolution of a right-angled triangle

about one of the sides containing the right angle, and that

they knew no cones other than right cones. Of these they

distinguished three kinds ; according as the vertical angle of

the cone was less than, equal to, or greater than a right angle,

they called the cone acute-angled, right-angled, or obtuse-

angled, and from each of these kinds of cone they produced

one and only one of the three sections, the section being

always made perpendicular to one of the generating lines of

the cone ; the curves were, on this basis, called ' section of an

acute-angled cone' (= an ellipse), ' section of a right-angled

cone' (= a parabola), and 'section of an obtuse-angled cone
'

(= a hyperbola) respectively. These names were still used

by Euclid and Archimedes.

iMenaechmuss probable procedure.

Menaechmus's constructions for his curves would presum-

ably be the simplest and the most direct that would show the

desired properties, and for the parabola nothing could be

simpler than a section of a right-angled cone by a plane at right

angles to one of its generators. Let OBG (Fig. 1) represent

1 Eutocius, Comm. on Conies of Apollonius.
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a section through the axis OL of a right-angled cone, and
conceive a section through AG (perpendicular to OA) and at

right angles to the plane of the paper.

XV p
r/ V/
/ nV

L

F

Fig. 1.

If P is any point on the curve, and PN perpendicular to

A G, let BG be drawn through N perpendicular to the axis of

the cone. Then P is on the circular section of the cone about

BG as diameter.

Draw AD parallel to BG, and DF, GG parallel to OL meet-

ing AL produced in F, G. Then AD, AF are both bisected

by OX.

If now PN = y, AN = x,

y*= PN* = BN.NG.

But B, A, G, G are concyclic, so that

BN.NG= AN.NG

= AN.AF

= AN.2AL.

Therefore y
2 = AN.2AL

= 2AL.x,

and 2AL is the ' parameter ' of the principal ordinates y.

In the case of the hyperbola Menaechmus had to obtain the
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particular hyperbola which we call rectangular or equilateral,

and also to obtain its property with reference to its asymp-

totes, a considerable advance on what was necessary in the

case of the parabola. Two methods of obtaining the particular

hyperbola were possible, namely (1) to obtain the hyperbola

arising from the section of any obtuse-angled cone by a plane

at right angles to a generator, and then to show how a

rectangular hyperbola can be obtained as a particular case

by finding the vertical angle which the cone must have to

give a rectangular hyperbola when cut in the particular way,

or (2) to obtain the rectangular hyperbola direct by cutting

another kind of cone by a section not necessarily perpen-

dicular to a generator.

(1) Taking the first method, we draw (Fig. 2) a cone with its

vertical angle BOG obtuse. Imagine a section perpendicular

to the plane of the paper and passing through AG which is

perpendicular to OB. Let GA produced meet CO produced in

A', and complete the same construction as in the case of

the parabola.

n

/^\/P

F

Fig. 2.

In this case we have

1523.2

PN2 = BN.NG=AN.NG.
i
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But, by similar triangles,

NG:AF=NC:AD
= A'N:AA\

AF
AA'

Hence PiY2 = AN.A'N.

= 2-^.AW.A>X
i

which is the property of the hyperbola, AA' being what we
call the transverse axis, and 2 AL the parameter of the principal

ordinates.

Now, in order that the hyperbola may be rectangular, we
must have 2 AL : AA f equal to 1. The problem therefore now
is: given a straight line A A', and AL along A!A produced

equal to \A A', to find a cone such that L is on its axis and

the section through AL perpendicular to the generator through

A is a rectangular hyperbola with A'A as transverse axis. In

other words, we have to find a point on the straight line

through A perpendicular to AA' such that OX bisects the

angle which is the supplement of the angle A'OA.

This is the case if A f
: OA = A'L : LA = 3:1;

therefore is on the circle which is the locus of all points

such that their distances from the two fixed points A', A
are in the ratio 3:1. This circle is the circle on KL as

diameter, where A fK : KA = A'L : LA = 3 : 1. Draw this

circle, and is then determined as the point in which AO
drawn perpendicular to AA' intersects the circle.

It is to be observed, however, that this deduction of a

particular from a more general case is not usual in early

Greek mathematics ; on the contrary, the particular usually

led to the more general. Notwithstanding, therefore, that the

orthodox method of producing conic sections is said to have

been by cutting the generator of each cone perpendicularly,

I am inclined to think that Menaechmus would get his rect-

angular hyperbola directly, and in an easier way, by means of

a different cone differently cut. Taking the right-angled cone,

already used for obtaining a parabola, we have only to make
a section parallel to the axis (instead of perpendicular to a

generator) to get a rectangular hyperbola.
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For, let the right-angled cone HOK (Fig. 3) be cut by a

plane through A'AN parallel A »

to the axis OM and cutting the

sides of the axial triangle HOK
in A f

, A, N respectively. Let

P be the point on the curve

for which PN is the principal

ordinate. Draw 00 parallel

to HK. We have at once

PN* = HN.NK
= MK*-MN2

Q fi

A
P t

\
M N

\
Fig. 3.

= C3¥2 -CA\ since MK = OM, and MN = OC = CA.

This is the property of the rectangular hyperbola having A'A

as axis. To obtain a particular rectangular hyperbola with

axis of given length we have only to choose*the cutting plane

so that the intercept A'A may have the given length.

But Menaechmus had to prove the asymptote-property of

his rectangular hyperbola. As he can hardly be supposed to

have got as far as Apollonius in investigating the relations of

the hyperbola to its asymptotes, it is probably safe to assume

that he obtained the particular property in the simplest way,

i. e. directly from the property of the curve in relation to

its axes.

R

Fig. 4.

If (Fig. 4) OR, CRf
be the asymptotes (which are therefore

12
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at right angles) and A'A the axis of a rectangular hyperbola,

P any point on the curve, PN the principal ordinate, draw

PK, PK f

perpendicular to the asymptotes respectively. Let

PN produced meet the asymptotes in R, R'.

Now, by the axial property,

CA 2 = CN2-PN2

= RN2-PN2

= RP . PR'

= 2PK.PK', since IPRE is half a right angle
;

therefore PK .PK' = ±CA 2
.

Works by Aristaeus and Euclid.

If Menaechmus was really the discoverer of the three conic

sections at a date which we must put at about 360 or 350 B.C.,

the subject must have been developed very rapidly, for by the

end of the century there were two considerable works on

conies in existence, works which, as we learn from Pappus,

were considered worthy of a place, alongside the Conies of

Apollonius, in the Treasury of Analysis. Euclid flourished

about 300 B.C., or perhaps 10 or 20 years earlier; but his

Conies in four books was preceded by a work of Aristaeus

which was still extant in the time of Pappus, who describes it

as ' five books of Solid Loci connected (or continuous, o-vve^r])

with the conies'. Speaking of the relation of Euclid's Conies

in four books to this work, Pappus says (if the passage is

genuine) that Euclid gave credit to Aristaeus for his dis-

coveries in conies and did not attempt to anticipate him or

wish to construct anew the same system. In particular,

Euclid, when dealing with what Apollonius calls the three-

and four-line locus, ' wrote so much about the locus as was
possible by means of the conies of Aristaeus, without claiming

completeness for his demonstrations \ 1 We gather from these

remarks that Euclid's Conies was a compilation and rearrange-

ment of the geometry of the conies so far as known in his

1 Pappus, vii, p. 678. 4.
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time, whereas the work of Aristaeus was more specialized and

more original.

'Solid loci' and 'solid problems'.

' Solid loci ' are of course simply conies, but the use of the

title ' Solid loci ' instead of ' conies ' seems to indicate that

the work was in the main devoted to conies regarded as loci.

As we have seen, ' solid loci ' which are conies are distinguished

from ' plane loci ', on the one hand, which are straight lines

and circles, and from ' linear loci ' on the other, which are

curves higher than conies. There is some doubt as to the

real reason why the term ' solid loci ' was applied to the conic

sections. We are told that ' plane ' loci are so called because

they are generated in a plane (but so are some of the higher

curves, such as the quadratri'x and the spiral of Archimedes),

and that ' solid loci ' derived their name from the fact that

they arise as sections of solid figures (but so do some higher

curves, e.g. the spiric curves which are sections of the (nreipa

or tore). But some light is thrown on the subject by the corre-

sponding distinction which Pappus draws between ' plane ',

' solid ' and ' linear ' 'problems.

'Those problems', he says, 'which can be solved by means
of a straight line and a circumference of a circle may pro-

perly be called plane ; for the lines by means of which such
problems are solved have their origin in a plane. Those,

however, which are solved by using for their discovery one or

more of the sections of the cone have been called solid ; for

their construction requires the use of surfaces of solid figures,

namely those of cones. There remains a third kind of pro-

blem, that which is called linear ; for other lines (curves)

besides those mentioned are assumed for the construction, the
origin of which is more complicated and less natural, as they
sfre generated from more irregular surfaces and intricate

movements.' l

The true significance of the word ' plane ' as applied to

problems is evidently, not that straight lines and circles have

their origin in a plane, but that the problems in question can

be solved by the ordinary plane methods of transformation of

1 Pappus, iv, p. 270. 5-17.
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areas, manipulation of simple equations between areas and, in

particular, the application of areas ; in other words, plane

problems were those which, if expressed algebraically, depend

on equations of a degree not higher than the second.

Problems, however, soon arose which did not yield to ' plane

'

methods. One of the first was that of the duplication of the

cube, which was a problem of geometry in three dimensions or

solid geometry. Consequently, when it was found that this

problem could be solved by means of conies, and that no

higher curves were necessary, it would be natural to speak of

them as ' solid ' loci, especially as they were in fact produced

from sections of a solid figure, the cone. The proprietj^ of the

term would be only confirmed when it was found that, just as

the duplication of the cube depended on the solution of a pure

cubic equation, other problems such as the trisection of an

angle, or the cutting of a sphere into two segments bearing

a given ratio to one another, led to an equation between

volumes in one form or another, i. e. a mixed cubic equation,

and that this equation, which was also a solid problem, could

likewise be solved by means of conies.

Aristaeus's Solid Loci.

The Solid Loci of Aristaeus, then, presumably dealt with

loci which proved to be conic sections. In particular, he must

have discussed, however imperfectly, the locus with respect to

three or four lines the synthesis of which Apollonius says that

he found inadequately worked out in Euclid's Conies. The

theorems relating to this locus are enunciated by Pappus in

this way :

' If three straight lines be given in position and from one and
the same point straight lines be drawn to meet the three

straight lines at given angles, and if the ratio of the rectangle

contained by two of the straight lines so drawn to the square

on the remaining one be given, then the point will lie on a

solid locus given in position, that is, on one of the three conic

sections. And if straight lines be so drawn to meet, at given

angles, four straight lines given in position, and the ratio of

the rectangle contained by two of the lines so drawn to the

rectangle contained by the remaining two be given, then in
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the same way the point will lie on a conic section given in

position.' l

The reason why Apollonius referred in this connexion to

Euclid and not to Aristaeus was probably that it was Euclid's

work that was on the same lines as his own.

A very large proportion of the standard properties of conies

admit of being stated in the form of locus-theorems ; if a

certain property holds with regard to a certain point, then

that point lies on a conic section. But it may be assumed

that Aristaeus' s work was not merely a collection of the

ordinary propositions transformed in this way ; it would deal

with new locus-theorems not implied in the fundamental

definitions and properties of the conies, such as those just

mentioned, the theorems of the three- and four-line locus.

But one (to us) ordinary property, the focus-directrix property,

was, as it seems to me, in all probability included.

Focus-directrix property known to Euclid.

It is remarkable that the directrix does not appear at all in

Apollonius's great treatise on conies. The focal properties of

the central conies are given by Apollonius, but the foci are

obtained in a different way, without any reference to the

directrix; the focus of the parabola does not appear at all.

We may perhaps conclude that neither did Euclid's Conies

contain the focus-directrix property ; for, according to Pappus,

Apollonius based his first four books on Euclid's four books,

while filling them out and adding to them. Yet Pappus gives

the proposition as a lemma to Euclid's Surface-Loci, from

which we cannot but infer that it was assumed in that

treatise without proof. If, then, Euclid did not take it from

his own Conies, what more likely than that it was contained

in Aristaeus's Solid Loci ?

Pappus's enunciation of the theorem is to the effect that the

locus of a point such that its distance from a given point is in

a given ratio to its distance from a fixed straight line is a conic

section, and is an ellipse, a parabola, or a hyperbola according

as the given ratio is less than, equal to, or greater than unity.

1 Pappus, vii, p. 678. 15-24.
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Proof from Pappus.

The proof in the case where the given ratio is different from

unity is shortly as follows.

Let S be the fixed point, SX the perpendicular from S on

the fixed line. Let P be any point on the locus and PN

-i—

»

KAN SK' A
1

A' rr

perpendicular to SX, so that SP is to NX in the given

ratio (e);

thus e
2 = (PN 2 + SN2

) : NX2
.

Take K on' SX such that

e
2 = SN 2 :NK2

]

then, if Kf be another point on SN, produced if necessary,

such that NK = NK',

e2 :l = (PN 2 + SN2
) : NX2 = SN2

: NK2

= PN 2 :(NX2-NK2
)

= PN2
: XK . XK'.

The positions of N, K, Kf change with the position of P.

If A, A' be the points on which N falls when K, K' coincide

with X respectively, we have

SA:AX = SN:NK = e:l= SN:NK'= SA'-.A'X.

Therefore SX : SA = SK :SN=(l+e):e,

whence ( 1 + e) : e = (SX- SK) : (SA - SN)

= XK:AN
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Similarly it can be shown that

(1 ~e):e = XK':A'X.

By multiplication, XK . XK'\ AN.A'N = (1 -

e

2
) : e

2
;

and it follows from above, ex aequali, that

PX2 :AX.A'X=(l~e2):l,

which is the property of a central conic.

When e < 1, A and A' lie on the same side of X, while

X lies on AA', and the conic is an ellipse ; when e > 1, A and

A' lie on opposite sides of X, while X lies on .401 produced,

and the conic is a hyperbola.

The case where e = 1 and the curve is a parabola is easy

and need not be reproduced here.

The treatise would doubtless contain other loci of types

similar to that which, as Pappus says, was used for the

trisection of an angle : I refer to the proposition already

quoted (vol. i, p. 243) that, if A, B are the base angles of

a triangle with vertex P, and lB = 2 A A, the locus of P
is a hyperbola with eccentricity 2.

Propositions included in Euclid's Conies.

That Euclid's Conies covered much of the same ground as

the first three Books of Apollonius is clear from the language

of Apollonius himself. Confirmation is forthcoming in the

quotations by Archimedes of propositions (1) 'proved in

the elements of conies', or (2) assumed without remark as

already known. The former class include the fundamental

ordinate properties of the conies in the following forms

:

(1) for the ellipse,

PX2
: AX. A'N = P'X' 2

: AN'. A'Xf = BC2
: AC 2

;

(2) for the hyperbola,

PX2
: AX. A'X = P'X'2

: AX' .A'X';

(3) for the parabola, PX 2 = pa . AX
;

the principal tangent properties of the parabola

;

the property that, if there are two tangents drawn from one

point to any conic section whatever, and two intersecting
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chords drawn parallel to the tangents respectively, the rect-

angles contained by the segments of the chords respectively

are to one another as the squares of the parallel tangents

;

the by no means easy proposition that, if in a parabola the

diameter through P bisects the chord QQ' in V, and QD is

drawn perpendicular to PV
y
then

QV*:QD*=p:pa ,

where pa is the parameter of the principal ordinates and p is

the parameter of the ordinates to the diameter PV.

Conic sections in Archimedes.

But we must equally regard Euclid's Conies as the source

from which Archimedes took most of the other ordinary

properties of conies which he assumes without proof. Before

summarizing these it will be convenient to refer to Archi-

medes's terminology. We have seen that the axes of an
ellipse are not called axes but diameters, greater and lesser

;

the axis of a parabola is likewise its diameter and the other

diameters are 'lines parallel to the diameter', although in

a segment of a parabola the diameter bisecting the base is

the ' diameter ' of the segment. The two ' diameters ' (axes)

of an ellipse are conjugate. In the case of the hyperbola the
* diameter ' (axis) is the portion of it within the (single-branch)

hyperbola ; the centre is not called the ' centre ', but the point

in which the ' nearest lines to the section of an obtuse-angled

cone' (the asymptotes) meet; the half of the axis (CA) is

' the line adjacent to the axis ' (of the hyperboloid of revolution

obtained by making the hyperbola revolve about its ' diameter'),

and A'A is double of this line. Similarly CP is the line

'adjacent to the axis' of a segment of the hyperboloid, and

P'P double of this line. It is clear that Archimedes did not

yet treat the two branches of a hyperbola as forming one

curve ; this was reserved for Apollonius.

The main properties of conies assumed by Archimedes in

addition to those above mentioned may be summarized thus.

Central Conies.

1 . The property of the ordinates to any diameter PP\

QV*:PV.P'V= Q'V /2 :PV'.P'V.
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In the case of the hyperbola Archimedes does not give

any expression for the constant ratios PN2 :AN. A'N and

QV2 :PV . P'V respectively/whence we conclude that he had

no conception of diameters or radii of a hyperbola not meeting

the curve.

2. The straight line drawn from the centre of an ellipse, or

the point of intersection of the asymptotes of a hyperbola,

through the point of contact of any tangent, bisects all chords

parallel to the tangent.

3. In the ellipse the tangents at the extremities of either of two

conjugate diameters are both parallel to the other diameter.

4. If in a hyperbola the tangent at P meets the transverse

axis in T, and PN is the principal ordinate, AN > AT. (It

is not easy to see how this could be proved except by means
of the general property that, if PP/

be any diameter of

a hyperbola, QV the ordinate to it from Q, and QT the tangent

at Q meeting P'P in T, then TP.TP' = PV: P'V.)

5. If a cone, right or oblique, be cut by a plane meeting all

the generators, the section is either a circle or an ellipse.

6. If a line between the asymptotes meets a hyperbola and
is bisected at the point of concourse, it will touch the

hyperbola.

7. If x, y are straight lines drawn, in fixed directions respec-

tively, from a point on a hyperbola to meet the asymptotes,

the rectangle xy is constant.

8. If PN be the principal ordinate of P, a point on an ellipse,

and if NP be produced to meet the auxiliary circle in p, the

ratiopN : PN is constant.

9. The criteria of similarity of conies and segments of

conies are assumed in practically the same form as Apollonius

gives them.

The Parabola.

1. The fundamental properties appear in the alternative forms

PN2
: P'N'2= AN: AN\ or PN2 = pa . AN,

QV 2 :Q'V'2 = PV:PV, or QV2 = p . PV.

Archimedes applies the term parameter (d nap' av SvvavTca

al d-rrb t&s tofids) to the parameter of the principal ordinates
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only : p is simply the line to which the rectangle equal to QV 2

and of width equal to PV is applied.

2. Parallel chords are bisected by one straight line parallel to

the axis, which passes through the point of contact of the

tangent parallel to the chords.

3. If the tangent at Q meet the diameter PV in T, and QV be

the ordinate to the diameter, PV = PT.

By the aid of this proposition a tangent to the parabola can

be drawn (a) at a point on it, (b) parallel to a given chord.

4. Another proposition assumed is equivalent to the property

of the subnormal, NG = ipa > *

5. If QQ' be a chord of a parabola perpendicular to the axis

and meeting the axis in M, while QVq another chord parallel

to the tangent at P meets the diameter through P in V, and

RHK is the principal ordinate of any point R on the curve

meeting PV in H and the axis in K, then PV :PH > or

— MK : KA ;
' for this is proved ' (On Floating Bodies, II. 6).

Where it was proved we do not know ; the proof is not

altogether easy. 1

G. All parabolas are similar.

As we have seen, Archimedes had to •specialize in the

parabola for the purpose of his treatises on the Quadrature

of the Parabola , Conoids and Spheroids, Floating Bodies,

Book II, and Plane Equilibriums, Book II ; consequently he

had to prove for himself a number of special propositions, which

have already been given in their proper places. A few others

are assumed without proof, doubtless as being easy deductions

from the propositions which he does prove. They refer mainly

to similar parabolic segments so placed that their bases are in

one straight line and have one common extremity.

1. If any three similar and similarly situated parabolic

segments BQ
{

, BQ2 , BQ2
lying along the same straight line

as bases (BQ
X
< BQ

2
< BQ

3 ),
and if E be any point on the

tangent at B to one of the segments, and EO a straight line

through E parallel to the axis of one of the segments and

meeting the segments in R
z , R2 , R x

respectively and BQ
3

in 0, then
R

3 R, : R..R, = (Q2 Q, : RQ3) . (BQ
l

: Q, Q2).

1 See Apollonius of Perga, ed. Heath, p, liv.
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2. If two similar parabolic segments with bases BQ
ly
BQ

2
be

placed as in the last proposition, and if BR
1
R

2
be any straight

line through B meeting the segments in Rlf R2
respectively,

BQ
1
:BQ

2
= BR

1
:BR

2
.

These propositions are easily deduced from the theorem

proved in the Quadrature of the Parabola, that, if through E,

a point on the tangent at B, a straight line ERO be drawn

parallel to the axis and meeting the curve in R and any chord

BQ through B in 0, then

ER:R0 = B0:0Q.

3. On the strength of these propositions Archimedes assumes

the solution of the problem of placing, between two parabolic

segments similar to one another and placed as in the above

propositions, a straight line of a given length and in a direction

parallel to the diameters of either parabola.

Euclid and Archimedes no doubt adhered to the old method

of regarding the three conies as arising from sections of three

kinds of right circular cones (right-angled, obtuse-angled and

acute-angled) by planes drawn in each case at right angles to

a generator of the cone. Yet neither Euclid nor Archimedes

was unaware that the ' section of an acute-angled cone ', or

ellipse, could be otherwise produced. Euclid actually says in

his Phaenomena that ' if a cone or cylinder (presumably right)

be cut by a plane not parallel to the base, the resulting section

is a section of an acute-angled cone which is similar to

a Bvpeos (shield) '. Archimedes knew that the non-circular

sections even of an oblique circular cone made by planes

cutting all the generators are ellipses ; for he shows us how,

given an ellipse, to draw a cone (in general oblique) of which

it is a section and which has its vertex outside the plane

of the ellipse on any straight line through the centre of the

ellipse in a plane at right angles to the ellipse and passing

through one of its axes, whether the straight line is itself

perpendicular or not perpendicular to the plane of the ellipse

;

drawing a cone in this case of course means finding the circular

sections of the surface generated by a straight line always

passing through the given vertex and all the several points of

the given ellipse. The method of proof would equally serve
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for the other two conies, the hyperbola and parabola, and we
can scarcely avoid the inference that Archimedes was equally

aware that the parabola and the hyperbola could be found

otherwise than by the old method.

The first, however, to base the theory of conies on the

production of all three in the most general way from any

kind of circular cone, right or oblique, was Apollonius, to

whose work we now come.

B. APOLLONIUS OF PERGA

Hardly anything is known of the life of Apollonius except

that he was born at Perga, in Pamphylia, that he went

when quite young to Alexandria, where he studied with the

successors of Euclid and remained a long time, and that

he flourished (yeyove) in the reign of Ptolemy Euergetes

(247-222 B.C.). Ptolemaeus Chennus mentions an astronomer

of the same name, who was famous during the reign of

Ptolemy Philopator (222-205 B.C.), and it is clear that our

Apollonius is meant. As Apollonius dedicated the fourth and

following Books of his Conies to King Attalus I (241-197 B.C.)

we have a confirmation of his approximate date. He was
probably born about 262 B.C., or 25 years after Archimedes.

We hear of a visit to Pergamum, where he made the acquain-

tance of Eudemus of Pergamum, to whom he dedicated the

first two Books of the Conies in the form in which they have

come down to us ; they were the first two instalments of a

second edition of the work.

The text of the Conies.

The Conies of Apollonius was at once recognized as the

authoritative treatise on the subject, and later writers regu-

larly cited it when quoting propositions in conies. Pappus

wrote a number of lemmas to it ; Serenus wrote a commen-
tary, as also, according to Suidas, did Hypatia. Eutocius

(fl. A.D. 500) prepared an edition of the first four Books and

wrote a commentary on them ; it is evident that he had before

him slightly differing versions of the completed work, and he

may also have had the first unrevised edition which had got

into premature circulation, as Apollonius himself complains in

the Preface to Book I.
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The edition of Eutocius suffered interpolations which were

probably made in the ninth century when, under the auspices

of Leon, mathematical studies were revived at Constantinople
;

for it was at that date that the uncial manuscripts were

written, from which our best manuscripts, V (= Cod. Vat. gr.

206 of the twelfth to thirteenth century) for the Conies, and

W (= Cod. Vat. gr. 204 of the tenth century) for Eutocius,

were copied.

Only the first four Books survive in Greek ; the eighth

Book is altogether lost, but the three Books V-VII exist in

Arabic. It was Ahmad and al-Hasan, two sons of Muh. b.

Musa b. Shakir, who first contemplated translating the Conies

into Arabic. They were at first deterred by the bad state of

their manuscripts ; but afterwards Ahmad obtained in Syria

a copy of Eutocius's edition of Books I-IV and had them

translated by Hilal b. Abi Hilal al-Himsi (died 883/4).

Books V-VII were translated, also for Ahmad, by Thabit

b. Qurra ( 826-901) from another manuscript. Naslraddm's

recension of this translation of the seven Books, made in 1248,

is represented by two copies in the Bodleian, one of the year

1301 (No. 943) and the other of 1626 containing Books V-VII
only (No. 885).

A Latin translation of Books I-IV was published by
Johannes Baptista Memus at Venice in 1537 ; but the first

important edition was the translation by Commandinus
(Bologna, 1566), which included the lemmas of Pappus and
the commentary of Eutocius, and was the first attempt to

make the book intelligible by means of explanatory notes.

For the Greek text Commandinus used Cod. Marcianus 518

and perhaps also Vat. gr. 205, both of which were copies of V,

but not V itself.

The first published version of Books V-VII was a Latin

translation by Abraham Echellensis and Giacomo Alfonso

Borelli (Florence, 1661) of a reproduction of the Books written

in 983 by Abu 1 Fath al-Isfahani.

The editio princeps of the Greek text is the monumental
work of Halley (Oxford, 1710). The original intention was
that Gregory should edit the four Books extant in Greek, with

Eutocius's commentary and a Latin translation, and that

Halley should translate Books V-VII from the Arabic into
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Latin. Gregory, however, died while the work was proceeding,

and Halley then undertook responsibility for the whole. The
Greek manuscripts used were two, one belonging to Savile

and the other lent by D. Baynard ; their whereabouts cannot

apparently now be traced, but they were both copies of Paris,

gr. 2356, which was copied in the sixteenth century from Paris,

gr. 2357 of the sixteenth century, itself a copy of V. For the

three Books in Arabic Halley used the Bodleian MS. 885, but

also consulted (a) a compendium of the three Books by 'Abdel-

melik al-Shirazi (twelfth century), also in the Bodleian (913),

(b) Borelli's edition, and (c) Bodl. 943 above mentioned, by means
of which he revised and corrected his translation when com-

pleted. Halley's edition is still, so far as I know, the only

available source for Books V-VII, except for the beginning of

Book V (up to Prop. 7) which was edited by L. Nix (Leipzig,

1889). ,

The Greek text of Books I-IV is now available, with the

commentaries of Eutocius, the fragments of Apollonius, &c,

in the definitive edition of Heiberg (Teubner, 1891-3).

Apollonius's own account of the Conies.

A general account of the contents of the great work which,

according to Geminus, earned for him the title of the ' great

geometer' cannot be better given than in the words of the

writer himself. The prefaces to the several Books contain

interesting historical details, and, like the prefaces of Archi-

medes, state quite plainly and simply in what way the

treatise differs from those of his predecessors, and how much
in it is claimed as original. The strictures of Pappus (or

more probably his interpolator), who accuses him of being a

braggart and unfair towards his predecessors, are evidently

unfounded. The prefaces are quoted by v. Wilamowitz-

Moellendorff as specimens of admirable Greek, showing how
perfect the style of the great mathematicians could be

when they were free from the trammels of mathematical

terminology.

Book I. General Preface.

Apollonius to Eudemus, greeting.

If you are in good health and things are in other respects

as you wish, it is well ; with me too things are moderately
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well. During the time I spent with you at Pergamum
I observed your eagerness to become acquainted with my
work in conies; I am therefore sending you the first book,

which I have corrected, and I will forward the remaining
books when I have finished them to my satisfaction. I dare

say you have not forgotten my telling you that I.undertook
the investigation of this subject at the request of Naucrates

the geometer, at the time when he came to Alexandria and
stayed with 'me, and, when I had worked it out in eight

books, I gave them to him at once, too hurriedly, because he

was on the point of sailing; they had therefore not been
thoroughly revised, indeed I had put down everything just as

it occurred to me, postponing revision till the end. Accord-
ingly I now publish, as opportunities serve from time to time,

instalments of the work as they are corrected. In the mean-
time it has happened that some other persons also, among
those whom I have met, have got the first and second books
before they were corrected ; do not be surprised therefore if

you come across them in a different shape.

Now of the eight books the first four form an elementary
introduction. The first contains the modes of producing the

three sections and the opposite branches (of the hyperbola),

and the fundamental properties subsisting in them, worked
out more fully and generally than in the writings of others.

The second book contains the properties of the diameters and
the axes of the sections as well as the asymptotes, with other

things generally and necessarily used for determining limits

of possibility (Siopicr/iot) ; and what I mean by diameters
and axes respectively you will learn from this book. The
third book contains many remarkable theorems useful for

the syntheses of solid loci and for diorismi ; the most and
prettiest of these theorems are new, and it was their discovery
which made me aware that Euclid did not work out the

synthesis of the locus with respect to three and four lines, but
only a chance portion of it, and that not successfully ; for it

was not possible for the said synthesis to be completed without
the aid of the additional theorems discovered by me. The
fourth book shows in how many ways the sections of cones
can meet one another and the circumference of a circle ; it

contains other things in addition, none of which have been
discussed by earlier writers, namely the questions in how
many points a section of a cone or a circumference of a circle

can meet [a double-branch hyperbola, or two double-branch
hyperbolas can meet one another].

The rest of the books are more by way of surplusage
(7T€piov(riaaTLK(OT€pa) : one of them deals somewhat fully with

1523.3 K



130 APOLLONIUS OF PERGA

minima and maxima, another with equal and similar sections
of cones, another with theorems of the nature of determina-
tions of limits, and the last with determinate conic problems.
But of course, when all of them are published, it will be open
to all who read them to form their own judgement about them,
according to their own individual tastes. Farewell.

The preface to Book II merely says that Apollonius is

sending the second Book to Eudemus by his son Apollonius,

and begs Eudemus to communicate it to earnest students of the

subject, and in particular to Philonides the geometer whom
Apollonius had introduced to Eudemus at Ephesus. There is

no preface to Book III as we have it, although the preface to

Book IV records that it also was sent to Eudemus.

Preface to Book IV.

Apollonius to Attalus, greeting.

Some time ago I expounded and sent to Eudemus of Per-

gamum the first three books of my conies which I have
compiled in eight books, but, as he has passed away, I have
resolved to dedicate the remaining books to you because of

your earnest desire to possess my works. I am sending you
on this occasion the fourth book. It contains a discussion of

the question, in how many points at most it is possible for

sections of cones to meet one another and the circumference

of a circle, on the assumption that they do not coincide

throughout, and further in how many points at most a

section of a cone or the circumference of a circle can meet the

hyperbola with two branches, [or two double-branch hyper-

bolas can meet one another]; and, besides these questions,

the book considers a number of others of a similar kind.

Now the first question Conon expounded to Thrasydaeus, with-

out, however, showing proper mastery of the proofs, and on
this ground Nicoteles of Cyrene, not without reason, fell foul

of him. The second matter has merely been mentioned by
Nicoteles, in connexion with his controversy with Conon,

as one capable of demonstration; but I have not found it

demonstrated either by Nicoteles himself or by any one else.

The third question and the others akin to it I have not found

so much as noticed by any one. All the matters referred to,

which I have not found anywhere, required for their solution

many and various novel theorems, most of which I have,

as a matter of fact, set out in the first three books, while the

rest are contained in the present book. These theorems are

of considerable use both for the syntheses of problems and for
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diorismi. Nicoteles indeed, on account of his controversy

with Conon, will not have it that any use can be made of the

discoveries of Conon for the purpose of diorismi; he is,

however, mistaken in this opinion, for, even if it is possible,

without using them at all, to arrive at results in regard to

limits of possibility, yet they at all events afford a readier

means of observing some things, e.g. that several or so many
solutions are possible, or again that no solution is possible

;

and such foreknowledge secures a satisfactory basis for in-

vestigations, while the theorems in question are again useful

for the analyses of diorismi. And, even apart from such

usefulness, they will be found worthy of acceptance for the

sake of the demonstrations themselves, just as we accept

many other tilings in mathematics for this reason and for

no other.

The prefaces to Books V-VII now to be given are repro-

duced for Book V from the translation of L. Nix and for

Books VI, VII from that of Halley.

Preface to Book V.

Apollonius to Attalus, greeting.

In this fifth book I have laid down propositions relating to

maximum and minimum straight lines. You must know
that my predecessors and contemporaries have only super-

ficially touched upon the investigation of the shortest lines,

and have only proved what straight lines touch the sections

and. conversely, what properties they have in virtue of which
they are tangents. For my part, 1 have proved these pro-

perties in the first book (without however making any use, in

the proofs, of the doctrine of the shortest lines), inasmuch as

I wished to place them in close connexion with that part

of the subject in which I treat of the production of the three

conic sections, in order to show at the same time that in each
of the three sections countless properties and necessary results

appear, as they do with reference to the original (transverse)

diameter. The propositions in which I discuss the shortest

lines I have separated into classes, and I have dealt with each
individual case by careful demonstration ; I have also con-

nected the investigation of them with the investigation of

the greatest lines above mentioned, because I considered that
those who cultivate this science need them for obtaining
a knowledge of the analysis, and determination of limits of

possibility, of problems as well as for their synthesis : in

addition to which, the subject is one of those which seem
worthy of study for their own sake. Farewell.

K 2
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Preface to Book VI.

Apollonius to Attalus, greeting.

I send you the sixth book of the conies, which embraces
propositions about conic sections and segments of conies equal

and unequal, similar and dissimilar, besides some other matters
left out by those who have preceded me. In particular, you
will find in this book how, in a given right cone, a section can
be cut which is equal to a given section, and how a right cone
can be described similar to a given cone but such as to contain

a given conic section. And these matters in truth I have
treated somewhat more fully and clearly than those who wrote
before my time on these subjects. Farewell.

Preface to Book VII.

Apollonius to Attalus, greeting.

I send to you with this letter the seventh book On conic

sections. In it are contained a large number of new proposi-

tions concerning diameters of sections and the figures described

upon them ; and all these propositions have their uses in many
kinds of problems, especially in the determination of the

limits of their possibility. Several examples of these occur
in the determinate conic problems solved and demonstrated
by me in the eighth book, which is by way of an appendix,

and which I will make a point of sending to you as soon

as possible. Farewell.

Extent of claim to originality.

We gather from these prefaces a very good idea of the

plan followed by Apollonius in the arrangement of the sub-

ject and of the extent to which he claims originality. The

first four Books form, as he says, an elementary introduction,

by which he means an exposition of the elements of conies,

that is, the definitions and the fundamental propositions

which are of the most general use and application; the term
' elements ' is in fact used with reference to conies in exactly

the same sense as Euclid uses it to describe his great work.

The remaining Books beginning with Book V are devoted to

more specialized investigation of particular parts of the sub-

ject. It is only for a very small portion of the content of the

treatise that Apollonius claims originality ; in the first three

Books the claim is confined to certain propositions bearing on

the ' locus with respect to three or four lines
'

; and in the

fourth Book (on the number of points at which two conies
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may intersect, touch, or both) the part which is claimed

as new is the extension to the intersections of the parabola,

ellipse, and circle with the double-branch hyperbola, and of

two double-branch hyperbolas with one another, of the in-

vestigations which had theretofore only taken account of the

single-branch hyperbola. Even in Book V, the most remark-

able of all, Apollonius does not say that normals as ' the shortest

lines ' had not been considered before, but only that they had

been superficially touched upon, doubtless in connexion with

propositions dealing with the tangent properties. He explains

that he found it convenient to treat of the tangent properties,

without any reference to normals, in the first Book in order

to connect them with the chord properties. It is clear, there-

fore, that in treating normals as maxima and minima, and by
themselves, without any reference to tangents, as he does in

Book V, he was making an innovation ; and, in view of the

extent to which the theory of normals as maxima and minima
is developed by him (in 77 propositions), there is no wonder
that he should devote a whole Book to the subject. Apart

from the developments in Books III, IV, V, just mentioned,

and the numerous new propositions in Book VII with the

problems thereon which formed the lost Book VIII, Apollonius

only claims to have treated the whole subject more fully and

generally than his predecessors.

Great generality of treatment from the beginning.

So far from being a braggart and taking undue credit to

himself for the improvements which he made upon his prede-

cessors, Apollonius is, if anything, too modest in his descrip-

tion of his personal contributions to the theory of conic

sections. For the ' more fully and generally ' of his first

preface scarcely conveys an idea of the extreme generality

with which the whole subject is worked out. This character-

istic generality appears at the very outset.

Analysis of the Conies.

Book I.

Apollonius begins by describing a double oblique circular

cone in the most general way. Given a circle and any point

outside the plane of the circle and in general not lying on the
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straight line through the centre of the circle perpendicular to

its plane, a straight line passing through the point and pro-

duced indefinitely in both directions is made to move, while

always passing through the fixed point, so as to pass succes-

sively through all the points of the circle ; the straight line

thus describes a double cone which is in general oblique or, as

Apollonius calls it, scalene. Then, before proceeding to the

geometry of a cone, Apollonius gives a number of definitions

which, though of course only required for conies, are stated as

applicable to any curve.

' In any curve,' says Apollonius, ' I give the name diameter to

any straight line which, drawn from the curve, bisects all the

straight lines drawn in the curve (chords) parallel to any
straight line, and I call the extremity of the straight line

(i.e. the diameter) which is at the curve a vertex of the curve

and each of the parallel straight lines (chords) an ordinate

(lit. drawn ordinate- wise, TeTayfievcos KaTrjyOai) to the

diameter.'

He then extends these terms to a pair of curves (the primary

reference being to the double-branch hyperbola), giving the

name transverse diameter to any straight line bisecting all the

chords in both curves which are parallel to a given straight

line (this gives two vertices where the diameter meets the

curves respectively), and the name erect diameter (6p6ia) to

any straight line which bisects all straight lines drawn
between one curve and the other which are parallel to any

straight line; the ordinates to any diameter are again the

parallel straight lines bisected by it. Conjugate diameters in

any curve or pair of curves are straight lines each of which

bisects chords parallel to the other. Axes are the particular

diameters which cut at right angles the parallel chords which

they bisect ; and conjugate axes are related in the same way
as conjugate diameters. Here we have practically our modern

definitions, and there is a great advance on Archimedes's

terminology.

The conies obtained in the most general way from an
oblique cone.

Having described a cone (in general oblique), Apollonius

defines the axis as the straight line drawn from the vertex to
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the centre of the circular base. After proving that all

sections parallel to the base are also circles, and that there

is another set of circular sections subcontrary to these, he

proceeds to consider sections of the cone drawn in any

manner. Taking any triangle through the axis (the base of

the triangle being consequently a diameter of the circle which

is the base of the cone), he is careful to make his section cut

the base in a straight line perpendicular to the particular

diameter which is the base of the axial triangle. (There is

no loss of generality in this, for, if any section is taken,

without reference to any axial triangle, we have only to

select the particular axial triangle the base of which is that

diameter of the circular base which is

at right angles to the straight line in

which the section of the cone cuts the

base.) Let ABC be any axial triangle,

and let any section whatever cut the

base in a straight line BE at right

angles to BC; if then PM be the in-

tersection of the cutting plane and the

axial triangle, and if QQ
/
be any chord

in the section parallel to BE, Apollonius

proves that QQ' is bisected by PM. In

other words, PM is a diameter of the section. Apollonius is

careful to explain that,

' if the cone is a right cone, the straight line in the base (BE)
will be at right angles to the common section (PM) of the

cutting plane and the triangle through the axis, but, if the

cone is scalene, it will not in general be at right angles to PM,
but will be at right angles to it only when the plane through
the axis (i.e. the axial triangle) is at right angles to the base
of the cone ' (I. 7).

That is to say, Apollonius works out the properties of the

conies in the most general way with reference to a diameter

which is not one of the principal diameters or axes, but in

general has its ordinates obliquely inclined to it. The axes do

not appear in his exposition till much later, after it has been

shown that each conic has the same property with reference

to any diameter as it has with reference to the original

diameter arising out of the construction ; the axes then appear
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as particular cases of the new diameter of reference. The
three sections,- the parabola, hyperbola, and ellipse are made
in the manner shown in the figures. In each case they pass

through a straight line DE in the plane of the base which

is at right angles to BC, the base of the axial triangle, or

to BC produced. The diameter PM is in the case of the
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parabola parallel to AG; in the case of the hyperbola it meets

the other half of the double cone in P' ; and in the case of the

ellipse it meets the cone itself again in P'. We draw, in

the cases of the hyperbola and ellipse, AF parallel to PM
to meet BG or BG produced in F.

Apollonius expresses the properties of the three curves by

means of a certain straight line PL drawn at right angles

to PM in the plane of the section.

In the case of the parabola, PL is taken such that

PL: PA = BG 2 :BA.AG;

and in the case of the hyperbola and ellipse sucli that

PL:PP'=BF.FG:AF*.

In the latter two cases we join P'Z, and then draw VR
parallel to PL to meet P'L, produced if necessary, in R.

If HK be drawn through V parallel to BG and meeting

AB, AG in //, K respectively, HK is the diameter of the circular

section of the cone made by a plane parallel to the base.

Therefore QV 2 = HV . VK.

Then (1) for the parabola we have, by parallels and similar

triangles,

HV:PV=BC:CA,

and VK.PA = BC:BA.
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Therefore QV2 :PV . PA = HV.VK : PV. PA
= BC 2 :BA.AC

— PL: PA, by hypothesis,

= PL.PV:PV.PA,

whence QV2 = PL . PV.

(2) In the case of the hyperbola and ellipse,

HV:PV=BF:FA,

VK:P'V=FC:AF.

Therefore QV2
: PV. P'V = HV . VK : PV.P'V

= BF.FC:AF*

= PL : PP', by hypothesis,

= RV:P'V

= PV. VR.PV.P'V,

whence QV2 = PV . VK

Neiv names, * parabola \ ' elli%)se ', ' hyperbola \

Accordingly, in the case of the parabola, the square of the

ordinate (QV 2
) is equal to the rectangle applied to PL and

with width equal to the abscissa (PV)
;

in the case of the hyperbola the rectangle applied to PL
which is equal to QV2 and has its width equal to the abscissa

PV overlaps or exceeds (virepPdWeL) by the small rectangle LR
which is similar and similarly situated to the rectangle con-

tained by PL, PPf

;

in the case of the ellipse the corresponding rectangle falls

short (eXXetTrei) by a rectangle similar and similarly situated

to the rectangle contained by PL, PP'.

Here then we have the properties of the three curves

expressed in the precise language of the Pythagorean applica-

tion of areas, and the curves are named accordingly : parabola

(napafioXri) where the rectangle is exactly applied, hyperbola

(v7r€pPo\rj) where it exceeds, and ellipse (eWeiyfns) where it

falls short.
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PL is called the latus rectum (opdia) or the parameter of

the ordinates (irap
y

f/i/ Svvolvtcli at Karayoixevai Ttray/JLevcos) in

each case. In the case of the central conies, the diameter PP'

is the transverse (rj irXayia) or transverse diameter) while,

even more commonly, Apollonius speaks of the diameter and

the corresponding parameter together, calling the latter the

latus rectum or erect side (opOla nXevpa) and the former

the transverse side of the figure (elSos) on, or applied to, the

diameter.

Fundamental properties equivalent to Cartesian equations.

If p is the parameter, and d the corresponding diameter,

the properties of the curves are the equivalent of the Cartesian

equations, referred to the diameter and the tangent at its

extremity as axes (in general oblique),

y
2 = px (the parabola),

y
2 = px ± ~x2 (the hyperbola and ellipse respectively).

Thus Apollonius expresses the fundamental property of the

central conies, like that of the parabola, as an equation

between areas, whereas in Archimedes it appears as a

proportion

y
2

: (a2 ± x2
) = b2 : a2

,

which, however, is equivalent to the Cartesian equation

referred to axes with the centre as origin. The latter pro-

perty with reference to the original diameter is separately

proved in I. 21, to the effect that QV 2 varies asPF. P'V, as

is really evident from the fact that QV2
: PV . P'V = PL : PP'

,

seeing that PL : PP' is constant for any fixed diameter PP'.

Apollonius has a separate proposition (I. 14) to prove that

the opposite branches of a hyperbola have the same diameter

and equal latera recta corresponding thereto. As he was the

first to treat the double-branch hyperbola fully, he generally

discusses the hyperbola (i.e. the single branch) along with

the ellipse, and the opposites, as he calls the double-branch

hyperbola, separately. The properties of the single-branch

hyperbola are, where possible, included in one enunciation

with those of the ellipse and circle, the enunciation beginning,
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' If in a hyperbola, an ellipse, or the circumference of a circle '

;

sometimes, however, the double-branch hyperbola and the

ellipse come in one proposition, e.g. in I. 30: 'If in an ellipse

or the opposites (i. e. the double hyperbola) a straight line be

drawn through the centre meeting the curve on both sides of

the centre, it will be bisected at the centre.' The property of

conjugate diameters in an ellipse is proved in relation to

the original diameter of reference and its conjugate in I. 15,

where it is shown that, if DD' is the diameter conjugate to

PP' (i.e. the diameter drawn ordinate-wise to PP'), just as

PP/
bisects all chords parallel to DD', so DD' bisects all chords

parallel to PP' ; also, if DL' be drawn at right angles to DD'
and such that DL' . DD' = PP'2 (or DL' is a third proportional

to DD', PP'), then the ellipse has the same property in rela-

tion to DD' as diameter and DL' as parameter that it has in

relation to PP' as diameter and PL as the corresponding para-

meter. Incidentally it appears that PL . PP' — DD' 2
, or PL is

a third proportional to PP\ DD', as indeed is obvious from the

property of the curve QV2
: PV . PV'= PL : PP' = DD'2

: PP'2
.

The next proposition, I. 16, introduces the secondary diameter

of the double-branch hyperbola (i.e. the diameter conjugate to

the transverse diameter of reference), which does not meet the

curve ; this diameter is defined as that straight line drawn
through the centre parallel to the ordinates of the transverse

diameter which is bisected at the centre and is of length equal

to the mean proportional between the ' sides of the figure
',

i.e. the transverse diameter PP' and the corresponding para-

meter PL. The centre is defined as the middle point of the

diameter of reference, and it is proved that all other diameters

are bisected at it (I. 30).

Props. 17-19, 22-9, 31-40 are propositions leading up to

and containing the tangent properties. On lines exactly like

those of Eucl. III. 1 6 for the circle, Apollonius proves that, if

a straight line is drawn through the vertex (i. e. the extremity

of the diameter of reference) parallel to the ordinates to the

diameter, it will fall outside the conic, and no other straight

line can fall between the said straight line and the conic
;

therefore the said straight line touches the conic (1.17, 32).

Props. I. 33, 35 contain the property of the tangent at any

point on the parabola, and Props. I. 34, 36 the property of
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the tangent at any point of a central conic, in relation

to the original diameter of reference ; if Q is the point of

contact, QV the ordinate to the diameter through P, and

if QT, the tangent at Q, meets the diameter produced in T,

then (1) for the parabola PV = PT, and (2) for the central

conic TP:TP'= PV: VF. The method of proof is to take a

point T on the diameter produced satisfying the respective

relations, and to prove that, if TQ be joined and produced,

any point on TQ on either side of Q is outside the curve : the

form of proof is by reductio ad absurdum, and in each

case it is again proved that no other straight line can fall

between TQ and the curve. The fundamental property

TP-.TP' — PV :VP'' for the central conic is then used to

prove that CV. GT = CP2 and QV2
: CV . VT = p: PPf

(or

CD2
: CP2

) and the corresponding properties with reference to

the diameter DD' conjugate to PP' and v, t, the points where

DDf

is met by the ordinate to it from Q and by the tangent

at Q respectively (Props. I. 37-40).

Transition to new diameter and tangent at its extremity.

An important section of the Book follows (I. 41-50), con-

sisting of propositions leading up to what amounts to a trans-

formation of coordinates from the original diameter and the

tangent at its extremity to any diameter and the tangent at

its extremity ; what Apollonius proves is of course that, if

any other diameter be taken, the ordinate-property of the

conic with reference to that diameter is of the same form as it

is with reference to the original diameter. It is evident that

this is vital to the exposition. The propositions leading up to

the result in I. 50 are not usually given in our text-books of

geometrical conies, but are useful and interesting.

Suppose that the tangent at any point Q meets the diameter

of reference PV in T, and that the tangent at P meets the

diameter through Q in E. Let R be any third point on

the curve; let the ordinate RW to PV meet the diameter

through Q in F, and let RU parallel to the tangent at Q meet

PV in U. Then

(1) in the parabola, the triangle RUW = the parallelogram

EW
, and



142 APOLLONIUS OF PERGA



THE CONICS, BOOK I 143

(2) in the hyperbola or ellipse, ARUW = the difference

between the triangles CFW and CPE.

(1) In the parabola ARUW.AQTV = RW 2 :QV2

= PW:PV
= CJEW:CJEV.

But, since TV = 2PV, AQTV=C3EV:

therefore ARUW = CJEW.

(2) The proof of the proposition with reference to the

central conic depends on a Lemma, proved in I. 41, to the effect

that, if PX, VY be similar parallelograms on CP, OF as bases,

and if VZ be an equiangular parallelogram on QV as base and

such that, if the ratio of CP to the other side of PX is ra, the

ratio of QV to the other side of VZ is m .p/PP\ then VZ is

equal to the difference between VY and PX. The proof of the

Lemma by Apollonius is difficult, but the truth of it can be

easily seen thus.

By the property of the curve, QV 2
: CV2 ^ CP2 = p : PP'

;

therefore CV2 - CP2 =— . QV2
.

V

Now PX = fx . CP2 / in, where /x is a constant depending

on the angle of the parallelogram.

Similarly

O VY = a . CV2/m, and VZ = n.^QV2 /m.
p

It follows that DFF- DPI = o VZ.

Taking now the triangles CFW, CPE and RUW in the

ellipse or hyperbola, we see that CFW, CPE are similar, and
RUW has one angle (at W) equal or supplementary to the

angles at P and V in the other two triangles, while we have

QV2 :CV.VT = p.PP',

whence QV: VT = (p : PP') . (CV: QV),

and, by parallels,

RW: WU=(p: PP') . (CP : PE).
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Therefore RUW, CPE, CFW are the halves of parallelograms

related as in the lemma

;

therefore ARUW = ACFW - A CPE.

The same property with reference to the diameter secondary

to CPFis proved in I. 45.

It is interesting to note the exact significance of the property

thus proved for the central conic. The proposition, which is

the foundation of Apollonius's method of transformation of

coordinates, amounts to this. If CP, CQ are fixed semi-

diameters and R a variable point, the area of the quadrilateral

CFRU is constant for all positions of R on the conic. Suppose

now that CP, CQ are taken as axes of x and y respectively.

If we draw RX parallel to CQ to meet CP and RY parallel to

CP to meet CQ, the proposition asserts that (subject to the

proper convention as to sign)

ARYF+C3CXRY+ARXU= (const.).

But since RX, RY, RF, RU are in fixed directions, t

ARYF varies as RY 2 or x2
,
CDCXRY as RX . RY or xy,

and ARXU as RX 2 or if.

Hence, if x, y are the coordinates of R,

ocx2 + fixy + yy
2 = A,

which is the Cartesian equation of the conic referred to the

centre as origin and any two diameters as axes.

The properties so obtained are next used to prove that,

if UR meets the curve again in R' and the diameter through

Q in M, then RR' is bisected at M. (I. 46-8).

Taking (1) the case of the parabola, we have,

ARUW =CJEW,

and Ali'UW'=C3EW'.

By subtraction, (RWW'R') = CJF'W,

whence ARFM = AR'F'M,

and, since the triangles are similar, RM = R'M.

The same result is easily obtained for the central conic.

It follows that EQ produced in the case of the parabola.
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or CQ in the case of the central conic, bisects all chords as

RRf parallel to the tangent at Q. Consequently EQ and CQ
are diameters of the respective conies.

In order to refer the conic to the new diameter and the

corresponding ordinates, we have only to determine the para-

meter of these ordinates and to show that the property of the

conic with reference to the new parameter and diameter is in

the same form as that originally found.

The propositions I. 49, 50 do this, and show that the new
parameter is in all the cases p' , where (if is the point of

intersection of the tangents at P and Q)

0Q:QE = p':2QT.

(1) In the case of the parabola, we have TP = PV = EQ,

whence AEOQ = APOT.

Add to each the figure POQF'W
;

therefore QTW'F' = C3EW = AR'UW,

whence, subtracting MUW'F' from both, we have

AR'MF' = E3QU.

Therefore R'M . MF' = 2 QT . QM.

But R'M : MF' =0Q:QE = p
/
:2 QT, by hypothesis

;

therefore R'M2
: R'M . MF' = p' .QM:2QT. QM.

And R'M.MF' = 2QT . QM, from above
;

therefore R'M2 = p'
. QM,

which is the desired property. 1

1 The proposition that, in the case of the parabola, if p be the para-
meter of the ordinates to the diameter through Q, then (see the first figure

on p. 142)
OQ:QE = p:2QT

*
has an interesting application ; for it enables us to prove the proposition,

assumed without proof by Archimedes (but not easy to prove otherwise),

that, if in a parabola the diameter through P bisects the chord QQ' in V,

and QD is drawn perpendicular to PV, then

QV*:QD* = p:pa ,

1623.2 L
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(2) In the case of the central conic, we have

AR'UW ' = AGF'W' - AGPE.

(Apollonius here assumes what he does not prove till III. 1,

namely that ACPE = AGQT. This is proved thus.

We have CV: CT = CV 2
: CP2

; (1.37,39.)

therefore ACQV: AGQT = ACQV: ACPE,

so that AGQT = AGPE.)

Therefore AR'UW' = AGF'W' - AGQT,

and it is easy to prove that in all cases

AR'MF' = QTUM.

Therefore" R'M . MF' = QM(QT + MU).

Let QL be drawn at right angles to GQ and equal to p\
Join Q'L and draw MK parallel to QL to meet Q'L in K.
Draw GH parallel to Q'L to meet QL in H and MK in N. .

Now R'M : MF' =OQ:QE
= QL :2QT, by hypothesis,

= QH:QT.

But QT : MU = GQ : GM = QH : MN,

so that {QH+MN):(QT + MU) = QH:QT

= R'M:MF', from above.

where pa is the parameter of the principal ordinates and p the para-

meter of* the ordinates to the diameter
PV.

If the tangent at the vertex A meets
VP produced in E, and PT, the tangent
at P, in 0, the proposition of Apollonius
proves that

But

therefore

Thus

0P:PE=p:2PT.

OP = \PT\

PT 2 =p.PE
= p.AN.

QV 2
: QD2 = PT 2

: PN2
, by similar triangles,

= p . AN:pa . AN
= P-Pa-
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It follows that

QM(QH+ MN) : QM(QT+MU) = B'M* : R'M . MF'
;

hut, from above, QM(QT+MU) = R'M . MF';

therefore R'M2 = QM(QH+ MN)

= QM. MK,

which is the desired property.

In the case of the hyperbola, the same property is true for

the opposite branch.

These important propositions show that the ordinate property

of the three conies is of the same form whatever diameter is

taken as the diameter of reference. It is therefore a matter
of indifference to which particular diameter and ordinates the

conic is referred. This is stated by Apollonius in a summary
which follows I. 50.

First appearance of principal axes.

The axes appear for the first time in the propositions next

following (I. 52-8), where Apollonius shows how to construct

each of the conies, given in each case (1) a diameter, (2) the

length of the corresponding paramete*r, and (3) the inclination

of the ordinates to the diameter. In each case Apollonius

first assumes the angle between the ordinates and the diameter

to be a right angle ; then he reduces the case where the angle

is oblique to the case where it is right by his method of trans-

formation of coordinates; i.e. from the given diameter and

parameter he finds the axis of the conic and the length of the

corresponding parameter, and he then constructs the conic as

in the first case where the ordinates are at right angles to the

diameter. Here then we have a case of the proof of existence

by means of construction. The conic is in each case con-

structed by finding the cone of which the given conic is a

section. The problem of finding the axis of a parabola and
the centre and the axes of a central conic when the conic (and

not merely the elements, as here) is given comes later (in II.

44-7), where it is also proved (II. 48) that no central conic

can have more than two axes.

L 2
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It has been my object, by means of the above detailed

account of Book I, to show not merely what results are

obtained by Apollonius, but the way in which he went to

work ; and it will have been realized how entirely scientific

and general the method is. When the foundation is thus laid,

and the fundamental properties established, Apollonius is able

to develop the rest of the subject on lines more similar to

those followed in our text-books. My description of the rest

of the work can therefore for the most part be confined to a

summary of the contents.

Book II begins with a section devoted to the properties of

the asymptotes. They are constructed in II. 1 in this way.
Beginning, as usual, with any diameter of reference and the

corresponding parameter and inclination of ordinates, Apol-

lonius draws at P the vertex (the extremity of the diameter)

a tangent to the hyperbola and sets off along it lengths PL, PL'
on either side of P such that PL2= PL'2=%p . PP' [=GD2

],

where p is the parameter. He then proves that CL, GU pro-

duced will not meet the curve in any finite point and are there-

fore asymptotes. II. 2 proves further that no straight line

through G within the angle between the asymptotes can itself

be an asymptote. II. 3 proves that the intercept made by the

asymptotes on the tangent at any point P is bisected at P, and

that the square on each half of the intercept is equal to one-

fourth of the - figure ' corresponding to the diameter through

P (i.e. one-fourth of the rectangle contained by the 'erect'

side, the latus rectum or parameter corresponding to the

diameter, and the diameter itself) ; this property is used as a

means of drawing a hyperbola when the asymptotes and one

point on the curve are given (II. 4). II. 5-7 are propositions

about a tangent at the extremity of a diameter being parallel

to the chords bisected by it. Apollonius returns to the

asymptotes in II. 8, and II. 8-14 give the other ordinary

properties with reference to the asymptotes (II. 9 is a con-

verse of II. 3), the equality of the intercepts between the

asymptotes and the curve of any chord (II. 8), the equality of

the rectangle contained by the distances between either point

in w^hich the chord meets the curve and the points of inter-

section with the asymptotes to the square on the parallel

semi-diameter (II. 10), the latter property with reference to
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the portions of the asymptotes which include between them

a branch of the conjugate hyperbola (II. 11), the constancy of

the rectangle contained by the straight lines drawn from any

point of the curve in fixed directions to meet the asymptotes

(equivalent to the Cartesian equation with reference to the

asymptotes, xy = const.) (II. 1 2), and the fact that the curve

and the asymptotes proceed to infinity and approach con-

tinually nearer to one another, so that the distance separating

them can be made smaller than any given length (II. 14). II. 15

proves that the two opposite branches of a hyperbola have the

same asymptotes and II. 16 proves for the chord connecting

points on two branches the property of II. 8. II. 1 7 shows that

'conjugate opposites' (two conjugate double-branch hyper-

bolas) have the same asymptotes. Propositions follow about

conjugate hyperbolas; any tangent to the conjugate hyper-

bola will meet both branches of the original hyperbola

and will be bisected at the point of contact (II. 19); if Q be

any point on a hyperbola, and GE parallel to the tangent

at Q meets the conjugate hyperbola in E, the tangent at

E will be parallel to CQ and CQ, GE will be conjugate

diameters (II. 20), while the tangents at Q, E will meet on one

of the asymptotes (II. 21) ; if a chord Qq in one branch of

a hyperbola meet the asymptotes in R, r and the conjugate

hyperbola in Q\ q', then Q'Q.Qq' = 2GD2 (II. 23). Of the

rest of the propositions in this part of the Book the following

may be mentioned : if TQ, TQ' are two tangents to a conic

and V is the middle point of QQ', TV is a diameter (II. 29,

30, 38) ; if tQ, tQ' be tangents to opposite branches of a hyper-

bola, RR' the chord through t parallel to QQ', v the middle

point of QQ', then vR, vR' are tangents to the hyperbola

(II. 40) ; in a conic, or a circle, or in conjugate hyperbolas, if

two chords not passing through the centre intersect, they do not

bisect each other (II. 26, 41, 42). II. 44-7 show how to find

a diameter of a conic and the centre of a central conic, the

axis of a parabola and the axes of a central conic. The Book
concludes with problems of drawing tangents to conies in

certain ways, through any point on or outside the curve

(II. 49), making with the axis an angle equal to a given acute

angle (II. 50), making a given angle with the diameter through
the point of contact (II. 51, 53) ; II. 52 contains a Siopta-pos for
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the last problem, proving that, if the tangent to an ellipse at

any point P meets the major axis in T, the angle CPT is not

greater than the angle ABA', where B is one extremity of the

minor axis.

Book III begins with a series of propositions about the

equality of certain areas, propositions of the same kind as, and

easily derived from, the propositions (I. 41-50) by means of

which, as already shown, the transformation of coordinates is

effected. We have first the proposition that, if the tangents

at any points P, Q of a conic meet in 0, and if they meet

the diameters through Q, P respectively in E, T, then

AOPT — AOQE (III. 1, 4); and, if P, Q be points on adjacent

branches of conjugate hyperbolas, ACPE = ACQT (III. 13).

With the same notation, if R be any other point on the conic,

, and if we draw RTJ parallel to the tangent at Q meeting the

diameter through P in U and the diameter through Q in M,

and RW parallel to the tangent at P meeting QT in II and

the diameters through Q, P in F, W, then AHQF = quadri-

lateral HTUR (III. 2. 6) ; this is proved at once from the fact

that ARMF= quadrilateral QTUM (see I. 49, 50, or pp. 145-6

above) by subtracting or adding the area HRMQ on each

side. Next take any other point R', and draw R'U', F'H'R'W
in the same way as before ;

it is then proved that, if RTJ, R'W
meet in I and R'U',RW in J, the quadrilaterals F'IRF, IUU'R'
are equal, and also the quadrilaterals FJR'F', JU'UR (III. 3,

7, 9, 10). The proof varies according to the actual positions

of the points in the figures.

In Figs. 1, 2 AHFQ = quadrilateral HTUR,

AH'F'Q = H'TU'R'.

By subtraction, FHH'F'= IUU'R' + (IE)
\

whence, if III be added or subtracted, F'IRF = IUU'R',

and again, if IJ be added to both, FJR'F' = JU'UR,

In Fig. 3 AR'U'W = ACF'W'-ACQT,

so that ACQT= CU'R'F'.
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EF'F

Fig. 1.

Fig. 2.

Fig. 3.
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Adding the quadrilateral CF'H'T, we have

AH'F'Q = H'TU'R',

and similarly AHFQ = HTUR.

By subtraction, F'H'HF= H'TU'R'-HTUR.

Adding WIRH to each side, we have

F'IRF = IUU'R'.

If each of these quadrilaterals is subtracted from IJ,

FJR'F' = JU'UR.

The corresponding results are proved in III. 5, 11, 12, 14

for the case where the ordinates through RR' are drawn to

a secondary diameter, and in III. 15 for the case where P, Q
are on the original hyperbola and R, R/ on the conjugate

hyperbola.

The importance of these propositions lies in the fact that

they are immediately used to prove the well-known theorems

about the rectangles contained by the segments of intersecting

chords and the harmonic properties of the pole and polar.

The former question is dealt with in III. 16-23, which give

a great variety of particular cases. We will give the proof

of one case, to the effect that, if OP, OQ be two tangents

to any conic and Rr, R'r' be any two chords parallel to

them respectively and intersecting in J, an internal or external

point,

fehen RJ . Jr : R'J . Jr' = OP2
: OQ2 = (const.).

We have

RJ.Jr = RW 2 - JW2
, and RW2

: JW2 = ARUW: AJU'W;

therefore

RJ . Jr : RW2 = (RW2 - JW2
) : RW2 = JU'UR : ARUW.

But RW2
: OP2 == ARUW: A!OPT;

therefore, ex aequali, RJ.Jr: OP2 = JU'UR : A OPT.
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Similarly R'M/2
: JM'2 = AR'F'M' : A JFM' f

whence R'J . Jr' : R'M

'

2 = tfjrft'.F' : A R'F'M'.

But E'if'2
: OQ2 = AR'F'M' :AOQE;

therefore, *b oqwoli, E'J" . Jr' : OQ2 = i^
7/^^ : A OQAT

.

It follows, since FJR'F' = JF'tTE, and AOPT = AOQE,

that i?J . Jr : OP2 = ErJ . Jr' : OQ2
,

or iU . JV : R'J . Jr' =£ OP2
: OQ 2

.

If we had taken chords Rr
x

, R'r{ parallel respectively to

OQ, OP and intersecting in I, an internal or external point,

we should have in like manner

RI . Ir
x

: R'l . Ir{ = OQ2
: OP2

.

As a particular case, if PP' be a diameter, and Rr, R'r' be

chords parallel respectively to the tangent at P and the

diameter PP' and intersecting in I, then (as is separately

proved)

RI.Ir:R'I.Ir' = p:PP'.

The corresponding results are proved in the cases where certain

of the points lie on the conjugate hyperbola.

The six following propositions about the segments of inter-

secting chords (III. 24-9) refer to two chords in conjugate

hyperbolas or in an ellipse drawn parallel respectively to two
conjugate diameters PP', DD', and the results in modern form
are perhaps worth quoting. If Rr, R'r' be two chords so

drawn and intersecting in 0, then

(a) in the conjugate hyperbolas

RO.Or R'O . Or'
_

CP2 £ CD2 ~ 2
'

and (RO 2 + Or2
)

: (R'O 2 + Or'2
) = CP2

: CD2
;

(b) in the ellipse

R0 2 + Or2 R'O 2 + Or'2
_

OP2 '
+ CD2 ~~
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The general propositions containing the harmonic properties

of the pole and polar of a conic are III. 37-40, which prove

that in any conic, if TQ, Tq be tangents, and if Qq the chord

of contact be bisected in V, then

(1) if any straight line through T meet the conic in R\ R and

Qq in J, then (Fig. 1) RT : TR' = RI : IR'
;

t u

Fig. 1.

(2) if any straight line through Fmeet the conic in R, R' and
the parallel through T to Qq in 0, then (Fig. 2)

R0:0R' = RV:VR\

Fig. 2.

The above figures represent theorem (1) for the parabola and

theorem (2) for the ellipse.
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To prove (1) we have

R'l 2
: IR2=H'Q2

: QH 2= AH'F'Q : AHFQ = H'TU'R' : HTUR
(III. 2, 3, &c).

Also R'T2
: TR2 = R'U'2

: UR2 = AR'U'W : ARUW,

and R'T 2
: TE2 = TW'2

: TTf2 = ATH'W' : ATHW,

so that R'T 2 :TR2 = ATH'W - AR'U'W: ATHW ~ ARUW
= H'TU'R' .HTUR

= R'T2
: IR2

, from above.

To prove (2) we have

RV 2
: VR'2 = ELr2

: iW2 = AiWJF: AiWIF,

and also

= HQ2
: QH'2 = AHFQ : AH'F'Q = HTUR *

: H'TU'R',

so that

RV2
: VE/2 = HTUR + ARUW: H'TU'R' + A-R'tf'JP

= ATHW.ATH'W
- TIP :2V'2

= EO2
: OR'2

.

Props. III. 30-6 deal separately with the particular cases

in which (a) the transversal is parallel to an asymptote of the

hyperbola or (b) the chord of contact is parallel to an asymp-

tote, i.e. where one of the tangents is an asymptote, which is

the tangent at infinity.

Next we have propositions about intercepts made by two
tangents on a third : ,,If the tangents at three points of a

parabola form a triangle,""all three tangents will be cut by the

points of contact in the same proportion (III. 41) ; if the tan-

gents at the extremities of a diameter PP' of a central conic

are cut in r, r' by any other tangent, Pr . PV = CD2 (III. 42)

;

if the tangents at P, Q to a hyperbola meet the asymptotes in

* Where a quadrilateral, as HTUR in the figure, is a cross-quadri-
lateral, the area is of course the difference between the two triangles
which it forms, as HTW^ RUW.
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L, L' and M, M' respectively, then L'M, LM' are both parallel

to PQ (III. 44).

The first of these propositions asserts that, if the tangents at

three points P, Q, R of a parabola form a triangle pqr, then

Pr : rq = rQ : Qp = qp \pR.

From this property it is easy to deduce the Cartesian

equation of a parabola referred to two fixed tangents as

coordinate axes. Taking qR, qP as fixed coordinate axes, we
find the locus of Q thus. Let x, y be the coordinates of Q.

Then, if qp — x
1 ,

qr = yl}
qR = h, qP = k, wq have

a
=
rQ _ y,-y

==
k-y

x _ x
x

x
1
-x ~ Qp y yx

h-x{

From these equations we derive

x? - hx, 2/j
2 = %

;

also, since — = x— » we have — + — = 1.
x 2/i-2/ x

i 2/i

By substituting for x
x , yx

the values */(hx), V(ky) we
obtain

i i

© + 0)
The focal properties of central conies are proved in

III. 45-52 without any reference to the directrix; there is

no mention of the focus of a parabola. The foci are called

' the points arising out of the application ' (ra e/c rrjs napa-

f3o\fjs yLv6[i€va o-rjfxeTa), the meaning being that S, S' are taken

on the axis AA' such that AS.SA' = AS'.S'A' = i2ia .AA'
or CB2

, that is, in the phraseology of application of areas,

a rectangle is applied to AA /
as base equal to one-fourth

part of the 'figure', and in the case of the hyperbola ex-

ceeding, but in the case of the ellipse falling short, by a

square figure. The foci being thus found, it is proved that,

if the tangents Ar, A'r' at the extremities of the axis are met

by the tangent at any point P in r, ?
/ respectively, rrf subtends

a right angle at S
y
S', and the angles rr'S, A'r'S' are equal, as

also are the angles r'rS', ArS (III. 45, 46). It is next shown

that, if be the intersection of r>S
y/

, r'S, then OP is perpen-

'

dicular to the tangent at P (III. 47). These propositions are
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used to prove that the focal distances of P make equal angles

with the tangent at P (III. 48). In III. 49-52 follow the

other ordinary properties, that, if SY be perpendicular to

the tangent at P, the locus of Y is the circle on A A' as

diameter, that the lines from C drawn parallel to the focal

distances to meet the tangent at P are equal to GA, and that

the sum or difference of the focal distances of any point is

equal to AA'.

The last propositions of Book III are of use with reference

to the locus with respect to three or four lines. They are as

follows.

1. If PP' be a diameter of a central conic, and if PQ, P'Q
drawn to any other point Q of the conic meet the tangents at

P\ P in R\ R respectively, then PR . P'R' = 4 CD2 (III. 53).

2. If TQ, TQ' be two tangents to a conic, V the middle point

of QQ', P the point of contact of the tangent parallel to QQ\
and R any other point on the conic, let Qr parallel to TQ'

meet Q'R in r, and QV parallel to TQ meet QR in / ; then

Qr.QYiQQ'2 = (PV2 :PT 2
) .(TQ.TQ'iQV 2

). (III. 54, 56.)

3. If the tangents are tangents to opposite branches of a

hyperbola and meet in t, and if R, r, r' are taken as before,

while tq is half the chord through t parallel to QQ\ then

Qr . QV : QQ
f2 = tQ . tQ' : tq 2

. (III. 55.)

The second of these propositions leads at once to the three-

line locus, and from this we easily obtain the Cartesian

equation to a conic with reference to two fixed tangents as

axes, where the lengths of the tangents are h, k, viz.

G+f- ')'-»©'

Book IV is on the whole dull, and need not be noticed at

length. Props. 1-23 prove the converse of the propositions in

Book III about the harmonic properties of the pole and polar

for a large number of particular cases. One of the proposi-

tions (IV. 9) gives a method of drawing two tangents to

a conic from an external point T. Draw any two straight

lines through T cutting the conic in Q, Q' and in R, R' respec-
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tively. Take on QQ' and 0' on PR! so that TQ', TR' are

harmonically divided. The intersections of 00' produced with

the conic give the two points of contact required.

The remainder of the Book (IV. 24-57) deals with intersecting

conies, and the number of points in which, in particular cases,

they can intersect or touch. IV. 24 proves that no two conies

can meet in such a way that part of one of them is common
to both, while the rest is not. The rest of the propositions

can be divided into five groups, three of which can be brought

under one general enunciation. Group I consists of particular

cases depending on the more elementary considerations affect-

ing conies: e.g. two conies having their concavities in oppo-

site directions will not meet in more than two points (IV. 35);

if a conic meet one branch of a hyperbola, it will not meet

the other branch in more points than two (IV. 37); a conic

touching one branch of a hyperbola with its concave side

will not meet the opposite branch (IV. 39). IV. 36, 41, 42, 45,

54 belong to this group. Group II contains propositions

(IV. 25, 38, 43, 44, 46, 55) showing that no two conies

(including in the term the double-branch hyperbola) can

intersect in more than four points. Group III (IV. 26, 47, 48,

49, 50, 56) are particular cases of the proposition that two

conies which touch at one point cannot intersect at more than

two other points. Group IV (IV. 27, 28, 29, 40, 51, 52, 53, 57)

are cases of the proposition that no two conies which touch

each other at two points can intersect at any other point.

Group V consists of propositions about double contact. A
parabola cannot touch another parabola in more points than

one (IV. 30); this follows from the property TP — PV. A
parabola, if it fall outside a hyperbola, cannot have double

contact with it (IV. 31); it is shown that for the hyperbola

PV>PT, while for the parabola P'V = P'T; therefore the

hyperbola would fall outside the parabola, which is impossible.

A parabola cannot have internal double contact with an ellipse

or circle (IV. 32). A hyperbola cannot have double contact

with another hyperbola having the same centre (IV. 33)

;

proved by means of CV . CT = CP2
. If an ellipse have double

contact with an ellipse or a circle, the chord of contact will

pass through the centre (IV. 34).

Book V is of an entirely different order, indeed it is the
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most remarkable of the extant Books. It deals with normals

to conies regarded as maximum and minimum straight lines

drawn from particular points to the curve. Included in it are

a series of propositions which, though worked out by the

'purest geometrical methods, actually lead immediately to the

determination of the evolute of each of the three conies ; that

is to say, the Cartesian equations to the evolutes can be easily

deduced from the results obtained by Apollonius. There can

be no doubt that the Book is almost wholly original, and it is

a veritable geometrical tour de force.

Apollonius in this Book considers various points and classes

of points with reference to the maximum or minimum straight

lines which it is possible to draw from them to the conies,

i. e. as the feet of normals to the curve. He begins naturally

with points on the axis, and he takes first the point E where

AE measured along the axis from the vertex A is \p, p being

the principal parameter. The first three propositions prove

generally and for certain particular cases that, if in an ellipse

or a hyperbola AM be drawn at right angles to AA ' and equal

to \p, and if GM meet the ordinate PN of any point P of the

curve in H, then PN 2 = 2 (quadrilateral MANE) ; this is a

lemma used in the proofs of later propositions, V. 5, 6, &c.

Next, in V. 4, 5, 6, he proves that, if AE — \p, then AE is the

minimum straight line from E to the curve, and if P be any
other point on it, PE increases as P moves farther away from

A on either side ; he proves in fact that, if PN be the ordinate

from P,

(1) in the case of the parabola PE2 = AE 2 +AN 2
,

(2) in the case of the hyperbola or ellipse

PE 2 = AE2 +AN2
AA

'j-, P
,

* AA
where of course p = BB' 2/AA', and therefore (AA'±p)/AA'
is equivalent to what we call e2 , the square of the eccentricity.

It is also proved that EA' is the maximum straight line from
E to the curve. It is next proved that, if be any point on
the axis between A and E, OA is the minimum straight line

from to the curve and, if P is any other point on the curve,

OP increases as P moves farther from A (V, 7).
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Next Apollonius takes points G on the axis at a distance

from A greater than Jp, and he proves that the minimum
straight line from G to the curve (i.e. the normal) is GP,
where P is such a point that

(1) in the case of the parabola NG = \p)

(2) in the case of the central conic NG : GN — p.AA'
\

and, if P' is any other point on the conic, P'G increases as Pf

moves away from P on either side ; this is proved by show-

ing that

( 1
) for the parabola P'G2 = PG2 +NN/2

;

AA'±p
(2) for the central conic P'G2 = PG2 +NNn

AA'

L^R

J p

As these propositions contain the fundamental properties of

the subnormals, it is worth while to reproduce Apollonius'

s

proofs.

(1) In the parabola, if G be any point on the axis such that

AQ > ip
}
measure GN towards A equal to \p. Let PN be

the ordinate through N, P' any other point on the curve.

Then shall PG be the minimum Hine from G to the curve, &c.
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We have P'N'2 = p . AN' = 2NG. AN'
;

and N'G2 = NN'2 + NG2 ±2NG. NN',

according to the position of N'.

Therefore P'G2 = 2NG.AN+NG2 +NN/2

= PN2 + NG2 + NN'2

= PG2 + NN'2
;

and the proposition is proved.

(2) In the case of the central conic, take G on the axis such

that AG > \p, and measure GN towards A such that

NG:GN = p:AA'.

Draw the ordinate PN through N, and also the ordinate P'N'

from any other point P'.

We have first to prove the lemma (V. 1, 2, 3) that, if AM be

drawn perpendicular to AA' and equal to \p, and if CM,

produced if necessary, meet PN in //, then

PN2 = 2 (quadrilateral MANH).

This is easy, for, if AL (= 2AM ) be the .parameter, and A'L
meet PN in R, then, by the property of the curve,

PN2 = AN.NR

= AN(NH + AM)
»

= 2 (quadrilateral MANH).

Let GH, produced if necessary, meet P'N' in H'. From H
draw HI perpendicular to P'H'

.

Now, since, by hypothesis, NG : GN — p:AA'

= AM:AG

= HN:NC\

NH=NG, whence also H'N' = N'G.

Therefore NG2 = 2AHNG, N'G2 = 2 AH'N'G.

And PN2 = 2 (MANH)
;

therefore PG2 = NG2 +PN2 = 2 (AMHG),
1523.2 M
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Similarly, if CM meets FN' in K,

P'G2 = N'G2 + P'R'2

== 2AH'N'G + 2(AMKN')

= 2(AMHG) + 2AHH'K.

Therefore, by subtraction,

P'G2-PG2 = 2AHH'K
= HI.(H'I±IK)

= HI. (HI± IK)

GA+AM
"

' CA

- ATAT/2
AA'±P -

which proves the proposition.

If be any point on PG, OP is the minimum straight line

from to the curve, and OP' increases as P' moves away from

P on either side; this is proved in V. 12. (Since P'G > PG,

Z GPP' > Z GP'P ; therefore, a fortiori, Z OPP' > Z OP'P,

and OP' > OP.)

Apollonius next proves the corresponding propositions with

reference to points on the minor axis of an ellipse. If p be

the parameter of the ordinates to the minor axis, p'=AA'2/BB',

or %p'= CA 2/CB. If now E' be so taken that BE'=±p',
then BE' is the maximum straight line from E' to the curve

and, if P be any other point on it, E'P diminishes as P moves

farther from B on either side, and E'B' is the minimum
straight line from E' to the curve. It is, in fact, proved that

p'-BB'
E'B2— E'P2 — Bn2

.

1—
PD/ > where Bn is the abscissa of P

(V. 16-18). If be any point on the minor axis such that

BO > BE', then OB is the maximum straight line from to

the curve, &c. (V. 19).

If g be a point on the minor axis such that Bg > BC, but

Bg < J p', and if On be measured towards B so that

Cn:ng = BB':p',

then n is the foot of the ordinates of two points P such that

Pg is the maximum straight line from g to the curve. Also,
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if P' be any other point on it, P'g diminishes as Pr moves

farther from P on either side to B or B\ and

Pg2— P'g2 = nn 2
.

9 fO P•5 art it & J
BB' ,„ CA 2 -CB"

or nn '»,

BB' ' CB<

If be any point on Pg produced beyond the minor axis, PO
is the maximum straight line from to the same part of the

ellipse for which Pg is a maximum, i.e. the semi-ellipse BPB\
&c. (V. 20-2).

In V. 23 it is proved that, if g is on the minor axis, and gP
a maximum straight line to the curve, and if Pg meets AA'
in G, then GP is the minimum straight line from G to the

curve ; this is proved by similar triangles. Only one normal

can be drawn from any one point on a conic (V. 24-6). The
normal at any point P of a conic, whether regarded as a

minimum straight line from G on the major axis or (in the

case of the ellipse) as a maximum straight line from g on the

minor axis, is perpendicular to the tangent at P (V. 27-30);

in general (1) if be any point within a conic, and OP be

a maximum or a minimum straight line from to the conic,

the straight line through P perpendicular to PO touches the

conic, and (2) if 0' be any point on OP produced outside the

conic, O'P is the minimum straight line from 0' to the conic,

&c. (V. 31-4).

Number of normals from a 'point.

We now come to propositions about two or more normals

meeting at a point. If the normal at P meet the axis of

a parabola or the axis AA' of a hyperbola or ellipse in G, the

angle PGA increases as P or G moves farther away from A,
but in the case of the hyperbola the angle will always be less

than the complement of half the angle between the asymptotes.

Two normals at points on the same side of AA' will meet on
the opposite side of that axis ; and two normals at points on
the same quadrant of an ellipse as i5 will meet at a point

within the angle ACBf
(V. 35-40). In a parabola or an

ellipse any normal PG will meet the curve again; in the

hyperbola, (1) if AA' be not greater than jj>, no normal can
meet the curve at a second point on the same branch, but

M 2
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(2) if AA' > p, some normals will meet the same branch again

and others not (V. 41-3).

If P
1
Gv P2 G2

be normals at points on one side of the axis of

a conic meeting in 0, and if be joined to any other point P
on the conic (it being further supposed in the case of the

ellipse that all three lines 0Plt 0P2 , OP cut the same half of

the axis), then

(1) OP cannot be a normal to the curve;

(2) if OP meet the axis in K, and PG be the normal at P, AG
is less or greater than AK according as P does or does not lie

between P
x
and P

2
.

From this proposition it is proved that (1) three normals at

points on one quadrant of an ellipse cannot meet at one point,

and (2) four normals at points on one semi-ellipse bounded by
the major axis cannot meet at one point (V. 44-8).

In any conic, if M be any point on the axis such that AM
is not greater than \p, and if be any point on the double

ordinate through M, then no straight line drawn to any point

on the curve on the other side of the axis from and meeting

the axis between A and M can be a normal (V. 49, 50).

Propositions leading immediately to the determination

of the evolute of a conic.

These great propositions are V. 51, 52, to the following

effect

:

If AM measured along the axis be greater than \p (but in

the case of the ellipse less than AC), and if MO be drawn per-

pendicular to the axis, then a certain length (y, say) can be

assigned such that

(a) if OM > y, no normal can be drawn through which cuts

the axis ; but, if OP be any straight line drawn to the curve

cutting the axis in K, NK < NG, where PN is the ordinate

and PG the normal at P
;

(b) if OM = y, only one normal can be so drawn through 0,

and, if OP be any other straight line drawn to the curve and

cutting the axis in K, NK < NG, as before
;

(c) if 0M< y, two normals can be so drawn through 0, and, if

OP be any other straight line drawn to the curve, NK is
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greater or less than NG according as OP is or is not inter-

mediate between the two normals (V. 51, 52).

The proofs are of course long and complicated. . The length

y is determined in this way

:

(1) In the case of the parabola, measure MH towards the

vertex equal to \p, and divideAH atN
x
so that HN

X
= 2N

±
A.

The length y is then taken such that

y:P
1
N

1
= N

1
H:HM,

where P
X
N

X
is the ordinate passing through JS\

;

(2) In the case of the hyperbola and ellipse, we have

AM>±p, so that GA :AM<AA':p; therefore, if H be taken

on AM such that OH: HM = AA'ip, H will fall between A
and M.

Take two mean proportionals GNlt GI between GA and CH,

and let P
1
N

1̂
be the ordinate through N'

1
.

The length y is then taken such that

y :P^ = (GM : MH) . (H^ : Nfi).

In the case (6), where OM = y, is the point of intersection

of consecutive normals, i. e. is the centre of curvature at the

point P; and, by considering the coordinates of with reference

to two coordinate axes, we can derive the Cartesian equations

of the evolutes. E.g. (1) in the case of the parabola let the

coordinate axes be the axis and the tangent at the vertex.

Then AM = x, OM — y. Let p = 4 a ; then

HM=.2a, N
1
H=%(x-2a), and AN

1
=$(x-2a).

But y
2

:P^ 2 = N
X
H2

: HM 2
, by hypothesis,

or y^ila.ANi = iV^iP^a2
;

therefore ay2 = AN
X

. N
X
H\

or 27 ay2 = 4\x— 2 (if.

(2) In the case of the hyperbola or ellipse we naturally take

GA, GB as axes of x and y. The work is here rather more
complicated, but there is no difficulty in obtaining, as the

locus of 0, the curve

(oa)» + (by)% = (a2 ±b2)K
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The propositions V. 53, 54 are particular cases of the pre-

ceding propositions.

Construction of normals.

The next section of the Book (V. 55-63) relates to the con-

struction of normals through various points according to their

position within or without the conic and in relation to the

axes. It is proved that one normal can be drawn through any
internal point and through any external point which is not

on the axis through the vertex A. In particular, if is any

point below the axis AA /
of an ellipse, and OM is perpen-

dicular to A A', then, if AM>AC, one normal can always be

drawn through cutting the axis between A and G, but never

more than one such normal (V. 55-7). The points on the

curve at which the straight lines through are normals are

determined as the intersections of the conic with a certain

rectangular hyperbola. The procedure

of Apollonius is equivalent to the fol-

lowing analytical method. Let AM be

the axis of a conic, PGO one of the

normals which passes through the given

point 0, PN the ordinate at P ; and let

OM be drawn perpendicular to the axis.

Take as axes of coordinates the axes in the central conic and,

in the case of the parabola, the axis and the tangent at the

vertex.

If then (x, y) be the coordinates of P and (x
1 , y^ those of

we have y NG
—y

1

""
a?!— x—NG

Therefore (1) for the parabola

y _ hv
Vi x

x
— x—^p

or ay-(sh-ip)y-yi-iP = °i i
1
)

(2) in the ellipse or hyperbola

The intersections of these rectangular hyperbolas respec-
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tively with the conies give the points at which the normals

passing through are normals.

Pappus criticizes the use of the rectangular hyperbola in

the case of the parabola as an unnecessary resort to a ' solid

locus
'

; the meaning evidently is that the same points of

intersection can be got by means of a certain circle taking

the place of the rectangular hyperbola. We can, in fact, from

the equation (1) above combined with y
2 = px, obtain the

circle

(x2 + y
2
)
- (x

1 + \p)x- \yxy = 0.

The Book concludes with other propositions about maxima
and minima. In particular V. 68-71 compare the lengths of

tangents TQ, TQ', where Q is nearer to the axis than Q'.

V. 72, 74 compare the lengths of two normals from a point

from which only two can be drawn and the lengths of other

straight lines from to the curve ; V. 75-7 compare the

lengths of three normals to an ellipse drawn from a point

below the major axis, in relation to the lengths of other

straight lines from to the curve.

Book VI is of much less interest. The first part (VI. 1-27)

relates to equal (i.e. congruent) or similar conies and segments

of conies ; it is naturally preceded by some definitions includ-

ing those of ' equal ' and ' similar ' as applied to conies and

segments of conies. Conies are said to be similar if, the same

number of ordinates being drawn to the axis at proportional

distances from the vertices, all the ordinates are respectively

proportional to the corresponding abscissae. The definition of

similar segments is the same with diameter substituted for

axis, and with the additional condition that the angles

between the base and diameter in each are equal. Two
parabolas are equal if the ordinates to a diameter in each are

inclined to the respective diameters at equal angles and the

corresponding parameters are equal ; two ellipses or hyper-

bolas are equal if the ordinates to a diameter in each are

equally inclined to the respective diameters and the diameters

as well as the corresponding parameters are equal (VI. 1. 2).

Hyperbolas or ellipses are similar when the 'figure' on a

diameter of one is similar (instead of equal) to the ' figure ' on

a diameter of the other, and the ordinates to the diameters in
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each make equal angles with them ; all parabolas are similar

(VI. 11, 12, 13). No conic of one of the three kinds (para-

bolas, hyperbolas or ellipses) can be equal or similar to a conic

of either of the other two kinds (VI. 3, 14, 15). Let QPQ',

qpq' be two segments of similar conies in which QQ', qq' are

the bases and PV, pv are the diameters bisecting them ; then,

if PTy pt be the tangents at P, p and meet the axes at T, t at

equal angles, and if PV:PT = pv : pt, the segments are similar

and similarly situated, and conversely (VI. 17, 18). If two
ordinates be drawn to the axes of two parabolas, or the major or

conjugate axes of two similar central conies, as PN, P'N' and

pn, p'n' respectively, such that the ratios AN: an and AN': an'

are each equal to the ratio of the respective latera recta, the

segments PP', pp
f
will be similar ; also PP' will not be similar

to any segment in the other conic cut off by two ordinates

other than pn, p'n' , and conversely (VI. 21, 22). If any cone

be cut by two parallel planes making hyperbolic or elliptic

sections, the sections will be similar but not equal (VI. 26, 27).

The remainder of the Book consists of problems of con-

struction; we are shown how in a given right cone to find

a parabolic, hyperbolic or elliptic section equal to a given

parabola, hyperbola or ellipse, subject in the case of the

hyperbola to a certain Siopicruos or condition of possibility

(VI. 28-30) ; also how to find a right cone similar to a given

cone and containing a given parabola, hyperbola or ellipse as

a section of it, subject again in the case of the hyperbola to

a certain Siopia/jios (VI. 31-3). These problems recall the

somewhat similar problems in I. 51-9.

Book VII begins with three propositions giving expressions

for AP2 (= AN2 +PN2
) in the same form as those for PN 2 in

the statement of the ordinary property. In the parabola AH
is measured along the axis produced (i. e. in the opposite direc-

tion to AN) and of length equal to the lotus rectum, and it is

proved that, for any point P, AP2 = AN.NH (VII. 1). In

the case of the central conies A A' is divided at H, internally

for the hyperbola and externally for the ellipse (AH being the

segment adjacent to A) so that AH:A'H=p:AA', where p
is the parameter corresponding to AA', or p = BB' 2/AA', and

it is proved that

AP2 :AN.NH= A A': A'II.
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The same is true if AA' is the minor axis of an ellipse and p
the corresponding parameter (VII. 2, 3).

If AA' be divided at H' as well as H (internally for the

hyperbola and externally for the ellipse) so that H is adjacent

to A and H' to A', and if A'H : AH = AH': A'H' = AA' :p,

the lines AH, A'H' (corresponding to p in the proportion) are

called by Apollonius homologues, and he makes considerable

use of the auxiliary points H, H' in later propositions from
VII. 6 onwards. Meantime he proves two more propositions,

which, like VII. 1-3, are by way of lemmas. First, if CD be

the semi-diameter parallel to the tangent at P *to a central

conic, and if the tangent meet the axis AA' in T, then

PT2
: CD2 = NT : GN. (VII. 4.)

Draw AE, TF at right angles to CA to meet CP, and let AH
meet PT in 0. Then, if p' be the parameter of the ordinates

to CP, we have
±p':PT=OP:PE (1.49,50.)

= PT:PF.

or

Therefore

ip'.PF=PT 2
.

PT2
: CD2 = \p'. PF:\p\ CP

= PF:CP

= NT:CK



170 APOLLONIUS OF PERGA

Secondly, Apollonius proves that, if PJV be a principal

ordinate in a parabola, p the principal parameter, p' the

parameter of the ordinates to the diameter through P, then

p'=p + lAN (VII. 5); this is proved by means of the same
property as VII. 4, namely ±p':PT=0P: PE.
Much use is made in the remainder of the Book of two

points Q and M, where AQ is drawn parallel to the conjugate

diameter GD to meet the curve in Q, and M is the foot of

the principal ordinate at Q ; since the diameter GP bisects

both AA' and QA, it follows that A'Q is parallel to GP.

Many ratios between functions of PP', DD' are expressed in

terms of AM, A'M, MH, MH' , AH, A'H,&c. The first pro-

positions of the Book proper (VII. 6, 7) prove, for instance,

that PP'2 :DD'2 = MH'-.MH.

For PT2
: GD2 = NT : CN = AM: A'M, by similar triangles.

Also GP2
: PT 2= A'Q2

: A Q
2

.

Therefore, ex aequali,

GP2
: GD2 = (AM : A'M) x (A'Q2

: AQ2
)

= (AM: A'M) x (A'Q2
: A'M. MH')

x (A'M.MH': AM. MH) x (AM.MH : AQ2

)

= (AM:A'M)x(AA':AH')x(A'M:AM)
x (MH'-.MH) x (A'H : AA f

), by aid of VII. 2, 3.

Therefore PP'2
: DD'2 = MH' : MH.

Next (VII. 8, 9, 10, 11) the following relations are proved,

namely

(\)AA'2 :(PP' + DD'f=A'H.MH':{MH'±V(MH.MH')} 2
,

(2) AA'2
: PP' . DD' = A'H : V(MH. MH'),

(3) AA'2
: (PP'2 + DD'2

) = A'H : MH+ MH'.

The steps by which these results.are obtained are as follows.

First, A A'2
: PP'2 = A'H : MH' (a)

= A'H.MH':MH'2
.

(This is proved thus

:

AA'2 :PP'2 =GA 2 :CP2

= CN.GT:GP2

= A'M. A'A : A'Q 2
.
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But A'Q 2 :A'M.MH' = AA'.AH' (VII. 2, 3)

= AA , :A
,H

= A'M.AA':A'M.A'H,

so that, alternately,

A'M. AA': A'Q2 = A'M. A'R : A'M . ME'

= A'H:MH'.)

Next, PP'2
: DD'2 = MB': MH, as above, (0)

= ME'2
: ME. ME',

whence PP': DD' = J/IT: -/(Aftf . il^PTO, (y)

and PP/2
: (PP' + Z>D') 2 = ill

#'2
: { if#' + V(ME . iLfPT

7

)}
2

;

(1) above follows from this relation and (ex) ex aequalij

(2) follows from (a) and (y) ex aequali, and (3) from (a)

and (/3).

We now obtain immediately the important proposition that

PP/2 + DD'2 is constant, whatever be the position of P on an

ellipse or hyperbola (the upper sign referring to the ellipse),

and is equal to AA'2 + BB'2 (VII. 12, 13, 29, 30).

For AA'2
: BB'2 = AA':p = A'E:AE = A'H-.A'H',

by construction

;

therefore AA'2
: A A'2 + BB'2 = A'H: EE'

;

also, from (a) above,

AA'2 :PP/2 = A'H:MH';

and, by means of (/?),

pp/2 . (pp/2 ± x)^
2
) = j|/#/ . j^#/ ± if#
= MH'iHH'.

iftc aequali, from the last two relations, we have

AA'2
: (PP'2 + i)D/2

) = .4'IT :
##'

= AA /2
: AA /2 + ££'2

, from above,

whence PP'2 + DD'2 = AA'2 + BB'2
.
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A number of other ratios are expressed in terms of the

straight lines terminating at A, A', R, H', M, M' as follows

(VII. 14-20).

In the ellipse AA'2
: PP'2 - DD'2 = A'H : 2 CM,

and in the hyperbola or ellipse (if p be the parameter of the

ordinates to PP')

AA'2
:p

2 = A'H.MH'iMH2
,

AA /2
: (PP' + p)

2 = A'H . MR' : (MH+ ME') 2
,

AA'2 :PP' .p = A'H:MR,

and AA'2 :(PP'2 +p
2
) = A'R . MH':(MH'2 +MH2

)^

Apollonius is now in a position, by means of all these

relations, resting on the use of the auxiliary points H, R', M,

to compare different functions of any conjugate diameters

with the same functions of the axes, and to show how the

former vary (by way of increase or diminution) as P moves

away from A. The following is a list of the functions com-

pared, where for brevity I shall use a, b to represent AA', BB'
\

a'
}
b' to represent PP', DD' ; and p, p' to represent the para-

meters of the ordinates to AA', PP' respectively.

In a hyperbola, according as a > or < b, a' > or < b', and the

ratio a': b' decreases or increases as P moves from A on

either side; also, if a — b, a'= b' (VII. 21-3); in an ellipse

a:b > a':b', and the latter ratio diminishes as P moves from

AtoB (VII. 24).

In a hyperbola or ellipse a + b<a' + b', and a' + ^/in the

hyperbola increases continually as P moves farther from A,

but in the ellipse increases till a', b
f
take the position of the

equal conjugate diameters when it is a maximum (VII.

25, 26).

In a hyperbola in which a, b are unequal, or in an ellipse,

a^b>a'^b', and a'^b' diminishes as P moves away from A,

in the hyperbola continually, and in the ellipse till a', b' are

the equal conjugate diameters (VII. 27).

ab < a'b', and a'b' increases as P moves away from A, in the

hyperbola continually, and in the ellipse till a'', b' coincide with

the equal conjugate diameters (VII. 28).

VII. 31 is the important proposition that, if PP', DD' are
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conjugate diameters in an ellipse or conjugate hyperbolas, and

if the tangents at their extremities form the parallelogram

LL'MM', then

the parallelogram LL'MM' = rect. AA' . BB'.

The proof is interesting. Let the tangents at P, D respec-

tively meet the major or transverse axis in T, T'.

Now (by VII. 4) PT 2
: CD2 = NT: ON;

therefore 2 ACPT : 2 A T'DG = NT : CN

But 2ACPT: (GL) = PT:CD,

— GP : DT' , by similar triangles,

= (CL):2AT'DG.

That is, {GL) is a mean proportional between 2AGPT and

2 AT'DC.
Therefore, since */(NT .CN) is a mean proportional between

NT and CW,
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2 AGPT : (GL) = V{GN. NT) : GN

= PN^:CN (I. 37, 39)

= PN.CT.CT.CN.^r
CA

= 2ACPT:CA.CB;

therefore (GL) = GA . GB.

The remaining propositions of the Book trace the variations

of different functions of the conjugate diameters, distinguishing

the maximum values, &c. The functions treated are the

following

:

p', the parameter of the ordinates to PP' in the hyperbola,

according as AA' is (1) not less than^>, the parameter corre-

sponding to A A', (2) less than p but not less than \p, (3) less

than \p (VII. 33-5).

PP'^p', as compared with AA'^p in the hyperbola (VII. 36)

or the ellipse (VII. 37).

PP'+p „ „ AA'+p in the hyperbola (VII.

•38-40) or the ellipse (VII. 41).

PP'.p' „ „ AA'.p in the hyperbola (VII. 42)

or the ellipse (VII. 43).

PP'2 +p'2
., „ AA'2 +p2 in the hyperbola, accord-

ing as (1) AA' is not less than

p, or (2) AA'<p,but AA'2 not

less than ±(AA'*p)2
, or (3)

AA'2 <\(AA'^Vf (VII. 44-6).

PP'2 -\-p'2 „ „ AA'2 -\-p2 in the ellipse, according

as AA'2
is not greater, or is

greater, than (AA' +p>)
2 (VII.

47, 48).

PP'2 <*>p'2 „ „ AA'2 ^p2 in the hyperbola, accord-

ing as AA' > or <p (VII.

49, 50).

PP'2 - p'2
„ „ AA'2 - p

2 or BB'2^p£ in the ellipse,

according as PP' > or < p
f

(VII. 51).
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As we have said, Book VIII is lost. The nature of its

contents can only be conjectured from Apollonius's own
remark that it contained determinate conic problems for

which Book VII was useful, particularly in determining

limits of possibility. Unfortunately, the lemmas of Pappus

do not enable us to form any clearer idea. But it is probable

enough that the Book contained a number of problems having

for their object the finding of conjugate diameters in a given

conic such that certain functions of their lengths have given

values. It was on this assumption that Halley attempted

a restoration of the Book.

If it be thought that the above account of the Conies is

disproportionately long for a work of this kind, it must be

remembered that the treatise is a great classic which deserves

to be more known than it is. What militates against its

being read in its original form is the great extent of the

exposition (it contains 387 separate propositions), due partly

to the Greek habit of proving particular cases of a general

proposition separately from the proposition itself, but more to

the cumbrousness of the enunciations of complicated proposi-

tions in general terms (without the help of letters to denote

particular points) and to the elaborateness of the Euclidean

form, to which Apollonius adheres throughout.

r

Other works by Apollonius.

Pappus mentions and gives a short indication of the con-

tents of six other works of Apollonius which formed part of the

Treasury of Analysis.1 Three of these should be mentioned

in close connexion with the Conies.

(a) On the Cidting-off of a Ratio (\6yov dnoToiirj),

two Books.

This work alone of the six mentioned has survived, and
that only in the Arabic ; it was published in a Latin trans-

lation by Edmund Halley in 1706. It deals with the general

problem, ' Given two straight lines, parallel to one another or

intersecting\ and a fixed point on each line, to draw through

1 Pappus, vii, pp. 640-8, 660-72.
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a given point a straight line which shall cut off segmentsfrom
each line (measured from the fixed points) bearing a given

ratio to one another.' Thus, let A, B be fixed points on the

two given straight lines AC, BK, and let be the given

point. It is required to draw through a straight line

cutting the given straight lines in points M, N respectively

such that AM is to BN in a given ratio. The two Books of

the treatise discussed the various possible cases of this pro-

blem which arise according to the relative positions of the

given straight lines and points, and also the necessary condi-

tions and limits of possibility in cases where a solution is not

always possible. The first Book begins by supposing the

given lines to be parallel, and discusses the different cases

which arise ; Apollonius then passes to the cases in which the

straight lines intersect, but one of the given points, A or B, is

at the intersection of the two lines. Book II proceeds to the

general case shown in the above figure, and first proves that

the general case can be reduced to the case in Book I where

one of the given points, A or B, is at the intersection of the

two lines. The reduction is easy. For join OB meeting AC
in B', and draw B'N' parallel to BN to meet OM in N'. Then

the ratio B'N' : BN, being equal to the ratio OB' : OB, is con-

stant. Since, therefore, BN: AM is a given ratio, the ratio

B'N' : AM is also given.

Apollonius proceeds in all cases by the orthodox method of

analysis and synthesis. Suppose the problem solved and

OMN drawn through in such a way that B'N' : AM is a

given ratio = X, say.
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Draw 00 parallel to BN or B'N' to meet AM in 0. Take

D on AM such that 00 : AD = A = 5'iV : ,4 Jlf.

Then AM : AD = B'N' : 0(7

= B/M:0M;
therefore MD :AD = B'C: CM,

or CM.MD = AD . B'C, a given rectangle.

Hence the problem is reduced to one of applying to CD a

rectangle (CM . MD) equal to a given rectangle (AD . B'C) but

falling short by a square figure. In the case as drawn, what-

ever be the value of X, the solution is always possible because

the given rectangle AD . CB' is always less than CA . AD, and

therefore always less than JCD2
; one of the positions of

M falls between A and D because CM. MD<CA . AD.
The proposition III. 41 of the Oonics about the intercepts

made on two tangents to a parabola by a third tangent

(pp. 155-6 above) suggests an obvious application of our pro-

blem. We had, with the notation of that proposition,

Pr : rq = rQ:Qp = qp :pR.

Suppose that the two tangents qP, qR are given as fixed

tangents with their points of contact P, R. Then we can

draw another tangent if we can draw a straight line

intersecting qP,qR in such a way that Pr :rq= qp:p>R or

Pq:qr — qR :pR, i. e. qr :p>R = Pq : qR (a constant ratio)
;

i.e. we have to draw a straight line such that the intercept by

it on qP measured from q has a given ratio to the intercept

by it on qR measured from R. This is a particular case of

our problem to which, as a matter of fact, Apollonius devotes

special attention. In the annexed figure the letters have the

same meaning as before, and N'M has to be drawn through

such that B'N' \AM— X. In this case there are limits to

1623.2 N
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the value of X in order that the solution may be possible.

Apollonius begins by stating the limiting case, saying that we

obtain a solution in a special manner in the case where M is

the middle point of CD, so that the rectangle CM . MD or

CBf
. AD has its maximum value.

The corresponding limiting value of X is determined by

finding the corresponding position of D or M.

We have B'C : MD = CM: AD, as before,

= B'M: MA;

whence, since MD = CM,

B'C:B'M = CM:MA

= B'M: B'A,

so that B'M2 = B'C. B'A.

Thus M is found and therefore D also.

According, therefore, as X is less or greater than the par-

ticular value of OC: AD thus determined, Apollonius finds no

solution or two solutions.

Further, we have *

AD = B'A + B'C- (B'D + B'C)

= B'A + B'C-2B'M

= B'A + B'C- 2 VB'A . B'C.

If then we refer the various points to a system of co-

ordinates in which B'A, B'N' are the axes of x and y, and if

we denote by (x, y) and the length B'A by h,

X = OC/AD = y/(h + x-2Vhx).

If we suppose Apollonius to have used these results for the

parabola, he cannot have failed to observe that the limiting

case described is that in which is on the parabola, while

N'OM is the tangent at ; for, as above,

B'M : B'A = B'C: B'M = N'O : N'M, by parallels,

so that B'A, N'M are divided at M, respectively in the same
proportion.
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Further, if we put for A the ratio between the lengths of the

two fixed tangents, then if h, k be those lengths,

k y
h h + x—2Vhx

which can easily be reduced to

© + (!)
=

2

1

the equation of the parabola referred to the two fixed tangents

as axes.

(ft) On the cutting-off of an area (ytoptov aTroTOfirj),

two Books.

This work, also in two Books, dealt with a similar problem,

with the difference that the intercepts on the given straight

lines measured from the given points are required, not to

have a given ratio, but to contain a given rectangle. Halley

included an attempted restoration of this work in his edition

of the De sectione rationis.

The general case can here again be reduced to the more
special one in which one of the fixed points is at the inter-

section of the two given straight lines. Using the same
figure as before, but with D taking the position shown by (D)

in the figure, we take that point such that

OG . AD = the given rectangle.

We have then to draw ON'31 through such that

B'N' .AM^OC.AD, ,

or B'N':OC=AD:AM.

But, by parallels, B'N' : 00 = B'M: CM',

therefore AM :CM=AD: B'M

= MD : B'C,

so that B'M.MD = AD. B'C.

Hence, as before, the problem is reduced to an application

of a rectangle in the well-known manner. The complete

N 2
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treatment of this problem in all its particular cases with their

Siopio-fioi could present no difficulty to Apollonius.

If the two straight lines are parallel, the solution of the

problem gives a means of drawing any number of tangents

to an ellipse when two parallel tangents, their points of con-

tact, and the length of the parallel semi-diameter are given

(see Conies, III. 42). In the case of the hyperbola (III. 43)

the intercepts made by any tangent on the asymptotes contain

a constant rectangle. Accordingly the drawing of tangents

depends upon the particular case of our problem in which both

fixed points are the intersection of the two fixed lines.

(y) On determinate section (SicopLcrfiivr) to/jltj), two Books.

The general problem here is, Given four points A, B, (7, D on

a straight line, to determine another point P on the same

straight line such that the ratio AP . CP : BP . DP has a

given value. It is clear from Pappus's account * of the contents

of this work, and from his extensive collection of lemmas to

the different propositions in it, that the question was very

exhaustively discussed. To determine P by means of the

equation

AP.CP = X.BP.DP
i

where A, B, C, D, X are given, is in itself an easy matter since

the problem can at once be put into the form of a quadratic

equation, and the Greeks would have no difficulty in reducing

it to the usual application of areas. If, however (as we may
fairly suppose), it was intended for application in further

investigations, the complete discussion of it would naturally

include not only th£ finding of a solution, but also the deter-

mination of the limits of possibility and the number of possible

solutions for different positions of the point-pairs A, C and

B, D, for the cases in which the points in either pair coincide,

or in which one of the points is infinitely distant, and so on.

This agrees with what we find in Pappus, who makes it clear

that, though we do not meet with any express mention of

series of point-pairs determined by the equation for different

values of A, yet the treatise contained what amounts to a com-

1 Pappus, vii, pp. 642-4.
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plete Theory of Involution. Pappus says that the separate

cases were dealt with in which the given ratio was that of

either (1) the square of one abscissa measured from the

required point or (2) the rectangle contained by two such

abscissae to any one of the following: (1) the square of one

abscissa, (2) the rectangle contained by one abscissa and

another separate line of given length independent of the

position of the required point, (3) the rectangle contained by
two abscissae. We learn also that maxima and minima were

investigated. From the lemmas, too, we may draw other

conclusions, e. g.

(1) that, in the case where A = 1, or AP.CP = BP .DP,

Apollonius used the relation BP :DP = AB . BC : AD . DC,

(2) that Apollonius probably obtained a double point E of the

involution determined by the point-pairs A, C and B, D by
means of the relation

AB.BC:AD.DC= BE 2
: DE\

A possible application of the problem was the determination

of the points of intersection of the given straight line with a

conic determined as a four-line locus, since A, B, C, D are in

fact the points of intersection of the given straight line with

the four lines to which the locus has reference.

(8) Oil Contacts or Ta agencies (kircMpai), two Books%

Pappus again comprehends in one enunciation the varieties

of problems dealt with in the treatise, which we may repro-

duce as follows : Given three things, each of which may be

either a 'point, a straight line or a circle, to draw a circle

which shall 'pass through each of the given points (so far as it

is points that are given) and touch the straight lines or

circles. 1 The possibilities as regards the different data are

ten. We may have any one of the following: (1) three

points, (2) three straight lines, (3) two points and a straight

line, (4) two straight lines and a point, (5) two points and
a circle, (6) two circles and a point, (7) two straight lines and

1 Pappus, vii, p. 644, 25-8.
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a circle, (8) two circles and a straight line, (9) a point, a circle

and a straight line, (10) three circles. Of these varieties the

first two are treated in Eucl. IV ; Book I of Apollonius's

treatise treated of (3), (4), (5), (6), (8), (9), while (7), the case of

two straight lines and a circle, and (10), that of the three

circles, occupied the whole of Book II.

The last problem (10), where the data are three circles,

has exercised the ingenuity of many distinguished geometers,

including Vieta and Newton* Vieta (1540-1603) set the pro-

blem to Adrianus Romanus (van Roomen, 1561-1615) who
solved it by means of a hyperbola. Vieta was not satisfied

with this, and rejoined with his Apollonius Gallus (1600) in

which he solved the problem by plane methods. A solution

of the same kind is given by Newton in his Arithwietica

Universalis (Prob. xlvii), while an equivalent problem is

solved by means of two hyperbolas in the Principia, Lemma
xvi. The problem is quite capable of a ' plane ' solution, and,

as a matter of fact, it is not difficult to restore the actual

solution of Apollonius (which of course used the ' plane ' method

depending on the straight line and circle only), by means of

the lemmas given by Pappus. Three things are necessary to

the solution. (1) A proposition, used by Pappus elsewhere 1

and easily proved, that, if two circles touch internally or

externally, any straight line through the point of contact

divides the circles into segments respectively similar. (2) The

proposition that, given three circles, their six centres of simili-

tude (external and internal) lie three by three on four straight

lines. This proposition, though not proved in Pappus, was

certainly known to the ancient gepmeters ; it is even possible

that Pappus omitted to prove it because it was actually proved

by Apollonius in his treatise. (3) An auxiliary problem solved

by Pappus and enunciated by him as follows. 2 Given a circle

ABC, and given three points D, E, F in a straight line, to

inflect (the broken line) DAE (to the circle) so as to make BG
in a straight line with CF; in other words, to inscribe in the

circle a triangle the sides of which, when produced, pass

respectively through three given points lying in a straight

line. This problem is interesting as a typical example of the

ancient analysis followed by synthesis. Suppose the problem

1 Pappus, iv, pp. 194-6. 2 lb. vii, p. 848.
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<t

solved, i.e. suppose DA, EA drawn to the circle cutting it in

points B, C such that BC produced passes through F.

Draw BG parallel to DF; join GC
and produce it to meet BE in H.

Then

Z BAC= IBGC
= ICHF
= supplement of Z CUD

;

therefore A, D, H, G lie on a circle, and

DE.EH=AE.EC.
Now AE .EC is given, being equal to the square on the

tangent from E to the circle ; and DE is given ; therefore HE
is given, and therefore the point H.

But F is also given ; therefore the problem is reduced to

drawing HC, FC to meet the circle in such a way that, if

HC, FC produced meet the circle again in G, B, the straight

line BG is parallel to HF: a problem which Pappus has

previously solved. 1

Suppose this done, and draw BK the tangent at B meeting

HF in K. Then

Z KBC = Z BGC, in the alternate segment,

= ICHF.

Also the angle CFK is common to the two triangles KBF,
CHF; therefore the triangles are similar, and

CF:FH = KF:FB,

or HF.FK = BF.FC.

Now BF .FC is given, and so is HF;
therefore FK is given, and therefore K is given.

The synthesis is as follows. Take a point H on DE such

that DE . EH is equal to the square on the tangent from E to

the circle.

Next take K on HF such that HF . FK = the square on the

tangent from F to the circle.

Draw the tangent to the circle from K, and let B be the

point of contact. Join BF meeting the circle in C, and join

1 Pappus, vii, pp. 830-2.
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HG meeting the circle again in G. It is then easy to prove

that BG is parallel to DF.

Now join EG, and produce it to meet the circle again at A
;

join AB.
We have only to prove that A B, BD are in one straight line.

Since DE.EH=AE.EC, the points A, D, H, G are con-

cyclic.

Now the angle GHF, which is the supplement of the angle

/

K

\M

\Q/

GHD, is equal to the angle BGG, and therefore to the

angle BAG.
Therefore the angle BAG is equal to the supplement of

angle DHG, so that the angle BAG is equal to the angle DAG,
and AB, BD are in a straight line.

The problem of Apollonius is now easy. We will take the

case in which the required circle touches all the three given

circles externally as shown in the figure. Let the radii of the
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given circles be a, b, c and their centres A, B, C. Let D, E, F
be the external centres of similitude so that BD : DC— b : c, &c.

Suppose the problem solved, and let P, Q, R be the points

of contact. Let PQ produced meet the circles with centres

A, B again in K, L. Then, by the proposition (1) above, the

segments KGP, QHL are both similar to the segment PYQ

;

therefore they are similar to one another. It follows that PQ
produced beyond L passes through F. Similarly QR, PR
produced pass respectively through D, E.

Let PE, QD meet the circle with centre C again in M, N.

Then, the segments PQR, RNM being similar, the angles

PQR, RNM are equal, and therefore MN is parallel to PQ.
Produce NM to meet EF in V.

Then EV:EF=EM:EP = EC:EA = c:a;

therefore the point V is given.

Accordingly the problem reduces itself to this : Given three

points V, E, D in a straight line, it is required to draw DR, ER
to a point R on the circle with centre C so that, if DR, ER meet
the circle again in N, M, NM produced shall pass through V.

This is the problem of Pappus just solved.

Thus R is found, and DR, ER produced meet the circles

with centres B and A in the other required points Q, P
respectively.

(e) Plane loc#, two Books.

Pappus gives a pretty full account of the contents of this

work, which has sufficed to enable restorations of it to

be made by three distinguished geometers, Fermat, van
Schooten, and (most completely) by Robert Simson. Pappus
prefaces his account by a classification of loci on two
different plans. Under the first classification loci are of three

kinds: (1) ifaKTiKoi, holding-in or fixed; in this case the

locus of a point is a point, of a line a line, and of a solid

a solid, where presumably the line or solid can only move on
itself so that it does not change its position: (2) 8ie£o-

Slkol, passing-along : this is the ordinary sense of a locus,

where the locus of a point is a line, and of a line a solid:

(3) dvao-rpocpiKoi, moving backwards and forwards, as it were,
in which sense a plane may be the locus of a point and a solid
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of a line.
1 The second classification is the familiar division into

plane, solid, and linear loci, plane loci being straight lines

and circles only, solid loci conic sections only, and linear loci

those which are not straight lines nor circles nor any of the

conic sections. The loci dealt with in our treatise are accord-

ingly all straight lines or circles. The proof of the pro-

positions is of course enormously facilitated by the use of

Cartesian coordinates, and many of the loci are really the

geometrical equivalent of fundamental theorems in analytical

or algebraical geometry. Pappus begins with a composite

enunciation, including a number of propositions, in these

terms, which, though apparently confused, are not difficult

to follow out:

1 If two straight lines be drawn, from one given point or from
two, which are (a) in a straight line or (b) parallel or

(c) include a given angle, and either (a) bear a given ratio to

one another or (/?) contain a given rectangle, then, if the locus

of the extremity of one of the lines is a plane locus given in

position, the locus of the extremity of the other will also be a
plane locus given in position, which will sometimes be of the

same kind as the former, sometimes of the other kind, and
will sometimes be similarly situated with reference to the

straight line, and sometimes contrarily, according to the

particular differences in the suppositions.' 2

(The words ' with reference to the straight line ' are obscure, but

the straight line is presumably some obvious straight line in

each figure, e. g., when there are two given points, the straight

line joining them.) After quoting three obvious loci ' added

by Charmandrus ', Pappus gives three loci which, though con-

taining an unnecessary restriction in the third case, amount

to the statement that any equation of the first degree between

coordinates inclined at fixed angles to (a) two axes perpen-

dicular or oblique, (b) to any number of axes, represents a

straight line. The enunciations (5-7) are as follows.3

5. ' If, when a straight line is given in magnitude and is

moved so as always to be parallel to a certain straight line

given in position, one of the extremities (of the moving
straight line), lies on a straight line given in position, the

1 Pappus, vii, pp. 660. 18-662. 5. 2 lb. vii, pp. 662. 25-664. 7.

3
lb., pp. 664. 20-666. 6.
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other extremity will also lie on a straight line given in

position.'

(That is, x = a or y — b in Cartesian coordinates represents a

straight line.)

6. 'If from any point straight lines be drawn to meet at given

angles two straight lines either parallel or intersecting, and if

the straight lines so drawn have a given ratio to one another

or if the sum of one of them and a line to which the other has

a given ratio be given (in length), then the point will lie on a

straight line given in position.'

(This includes the equivalent of saying that, if x, y be the

coordinates of the point, each of the equations x — my,

x + my = c represents a straight line.)

7. ' If any number of straight lines be given in position, and
straight lines be drawn from a point to meet them at given

angles, and if the straight lines so drawn be such that the

rectangle contained by one of them and a given straight line

added to the rectangle contained by another of them and
(another) given straight line is equal to the rectangle con-

tained by a third and a (third) given straight line, and simi-

larly with the others, the point will lie on a straight line given

in position.'

(Here we have trilinear or multilinear coordinates propor-

tional to the distances of the variable point from each of the

three or more fixed lines. When there are three fixed lines,

the statement is that ax + by = cz represents a straight line.

The precise meaning of the words ' and similarly with the

the others ' or ' of the others '

—

kou tcov \olttS>v 6/ioim—-is

uncertain ; the words seem to imply that, when there were

more than three rectangles ax, by, cz . .
.

, two of them were

taken to be equal to the sum of all the others ; but it is quite

possible that Pappus meant that any linear equation between

these rectangles represented a straight line. Precisely how
far Apollonius went in generality we are not in a position to

judge.)

The last enunciation (8) of Pappus referring to Book I

states that,

' If from any point (two) straight lines be drawn to meet (two)

parallel straight lines given in position at given angles, and
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cut off from the parallels straight lines measured from given
points on them such that (a) they have a given ratio or

(b) they contain a given rectangle or (c) the sum or difference

of figures of given species described on them respectively is

equal to a given area, the point will lie on a straight line

given in position.' 1

The contents of Book II are equally interesting. Some of

the enunciations shall for brevity be given by means of letters

instead of in general terms. If from two given points A, B
two straight lines be ' inflected ' (KXao-BSxriv) to a point P, then

(1), if AP2
<*» BP2

is given, the locus of P is a straight line

;

(2) if AP, BP are in a given ratio, the locus is a straight line

or a circle [this is the proposition quoted by Eutocius in his

commentary on the Conies, but already known to Aristotle]

;

(4) if AP2 is ' greater by a given area than in a given ratio
'

to BP2
, i.e. if AP2 = a2 +m . BP2

, the locus is a circle given in

position. An interesting proposition is (5) that, ' If from any

number of given points whatever straight lines be inflected to

one point, and the figures (given in species) described on all of

them be together equal to a given area, the point will lie on

a circumference (circle) given in position
'

; that is to say, if

a . AP2 + /3 . BP2 + y . CP2 + ... = a given area (where a,/3,y...

are constants), the locus of P is a circle. (3) states that, if

AN be a fixed straight line and A a fixed point on it, and if

AP be any straight line drawn to a point P such that, if PN
is perpendicular to AN, AP2 = a . AN or a . BN, where a is a

given length and B is another fixed point on AN, then the

locus of P is a circle given in position ; this is equivalent

to the fact that, if A be the origin, AN the axis of x, and

x = AN, y = PN be the coordinates of P, the locus x2 + y
2 = ax

or x2 + y
2 = a (x— b) is a circle. (6) is somewhat obscurely

enunciated :
' If from two given points straight lines be in-

flected (to a point), and from the point (of concourse) a straight

line be drawn parallel to a straight line given in position and

cutting off from another straight line given in position an

intercept measured from a given point on it, and if the sum of

figures (given in species) described on the two inflected lines

be equal to the rectangle contained by a given straight line

and the intercept, the point at which the straight lines are

1 Pappus, vii, p. 666. 7-13.
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inflected lies on a circle given in position.' The meaning

seems to be this : Given two fixed points A, B, a length a,

a straight line OX with a point fixed upon it, and a direc-

tion represented, say, by any straight line OZ through 0, then,

if AP, BP be drawn to P, and PM parallel to OZ meets OX
in M, the locus of P will be a circle given in position if

a.AP2 + p.BP2 = a.0M,

where a, (3 are constants. The last two loci are again

obscurely expressed, but the sense is this : (7) If PQ be any

chord of a circle passing through a fixed internal point 0, and

R be an external point on PQ produced such that either

(a) OR2 = PR . RQ or (b) OR 2 + P0.0Q=PR. RQ, the locus

of R is a straight line given in position. (8) is the reciprocal

of this: Given the fixed point 0, the straight line which is

the locus of R, and also the relation (a) or (b), the locus of

P, Q is a circle.

(g) Nevo-eis (Vergings or Inclinations), two Books.

As we have seen, the problem in a vevcris is to place

between two straight lines, a straight line and a curve, or

two curves, a straight line of given length in such a way
that it verges towards a fixed point, i.e. it will, if pro-

duced, pass through a fixed point. Pappus observes that,

when we come to particular cases, the problem will be
' plane ',

' solid ' or ' linear ', according to the nature of the

particular hypotheses ; but a selection had been made from

the class which could be solved by plane methods, i.e. by
means of the straight line and circle, the object being to give

those which were more generally useful in geometry. The
following were the cases thus selected and proved.1

I. Given (a) a semicircle and a straight line at right angles

to the base, or (b) two semicircles with their bases in a straight

line, to insert a straight line of given length verging to an

angle of the semicircle [or of one of the semicircles].

II. Given a rhombus with one side produced, to insert

a straight line of given length in the external angle so that it

verges to the opposite angle.

1 Pappus, vii, pp. 670-2.
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III. Given a circle, to insert a chord of given length verging

to a given point.

In Book I of Apollonius's work there were four cases of

I (a), two cases of III, and two of II ; the second Book con-

tained ten cases of I (b).

Restorations were attempted by Marino Ghetaldi (ApoUonius

redivivus, Venice, 1607, and ApoUonius redivivus . . . Liber

secundus, Venice, 1613), Alexander Anderson (in a Supple-

mentum Apollonii redivivi, 1612), and Samuel Horsley

(Oxford, 1770) ; the last is much the most complete.

In the case of the rhombus (II) the construction of ApoUonius

can be restored with certainty. It depends on a lemma given

by Pappus, which is as follows : Given a rhombus AD with

diagonal BC produced to E, if F be taken on BC such that EF
is a mean proportional between BE and EG, and if a circle be

described with E as centre and EF as radius cutting CD
in K and AC produced in H, then shall B, K, H be in one

straight line.1

Let the circle cut AC in L, join LK meeting BC in M, and

join HE, LE, KE.
Since now CL, CK are equally inclined to the diameter of

the circle, CL = CK. Also EL = EK, and it follows that the

triangles ECK, ECIj are equal in all respects, so that

Z CKE = Z CLE = Z CHE.

By hypothesis, EB:EF=EF: EC,

or EB:EK = EK:EC.

1 Pappus, vii, pp. 778-80.



NET2EI2 (VERGING* OR INCLINATIONS) 191

Therefore the triangles BEK, KEG, which have the angle

BEK common, are similar, and

Z GBK = Z GKE = Z GEE (from above).

But Z HGE = AAGB = Z BGK.

Therefore in the triangles GBK, GHE two angles are

respectively equal, so that Z GEE — Z GKB also.

But since LGKE = I GEE (from above), K, G, E, E are

concyclic.

Hence Z CEE+ Z GKE = (two right angles)

;

therefore, since Z GEE — Z GKB,

Z GKB + Z £## = (two right angles),

and BKE is a straight line.

It is certain, from the nature of this lemma, that Apollonius

made his construction by drawing the circle shown in the

figure.

He would no doubt arrive at it by analysis somewhat as

follows.

Suppose the problem solved, and EK inserted as re-

quired (= k).

Bisect EK in N
}
and draw NE at right angles to KE

meeting BG produced in E. Draw KM perpendicular to BG,

and produce it to meet AG in L. Then, by the property of

the rhombus, LM — MK, and, since KN = NE also, MN is

parallel to LE.
Now, since the angles at M, N are right, M, K, N, E are

concyclic.

Therefore ICEK = IMNK = IGEK, so that G, K,E, E
are concyclic.

Therefore Z BGD = supplement of KCE = LEEK = IEKE,
and the triangles EKE, DGB are similar.

Lastly,

Z.EBK=lEKE-Z.GEK=lEEK-LCEK=/.EEG=lEKG;

therefore the triangles EBK, EKG are similar, and

BE:EK = EK:EG,

or BE.EG = EK 2
.
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But, by similar triangles EKH, DCB,

EK:KH=D(J:CB,

and, since the ratio DC:CB, as well as KH, is given, EK
is given.

The construction then is as follows.

If k be the given length, take a straight line p such that

p:k = AB:BC:

apply to BC a rectangle BE . EC equal to p
1 and exceeding by

a square ; then with E as centre and radius equal to p describe a

circle cutting AC produced in H and CD in K. HK is then

equal to k and, by Pappus's lemma, verges towards B.

Pappus adds an interesting solution of the same problem

with reference to a square instead of a rhombus ; the solution

is by one Heraclitus and depends on a lemma which Pappus

also gives.1

We hear of yet other lost works by Apollonius.

(rj) A Comparison of the dodecahedron with the icosahedron.

This is mentioned by Hypsicles in the preface to the so-called

Book XIV of Euclid. Like the Conies, it appeared in two

editions, the second of which contained the proposition that,

if there be a dodecahedron and an icosahedron inscribed in

one and the same sphere, the surfaces of the solids are in the

same ratio as their volumes ; this was established by showing

that the perpendiculars from the centre of the sphere to

a pentagonal face of the dodecahedron and to a triangular

face of the icosahedron are equal.

(0) Marinus on Euclid's Data speaks of a General Treatise

(kccBoXov 7rpayfi,aT€ia) in which Apollonius used the word

assigned (rerayiievov) as a comprehensive term to describe the

datum in general. It would appear that this work must

have dealt with the fundamental principles of mathematics,

definitions, axioms, &c, and that to it must be referred the

various remarks on such subjects attributed to Apollonius by
Proclus, the elucidation of the notion of a line, the definition

1 Pappus, vii, pp. 780-4.
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of plane and solid angles, and his attempts to prove the axioms
;

it must also have included the three definitions (13-15) in

Euclid's Data which, according to a scholium, were due to

Apollonius and must therefore have been interpolated (they

are definitions of Kar-qyaevrj, civr]yfievr) , and the elliptical

phrase napa Secret, which means ' parallel to a straight line

given in position '). Probably the same work also contained

Apollonius's alternative constructions for the problems of

Eucl. I. 10, 11 and 23 given by Proclus. Pappus speaks

of a mention by Apollonius ' before his own elements ' of the

class of locus called e^e/cri/co?, and it may be that the treatise

now in question is referred to rather than the Plane Loci

itself.

(i) The work On the Cochlias was on the cylindrical helix.

It included the theoretical generation of the curve on the

surface of the cylinder, and the proof that the curve is

homoeomeric or uniform, i.e. such that any part will fit upon

or coincide with any other.

(k) A work on Unordered Irrationals is mentioned by
Proclus, and a scholium on Eucl. X. 1 extracted from Pappus's v

commentary remarks that ' Euclid did not deal with all

rationals and irrationals, but only with the simplest kinds by
the combination of which an infinite number of irrationals

are formed, of which latter Apollonius also gave some '.

To a like effect is a passage of the fragment of Pappus's

commentary on Eucl. X discovered in an Arabic translation

by Woepcke :
' it was Apollonius who, besides the ordered

irrational magnitudes, showed the existence of the unordered,

and by accurate methods set forth a great number of them '.

The hints given by the author of the commentary seem to imply

that Apollonius's extensions of the theory of irrationals took

two directions, (1) generalizing the medial straight line of

Euclid, on the basis that, between two lines commensurable in

square (only), we may take not only one sole medial line but

three or four, and so on ad infinitum, since we can take,

between any two given straight lines, as many lines as

we please in continued proportion, (2) forming compound
irrationals by the addition and subtraction of more than two
terms of the sort composing the binomials, apotomes, &c,

1523.2 O



194 APOLLONIUS OF PERGA

(A) On the burning-mirror {irepl tov nvpiov) is the title of

another work of Apollonius mentioned by the author of the

Fragmentwni mathematimim Bobiense, which is attributed by

Heiberg to Anthemius but is more likely (judging by its sur-

vivals of antiquated terminology) to belong to a much earlier

date. The fragment shows that Apollonius discussed the

spherical form of mirror among others. Moreover, the extant

fragment by Anthemius himself (on burning mirrors) proves the

property of mirrors of parabolic section, using the properties of

the parabola (a) that the tangent at any point makes equal

angles with the axis and with the focal distance of the point,

and (b) that the distance of any point on the curve from the

focus is equal to its distance from a certain straight line

(our ' directrix
')

; and we can well believe that the parabolic

form of mirror was also considered in Apollonius's work, and

that he was fully aware of the focal properties of the parabola,

notwithstanding the omission from the Conies of all mention

of the focus of a parabola.

(fi) In a work called cokvtoklov (' quick-delivery ') Apollonius

is said to have found an approximation to the value of 7r ' by
a different calculation (from that of Archimedes), bringing it

within closer limits '- 1 Whatever these closer limits may have

been, they were considered to be less suitable for practical use

than those of Archimedes.

It is a moot question whether Apollonius's system of arith-

metical notation (by tetrads) for expressing large numbers

and performing the usual arithmetical operations with them,

as described by Pappus, was included in this same work.

Heiberg thinks it probable, but there does not seem to be any

necessary reason why the notation for large numbers, classify-

ing them into myriads, double myriads, triple myriads, &c,

i.e. according to powers of 10,000, need have been connected

with the calculation of the value of ir, unless indeed the num-

bers used in the calculation were so large as to require the

tetradic system for the handling of them.

We have seen that Apollonius is credited with a solu-

tion of the problem of the two mean proportionals (vol. i,

pp. 262-3).

• v. Eutocius on Archimedes, Measurement of a Circle,
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Astronomy.

We are told by Ptolemaeus Chennus * that Apollonius was

famed for his astronomy, and was called e (Epsilon) because

the form of that letter is associated with that of the moon, to

which his accurate researches principally related. Hippolytus

says lie made the distance of the moon's circle from the sur-

face of the earth to be 500 myriads of stades. 2 This figure

can hardly be right, for, the diameter of the earth being,

according to Eratosthenes's evaluation, about eight myriads of

stades, this would make the distance of the moon from the

earth about 125 times the earth's radius. This is an unlikely

figure, seeing that Aristarchus had given limits for the ratios

between the distance of the moon and its diameter, and

between the diameters of the moon and the earth, which lead

to about 19 as the ratio of the moon's distance to the earth's

radius. Tannery suggests that perhaps Hippolytus made a

mistake in copying from his source and took the figure of

5,000,000 stades to be the length of the radius instead of the

diameter of the moon's orbit.

But we have better evidence of the achievements of Apol-

lonius in astronomy. In Ptolemy's Syntaxis 3 he appears as

an authority upon the hypotheses of epicycles and eccentrics

designed to account for the apparent motions of the planets.

The propositions of Apollonius quoted by Ptolemy contain

exact statements of the alternative hypotheses, and from this

fact it was at one time concluded that Apollonius invented

the two hypotheses. This, however, is not the case. The

hypothesis of epicycles was already involved, though with

restricted application, in the theory of Heraclides of Pontus

that the two inferior planets, Mercury and Venus, revolve in

circles like satellites round the sun, while the sun itself

revolves in a circle round the earth ; that is, the two planets

describe epicycles about the material sun as moving centre.

In order to explain the motions of the superior planets by

means of epicycles it was necessary to conceive of an epicycle

about a point as moving centre which is not a material but

a mathematical point. It was some time before this extension

of the theory of epicycles took place, and in the meantime

1 apiid Phofium, Cod. cxc, p. 151 b 18, ed. Bekker.
2 Hippol. Refut. iv. 8, p. 66, ed. Duncker. 3 Ptolemy, Syntaxis, xii. 1.

o 2
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another hypothesis, that of eccentrics, was invented to account

for the movements of the superior planets only. We are at this

stage when we come to Apollonius. His enunciations show

that he understood the theory of epicycles in all its generality,

hut he states specifically that the theory of eccentrics can only

be applied to the three planets which can be at any distance

from the sun. The reason why he says that the eccentric

hypothesis will not serve for the inferior planets is that, in

order to make it serve, we should have to suppose the circle

described by the centre of the eccentric circle to be greater

than the eccentric circle itself. (Even this generalization was
made later, at or before the time of Hipparchus.) Apollonius

further says in his enunciation about the eccentric that ' the

centre of the eccentric circle moves about the centre of the

zodiac in the direct order of the signs and at a speed equal to

that of the sun, while the star moves on the eccentric about

its centre in the inverse order of the signs and at a speed

equal to the anomaly '. It is clear from this that the theory

of eccentrics was invented for the specific purpose of explain-

ing the movements of Mars, Jupiter, and Saturn about the

sun and for that purpose alone. This explanation, combined

with the use of epicycles about the sun as centre to account

for the motions of Venus and Mercury, amounted to the

system of Tycho Brahe ; that system was therefore anticipated

by some one intermediate in date between Heraclides and

Apollonius and probably nearer to the latter, or it may
have been Apollonius himself who took this important step.

If it was, then Apollonius, coming after Aristarchus of

Samos, would be exactly the Tycho Brahe of the Copernicus

of antiquity. The actual propositions quoted by Ptolemy as

proved by Apollonius among others show mathematically at

what points, under each of the two hypotheses, the apparent

forward motion changes into apparent retrogradation and

vice versa, or the planet appears to be stationary.
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THE SUCCESSORS OF THE GREAT GEOMETERS

With Archimedes and Apollonius Greek geometry reached

its culminating point. There remained details to be filled

in, and no doubt in a work such as, for instance, the Conies

geometers of the requisite calibre could have found proposi-

tions containing the germ of theories which were capable of

independent development. But, speaking generally, the fur-

ther progress of geometry on general lines was practically

barred by the restrictions of method and form which were

inseparable from the classical Greek geometry. True, it was

open to geometers to discover and investigate curves of a

higher order than conies, such as spirals, conchoids, and the

like. But the Greeks could not get very far even on these

lines in the absence of some system of coordinates and without

freer means of manipulation such as are afforded by modern
algebra, in contrast to the geometrical algebra, which could

only deal with equations connecting lines, areas, and volumes,

but involving no higher dimensions than three, except in so

far as the use of proportions allowed a very partial exemp-

tion from this limitation. The theoretical methods available

enabled quadratic, cubic and bi-quadratic equations or their

equivalents to be solved. But all the solutions were geometri-

cal ; in other words, quantities could only be represented by
lines, areas and volumes, or ratios between them. There was
nothing corresponding to operations with general algebraical

quantities irrespective of what they represented. There were

no symbols for such quantities. In particular, the irrational

was discovered in the form of incommensurable lines ; hence

irrationals came to be represented by straight lines as they

are in Euclid, Book X, and the Greeks had no other way of

representing them. It followed that a product of two irra-

tionals could only be represented by a rectangle, and so on.

Even when Diophantus came to use a symbol for an unknown
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quantity, it was only an abbreviation for the word dpiOfjios,

with the meaning of ' an undetermined multitude of units
',

not a general quantity. The restriction then of the algebra

employed by geometers to the geometrical form of algebra

operated as an insuperable obstacle to any really new depar-

ture in theoretical geometry.

It might be thought that there was room for further exten-

sions in the region of solid geometry. But the fundamental

principles of solid geometry had also been laid down in Euclid,

Books XI-XIII ; the theoretical geometry of the sphere had
been fully treated in the ancient sphaeric ; and any further

application of solid geometry, or of loci in three dimensions,

was hampered by the same restrictions of method which

hindered the further progress of plane geometry.

Theoretical geometry being thus practically at the end of

its resources, it was natural that mathematicians, seeking for

an opening, should turn to the applications of geometry. One
obvious branch remaining to be worked out was the geometry

of measurement, or mensuration in its widest sense, which of

course had to wait on pure theory and to be based on its

results. One species of mensuration was immediately required

for astronomy, namely the measurement of triangles, especially

spherical triangles; in other words, trigonometry plane and

spherical. Another species of mensuration was that in which

an example had already been set by Archimedes, namely the

measurement of areas and volumes of different shapes, and

arithmetical approximations to their true values in cases

where they involved surds or the ratio (it) between the

circumference of a circle and its diameter ; the object of such

mensuration was largely practical. Of these two kinds of

mensuration, the first (trigonometry) is represented by Hip-

parchus, Menelaus and Ptolemy ; the second by Heron of

Alexandria. These mathematicians will be dealt with in later

chapters ; this chapter will be devoted to the successors of the

great geometers who worked on the same lines as the latter.

Unfortunately we have only very meagre information as to

what these geometers actually accomplished in keeping up the

tradition. No geometrical works by them have come 'down

to us in their entirety, and we are dependent on isolated

extracts or scraps of information furnished by common-
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tutors, and especially by Pappus and Eutocius. Some of

these are very interesting, and it is evident from the

extracts from the works of such writers as Diodes and

Dionysodorus that, for some time after Archimedes and

Apollonius, mathematicians had a thorough grasp of the

contents of the works of the great geometers, and were able

to use the principles and methods laid down therein with

ease and skill.

Two geometers properly belonging to this chapter have

already been dealt with. The first is Nicomedes, the inventor

of the conchoid, who was about intermediate in date between

Eratosthenes and Apollonius. The conchoid has already been

described above (vol. i, pp. 238-40). It gave a general method

of solving any vevais where one of the lines which cut off an

intercept of given length on the line verging to a given point

is a straight line ; and it was used both for the finding of two

mean proportionals and for the trisection of any angle, these

problems being alike reducible to a vevcris of this kind. How
far Nicomedes discussed the properties of the curve in itself

is uncertain ; we only know from Pappus that he proved two

properties, (1) that the so-called 'ruler' in the instrument for

constructing the curve is an asymptote, (2) that any straight

line drawn in the space between the ' ruler ' or asymptote and

the conchoid must, if produced, be cut by the conchoid.1 The
equation of the curve referred to polar coordinates is, as we
have seen, r = a + b sec 6. According to Eutocius, Nicomedes

prided himself inordinately on his discovery of this curve,

contrasting it with Eratosthenes's mechanism for finding any
number of mean proportionals, to which he objected formally

and at length on the ground that it was impracticable and

entirely outside the spirit of geometry.2

Nicomedes is associated by Pappus with Dinostratus, the

brother of Menaechmus, and others as having applied to the

squaring of the circle the curve invented by Hippias and
known as the quadratrixf which was originally intended for

the purpose of trisecting any angle. ^These facts are all that

we know of Nicomedes's achievements.

1 Pappus, iv, p. 244. 21-8.
2 Eutoc. on Archimedes, On the Sphere and Cylinder, Archimedes,

vol. iii, p. 98.
3 Pappus, iv, pp. 250. 33-252. 4. Cf. vol. i, p. 225 sq.
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The second name is that of Diocles. We have already

(vol. i, pp. 264-6) seen him as the discoverer of the curve

known as the cissoid, which he used to solve the problem

of the two mean proportionals, and also (pp. 47-9 above)

as the author of a method of solving the equivalent of

a certain cubic equation by means of the intersection

of an ellipse and a hyperbola. We are indebted for our

information on both these subjects to Eutocius,1 who tells

us that the fragments which he quotes came from Diocles's

work wept TTvpeicoi', On burning-mirrors. The connexion of

the two things with the subject of this treatise is not obvious,

and we may perhaps infer that it was a work of considerable

scope. What exactly were the forms of the burning-mirrors

discussed in the treatise it is not possible to say, but it is

probably safe to assume that among them were concave

mirrors in the forms (1) of a sphere, (2) of a paraboloid, and

(3) of the surface described by the revolution of an ellipse

about its major axis. The author of the Fragmentum mathe-

maticnm Bobiense says that Apollonius in his book On the

burning-mirror discussed the case of the concave spherical

mirror, showing about what point ignition would take place

;

and it is certain that Apollonius was aware that an ellipse has

the property of reflecting all rays through one focus to the

other focus. Nor is it likely that the corresponding property

of a parabola with reference to rays parallel to the axis was
unknown to Apollonius. Diocles therefore, writing a century

or more later than Apollonius, could hardly have failed to

deal with all three cases. True, Anthemius (died about

A.D. 534) in his fragment on burning-mirrors says that the

ancients, while mentioning the usual burning-mirrors and

saying that such figures are conic sections, omitted to specify

which conic sections, and how produced, and gave no geo-

metrical proofs of their properties. But if the properties

were commonly known and quoted, it is obvious that they

must have been proved by the ancients, and the explanation

of Anthemius's remark is presumably that the original works

in which they were proved (e.g. those of Apollonius and

Diocles) were already lost when he wrote. There appears to

be no trace of Diocles's work left either in Greek or Arabic,

1 Eutocius, loc. cit., p. 66. 8 sq., p. 160. 3 sq.
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unless we have a fragment from it in the Fragmentum
mathematicum Bobiense. But Moslem writers regarded Diocles

as the discoverer of the parabolic burning-mirror; 'the ancients',

says al Singari (Sachawi, Ansari), ' made mirrors of plane

surfaces. Some made them concave (i.e. spherical) until

Diocles (Diuklis) showed and proved that, if the surface of

these mirrors has its curvature in the form of a parabola, they

then have the greatest power and burn most strongly. There

is a work on this subject composed by Ibn al-Haitham.' This

work survives in Arabic and in Latin translations, and is

reproduced by Heiberg and Wiedemann l
; it does not, how-

ever, mention the name of Diocles, but only those of Archi-

medes and Anthemius. Ibn al-Haitham says that famous

men like Archimedes and Anthemius had used mirrors made
up of a number of spherical rings ; afterwards, he adds, they

considered the form of curves which would reflect rays to one

point, and found that the concave surface of a paraboloid of

revolution has this property. It is curious to find Ibn al-

Haitham saying that the ancients had not set out the proofs

sufficiently, nor the method by which they discovered them,

words which almost exactly recall those of Anthemius himself.

Nevertheless the whole course of Ibn al-Haitham's proofs is

on 4the Greek model, Apollonius being actually quoted by name
in the proof of the main property of the parabola required,

namely that the tangent at any point of the curve makes
equal angles with the focal distance of the point and the

straight line drawn through it parallel to the axis. A proof

of the property actually survives in the Greek Fragmentum
mathematicum Bobiense, which evidently came from some
treatise on the parabolic burning-mirror ; but Ibn al-Haitham

does not seem to have had even this fragment at his disposal,

since his proof takes a different course, distinguishing three

different cases, reducing the property by analysis to the

known property AN'= AT, and then working out the syn-

thesis. The proof in the Fragmentum is worth giving. It is

substantially as follows, beginning with the preliminary lemma
that, if PT, the tangent at any point P, meets the axis at T,

and if AS be measured along the axis from the vertex A
equal to \AL, where AL is the parameter, then SP = ST.

1 BibUotheca mathematica, x
3 , 1910, pp. 201-37.
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Let PN be the ordinate from P ; draw AY at right angles

to the axis meeting PT in Y, and join SY.

Now PN*=AL.AN
= 4AS. AN
= 4AS .

42* (since AN = 42).

But PiV = 2^1F (since ,4iV = AT)
;

therefore 4 F2 = ^ . 4tf,

and the angle TYS is right.

The triangles SYT, SYP being right-angled, and TY being

equal to YP, it follows that SP = ST.

With the same figure, let BP be a ray parallel to AN
impinging On the curve at P. It is required to prove that

the angles of incidence and reflection (to S) are equal.

We have SP = ST, so that ' the angles at the points T, P
are equal. So ', says the author, ' are the angles TPA, KPR
[the angles between the tangent and the curve on each side of

the point of contact]. Let the difference between the angles

be taken ; therefore the angles SPA, RPB which remain

[again ' mixed ' angles] are equal. Similarly we shall show

that all the lines drawn parallel to AS will be reflected at

equal angles to the point S.'

The author then proceeds :
' Thus burning-mirrors con-

structed with the surface of impact (in the form) of the

section of a right-angled cone may easily, in the manner
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above shown, be proved to bring about ignition at the point

indicated.'

Heiberg held that the style of this fragment is Byzantine

and that it is probably by Anthemius. Cantor conjectured

that here we might, after all, have an extract from Diocles's

work. Heiberg's supposition seems to me untenable because

of the author's use (1) of the ancient terms ' section of

a right-angled cone ' for parabola and ' diameter ' for axis

(to say nothing of the use of the parameter, of which there is

no word in the genuine fragment of Anthemius), and (2) of

the mixed ' angles of contact '. Nor does it seem likely that

even Diocles, living a century after Apollonius, would have

spoken of the ' section of a right-angled cone ' instead of a

parabola, or used the ' mixed ' angle of which there is only the

merest survival in Euclid. The assumption of the equality

of the two angles made by the curve with the tangent on

both sides of the point of contact reminds us of Aristotle's

assumption of the equality of the angles ' of a segment ' of

a circle as prior to the truth proved in Eucl. I. 5. I am
inclined, therefore, to date the fragment much earlier even

than Diocles. Zeuthen suggested that the property of the

paraboloidal mirror may have been discovered by Archimedes,

who, according to a Greek tradition, wrote Catoptrica. This,

however, does not receive any confirmation in Ibn al-Haitham

or in Anthemius, and we can only say that the fragment at

least goes back to an original which was probably not later

than Apollonius.

Pekseus is only known, from allusions to him in Proclus,1

as the discoverer and investigator of the spiric sections. They
are classed by Proclus among curves obtained by cutting

solids, and in this respect they are associated with the conic

sections. We may safely infer that they were discovered

after the conic sections, and only after the theory of conies

had been considerably developed. This was already the case

in Euclid's time, and it is probable, therefore, that Perseus was
not earlier than Euclid. On the other hand, by that time

the investigation of conies had brought the exponents of the

subject such fame that it would be natural for mathematicians

to see whether there was not an opportunity for winning a
1 Proclus on Eucl. I, pp. 111. 23-112. 8, 356. 12. Cf. vol. i, p. 226.
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like renown as discoverers of other curves to be obtained by

cutting well-known solid figures other than the cone and

cylinder. A particular case of one such solid figure, the

cnreipa, had already been employed by Archytas, and the more

general form of it would not unnaturally be thought of as

likely to give sections worthy of investigation. Since Geminus

is Proclus's authority, Perseus may have lived at any date from

Euclid's time to (say) 75 B.C., but the most probable supposi-

tion seems to be that he came before Apollonius and near to

Euclid in date.

The spire in one of its forms is what we call a tore, or an

anchor- ring. It is generated by the revolution of a circle

about a straight line in its plane in such a way that the plane

of the circle always passes through the axis of revolution. It

takes three forms according as the axis of revolution is

(a) altogether outside the circle, when the spire is open

(5iex^s>

), (b) a tangent to the circle, when the surface is con-

tinuous (crvvexys)' or
(c) a cnor(i of ^ne circle, when it is inter-

laced (e/jL7r€7r\eyfj.€prj), or crossing-itself (kiraWciTTova-a) ; an

alternative name for the surface was KpiKos, a ring. Perseus

celebrated his discovery in an epigram to the effect that

' Perseus on his discovery of three lines (curves) upon five

sections gave thanks to the gods therefor'. 1 There is some

doubt about the meaning of ' three lines upon five sections'

(r/oer? ypafiuas kirl irkvTt To^ais). We gather from Proclus's

account of three sections distinguished by Perseus that the

plane of section was always parallel to the axis of revolution

or perpendicular to the plane which cuts the tore symmetri-

cally like the division in a split-ring. It is difficult to inter-

pret the phrase if it means three curves made by five different

sections. Proclus indeed implies that the three curves were

sections of the three kinds of tore respectively (the open, the

closed, and the interlaced), but this is evidently a slip.

Tannery interprets the phrase as meaning 'three curves in

addition to five sections '.2 Of these the five sections belong

to the open tore, in which the distance (c) of the centre of the

generating circle from the axis of revolution is greater than

the radius (a) of the generating circle. If d be the perpen-

1 Proclus on Eucl. I, p. 112. 2.
2 See Tannery, Memoires scientifiques, II, pp. 24-8.
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dicular distance of the plane of section from the axis of rota-

tion, we can distinguish the following cases :

(1) c + a>d>c. Here the curve is an oval.

(2) d — c. transition from case (1) to the next case.

(3) c >d>c — a. The curve is now a closed curve narrowest

in the middle.

(4) cZ = c— a. In this case the curve is the hi rp rpopede

(horse-fetter), a curve in the shape of the figure of 8. The
lemniscate of Bernoulli is a particular case of this curve, that

namely in which c = 2 a.

(5) c— a>d>0. In this case the section consists of two
ovals symmetrical with one another.

The three curves specified by Proclus are those correspond-

ing to (1), (3) and (4).

When the tore is ' continuous ' or closed, c = a, and we have

sections corresponding to (1), (2) and (3) only; (4) reduces to

two circles touching one another.

But Tannery finds in the third, the interlaced, form of tore

three new sections corresponding to (1) (2) (3), each with an

oval in the middle. This would make three curves in addi-

tion to the five sections, or eight curves in all. We cannot be

certain that this is the true explanation of the phrase in the

epigram ; but it seems to be the best suggestion that has

been made.

According to Proclus, Perseus worked out the property of

his curves, as Nicomedes did that of the conchoid, Hippias

that of the quadratrix, and Apollonius those of the three

conic sections. That is, Perseus must have given, in some

form, the equivalent of the Cartesian equation by which we
can represent the different curves in question. If we refer the

tore to three axes of coordinates at right angles to one another

with the centre of the tore as origin, the axis of y being taken

to be the axis of revolution, and those of z, x being perpen-

dicular to it in the plane bisecting the tore (making it a split-

ring), the equation of the tore is

(x
2 + y* + z2 + C

2 - a2

)

2 = 4 c
2 (z2 + X2

),
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where c, a have the same meaning as above. The different

sections parallel to the axis of revolution are obtained by

giving (say) z any value between and c + ti. For the value

z — a the curve is the oval of Cassini which has the property

that, if r, r be the distances of any point on the curve from

two fixed points as poles, rr''— const. For, if z — a, the equa-

tion becomes

(x2 + y
2 + c

2

)

2 = 4 c
2x2 + 4 c2 a 2

,

or {c — x2 +y2
} \c + x2 + y

2
} = 4c2 a2

;

and this is equivalent to rv — ±2ca if x, y are the coordinates

of any point on the curve referred to Ox, Oy as axes, where

is the middle point of the line (2 c in length) joining the two

poles, and Ox lies along that line in either direction, while Oy
is perpendicular to it. Whether Perseus discussed this case

and arrived at the property in relation to the two poles is of

course quite uncertain.

Isoperimetric figures.

The subject of isoperimetric figures, that is to say, the com-

parison of the areas of figures having different shapes but the

same perimeter, was one which would naturally appeal to the

early Greek mathematicians. We gather from Proclus's notes

on Eucl. I. 36, 37 that those theorems, proving that parallelo-

grams or triangles on the same or equal bases and between

the same parallels are equal in area, appeared to the ordinary

person paradoxical because they meant that, by moving the

side opposite to the base in the parallelogram, or the vertex

of the triangle, to the right or left as far as we please, we may
increase the perimeter of the figure to any extent while keep-

ing the same area. Thus the perimeter in parallelograms or

triangles is in itself no criterion as to their area. Misconcep-

tion on this subject was rife among non-mathematicians.

Proclus tells us of describers of countries who inferred

the size of cities from their perimeters ; he mentions also

certain members of communistic societies in his own time who
cheated their fellow-members by giving them land of greater

perimeter but less area than the plots which they took
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themselves, so that, while they got a reputation for greater

honesty, they in fact took more than their share of the

produce. 1 Several remarks by ancient authors show the

prevalence of the same misconception. Thucydides estimates

the size of Sicily according to the time required for circum-

navigating it.
2 About 130 B.C. Polybius observed that there

were people who could not understand that camps of the same

periphery might have different capacities. 3 Quintilian has a

similar remark, and Cantor thinks he may have had in his

mind the calculations of Pliny, who compares the size of

different parts of the earth by adding their lengths to their

breadths.4

Zenodorus wrote, at some date between (say) 200 B.C. and
A.D. 90, a treatise nepl lo-ouirpcov a-\r}udTcoy, On isometric

figures. A number of propositions from it are preserved in

the commentary of Theon of Alexandria on Book I of

Ptolemy's Syntaxis ; and they are reproduced in Latin in the

third volume of Hultsch's edition of Pappus, for the purpose

of comparison with Pappus's own exposition of the same

propositions at the beginning of his Book V, where he appears

to have followed Zenodorus pretty closely while making some

changes in detail.5 From the closeness with which the style

of Zenodorus follows that of Euclid and Archimedes we may
judge that his date was not much later than that of Archi-

medes, whom he mentions as the author of the proposition

(Measurement of a Circle, Prop. 1) that the area of a circle is

half that of the rectangle contained by the perimeter of the

circle and its radius. The important propositions proved by
Zenodorus and Pappus include the following: (1) Of all

regular 'polygons of equal perimeter, that is the greatest in

area which has the most angles. (2) A circle is greater than

any regular polygon of equal contour. (3) Of all polygons of

the same number of sides and equal perimeter the equilateral

and equiangular polygon is the greatest in area. Pappus
added the further proposition that Of all segments of a circle

having the same circumference the semicircle is the greatest in

1 Proclus on Eucl. I, p. 403. 5 sq. 2 Thuc. vi. 1.
3 Polybius, ix. 21. 4 Pliny, Hist, nat, vi. 208.

5 Pappus, v, p. 308 sq.
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area. Zenoclorus's treatise was not confined to propositions

about plane figures, but gave also the theorem that Of all

solid figures the surfaces of which are equal, the sphere is the

greatest in solid content.

We will briefly indicate Zenodorus's method of proof. To
begin with (1) ; let ABC, DEF be equilateral and equiangular

polygons of the same perimeter, DEF having more angles

than ABC. Let 67, H be the centres of the circumscribing

circles, GK, HL the perpendiculars from G, H to the sides

AB, DE, so that K, L bisect those sides.

AM

Since the perimeters are equal, AB > DE, and AK > DL.

Make KM equal to DL and join GM.
Since AB is the same fraction of the perimeter that the

angle AGB is of four right angles, and DE is the same fraction

of the same perimeter that the angle DUE is of four right

angles, it follows that

AB :DE=l AGB :IDHE,

that is, AK : MK= lAGK-.l DHL.

But AK :MK> lAGK-.lMGK
(this is easily proved in a lemma following by the usual

method of drawing an arc of a circle with G as centre and GM
as radius cutting GA and GK produced. The proposition is of

course equivalent to tan a /tan (3 > ot/@, where %7r > oc > /?).

Therefore Z MGK > Z DHL,

and consequently Z GMK < Z HDL.

Make the angle NMK equal to the angle HDL, so that MN
meets KG produced in N.
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The triangles NMK, HDL are now equal in all respects, and

NK is equal to HL, so that GK < HL.
But the area of the polygon ABC is half the rectangle

contained by GK and the perimeter, while the area of the

polygon DEF is half the rectangle contained by HL and

the same perimeter. Therefore the area of the polygon DEF
is the greater.

(2) The proof that a circle is greater than any regular

polygon with the same perimeter is deduced immediately from

Archimedes's proposition that the area of a circle is equal

to the right-angled triangle with perpendicular side equal to

the radius and base equal to the perimeter of the circle

;

Zenodorus inserts a proof in extenso of Archimedes's pro-

position, with preliminary lemma. The perpendicular from

the centre of the circle circumscribing the polygon is easily

proved to be less than the radius of the given circle with

perimeter equal to that of the polygon ; whence the proposition

follows.

(3) The proof of this proposition depends on some pre-

liminary lemmas. The first proves that, if there be two

triangles on the same base and with the

same perimeter, one being isosceles and

the other scalene, the isosceles triangle

has the greater area. (Given the scalene

triangle BDC on the base BC, it is easy to

draw on BC as base the isosceles triangle

having the same perimeter. We have

only to take BH equal to ±(BD + DC),

bisect BC at E, and erect at E the per-

pendicular AE such that AE 2 = BH 2 -BE\)
Produce BA to F so that BA = AF, and join AD, DF.
Then BD+DF> BF, i.e. BA + AC, i.e. BD + DC, by hypo-

thesis; therefore DF > DC, whence in the triangles FAD,
CAD the angle FAD > the angle CAD.

Therefore I FAD > \L FAC
> ABCA.

Make the angle FAG equal to the angle BCA or ABC, so

that AG is parallel to BC; let BD produced meet AG in G,

and join GC.
1323-2 P
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Then A ABC = A GBC

> A DBC.

The second lemma is to the effect that, given two isosceles

triangles not similar to one another, if we construct on the

same bases two triangles similar to one another such that the

sum of their perimeters is equal to the sum of the perimeters,

of the first two triangles, then the sum of the areas of the

similar triangles is greater than the sum of the areas of

the non-similar triangles. (The easy construction of the

similar triangles is given in a separate lemma.)

Let the bases of the isosceles triangles, EB, BC\ be placed in

one straight line, BG being greater than EB.

Let ABC, DEB be the similar isosceles triangles, and FBC,
GEB the non-similar, the triangles being such that

BA +AG+ED+DB = BF+ FC +EG + GB.

Produce AF, GD to meet the bases in K, L. Then clearly

AK, GL bisect BC, EB at right angles at K, L.

Produce GL to H, making LH equal to GL.

Join HB and produce it to JS
T

;
join HF.

Now, since the triangles ABC, DEB -are similar, the angle

ABC is equal to the angle DEB or DBE.

Therefore Z NBC (= Z HBE = Z GBE) > Z DBE or Z ABC;

therefore the angle ABH
y
and a fortiori the angle FBH, is

less than two right angles, and HF meets BK in some point M.
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Now, by hypothesis, DB + BA = GB + BF:

therefore DB +BA=HB +BF> HF.

By an easy lemma, since the triangles DEB, ABC are similar,

(DB + BA) 2 = (
DL +AKY + (

BL + BKf
= (DL + AK) 2 +LK 2

.

Therefore (DL + AK) 2 + LK 2 > HF2

> (GL + FK) 2 + LK 2
,

whence DL + AK > GL + FK,

and it follows that AF > GD.

But £Ar
> £Z; therefore AF.BK > GD .BL.

Hence the ' hollow-angled (figure) ' (KoiXoyooviov) ABFC is

greater than the hollow-angled (figure) GEDB.

Adding A DEB + A BFC to each, w^e have

A DEB + & ABC > A GEB + A FBC.

The above is the only case taken by Zenodorus. The proof

still holds if EB = BC, so that BK = BL. But it fails in the

case in which EB > BC and the vertex G of the triangle EB
belonging to the non-similar pair is still above D and not

below it (as F is below A in the preceding case). This was
no doubt the reason why Pappus gave a proof intended to

apply to all the cases without distinction. This proof is the

same as the above proof by Zenodorus up to the point where

it is proved that

DL +AK > GL + FK,

but there diverges. Unfortunately the text is bad, and gives

no sufficient indication of the course of the proof ; but it would
seem that Pappus used the relations

DL : GL = A DEB : A GEB,

AK : FK = A ABC : A FBC,

and AK 2 :DL 2=A ABC: A DEB,

combined of course with the fact that GB + BF = DB + BA,
in order to prove the proposition that,

according as DL + AK > or < GL + FK,

ADEB + AABC> or < AGEB + AFBC.
p2



212 SUCCESSORS OF THE GREAT GEOMETERS

The proof of his proposition, whatever it was, Pappus

indicates that he will give later ; but in the text as we have it

the promise is not fulfilled.

Then follows the proof that the maximum polygon of given

perimeter is both equilateral and

equiangular.

(1) It is equilateral.

For, if not, let two sides of the

maximum polygon, as AB, BC, be

unequal. Join AC, and on AC as

base draw the isosceles triangle AFC
such that AF+ FC = AB +BC The

area of the triangle AFC is then

greater than the area of the triangle ABC, and the area of

the whole polygon has been increased by the construc-

tion : which is impossible, as by hypothesis the area is a

maximum.
Similarly it can be proved that no other side is unequal

to any other.

(2) It is also equiangular.

For, if possible, let the maximum polygon ABCDE (which

we have proved to be equilateral)

have the angle at B greater than

the angle at D. ThenBA C,DEC are

non-similar isosceles triangles. On
AC, CE as bases describe the two
isosceles triangles FAC, GEC similar

to one another which have the sum
of their perimeters equal to the

sum of the perimeters of BAC,
DEC. Then the sum of the areas of the two similar isosceles

triangles is greater than the sum of the areas of the triangles

BAC, DEC; the area of the polygon is therefore increased,

which is contrary to the hypothesis.

Hence no two angles of the polygon can be unequal.

The maximum polygon of given perimeter is therefore both

equilateral and equiangular.

Dealing with the sphere in relation to other solids having
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their surfaces equal to that of the sphere, Zenodorus confined

himself to proving (1) that the sphere is greater if the other

solid with surface equal to that of the sphere is a solid formed

by the revolution of a regular polygon about a diameter

bisecting it as in Archimedes, On the Sphere and Cylinder,

Book I, and (2) that the sphere is greater than any of

the regular solids having its surface equal to that of the

sphere.

Pappus's treatment of the subject is more complete in that

he proves that the sphere is greater than the cone or cylinder

the surface of which is equal to that of the sphere, and further

that of the five regular solids which have the same surface

that which has more faces is the greater.1

Hypsicles (second half of second century B.C.) has already

been mentioned (vol. i, pp. 419-20) as the author of the con-

tinuation of the Elements known as Book XIV. He is quoted

by Diophantus as having given a definition of a polygonal

number as follows

:

1 If there are as many numbers as we please beginning from
1 and increasing by the same common difference, then, when
the common difference is 1, the sum of all the numbers is

a triangular number; when 2, a square ; when 3, a pentagonal

number [and so on]. And the number of angles is called

after the number which exceeds the common difference by 2,

and the side after the number of terms including 1.'

This definition amounts to saying that the itth a-gonal num-
ber (1 counting as the first) is \n {2 + (n— i) (a— 2)}. If, as is

probable, Hypsicles wrote a treatise on polygonal numbers, it

has not survived. On the other hand, the 'AvacpopiKos (Ascen-

siones) known by his name has survived in Greek as well as in

Arabic, and has been edited with translation.2 True, the

treatise (if it really be by Hypsicles, and not a clumsy effort

by a beginner working from an original by Hypsicles)

does no credit to its author ; but it is in some respects

interesting, and in particular because it is the first Greek

1 Pappus, v, Props. 19, 38-56.
2 Manitius, Des Hypsikles Schrift Anajjhorikos, Dresden, Lehmannsche

Buchdruckerei, 1888.
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work in which we find the division of the ecliptic circle into

360 ' parts ' or degrees. The author says, after the preliminary

propositions,

'The circle of the zodiac having been divided into 360 equal
circumferences (arcs), let each of the latter be called a degree
in space (fiolpa rontKrj, ' local ' or ' spatial part '). And simi-

larly, supposing that the time in which the zodiac circle

returns to any position it has left is divided into 360 equal
times, let each of these be called a degree in time (fioipa

XpoviKrj).'

Fmm the word KaXeiadco (' let it be called ') we may perhaps

infer that the terms were new in Greece. This brings us to

the question of the origin of the division (1) of the circle of

the zodiac, (2) of the circle in general, into 360 parts. On this

question innumerable suggestions have been made. With
reference to (1) it was suggested as long ago as 1788 (by For-

maleoni) that the division was meant to correspond to the

number of days in the year. Another suggestion is that it

would early be discovered that, in the case of any circle the

inscribed hexagon dividing the circumference into six parts

has each of its sides equal to the radius, and that this would

naturally lead to the circle being regularly divided into six

parts ; after this, the very ancient sexagesimal system would

naturally come into operation and each of the parts would be

divided into 60 subdivisions, giving 360 of these for the whole

circle. Again, there is an explanation which is not even

geometrical, namely that in the Babylonian numeral system,

which combined the use of 6 and 10 as bases, the numbers 6,

60, 360, 3600 were fundamental round numbers, and these

numbers were transferred from arithmetic to the heavens.

The obvious objection to the first of these explanations

(referring the 360 to the number of days in the solar year) is

that the Babylonians were well acquainted, as far back as the

monuments go, with 365-2 as the number of days in the year.

A variant of the hexagon-theory is the suggestion that a

natural angle to be discovered, and to serve as a measure of

others, is the angle of an equilateral triangle, found by draw-

ing a star * like a six-spoked wheel without" any circle. If

the base of a sundial was so divided into six angles, it would be



HYPSICLES 215

natural to divide each of the sixth parts into either 10 or 60

parts ; the former division would account for the attested

division of the day into 60 hours, while the latter division on

the sexagesimal system would give the 360 time-degrees (each

of 4 minutes) making up the day of 24 hours. The purely

arithmetical explanation is defective in that the series of

numbers for which the Babylonians had special names is not

60, 360, 3600 but 60 (Soss), 600 (Ner), and 3600 or 60 2 (Sar).

On the whole, after all that has been said, I know of no

better suggestion than that of Tannery. 1 It is certain that

both the division of the ecliptic into 360 degrees and that of

the vv\6rni€pov into 360 time-degrees were adopted by the

Greeks from Babylon. Now the earliest division of the

ecliptic was into 12 parts, the signs, and the question is, how
were the signs subdivided? Tannery observes that, accord-

ing to the cuneiform inscriptions, as well as the testimony of

Greek authors, the sign was divided into parts one of which

(dargatu) was double of the other (murran), the former being

l/30th, the other (called stadium by Manilius) l/60th, of the

sign ; the former division would give 360 parts, the latter 720

parts for the whole circle. The latter division was more
natural, in view of the long-established system of sexagesimal

fractions; it also had the advantage of corresponding toler-

ably closely to the apparent diameter of the sun in comparison

with the circumference of the sun's apparent circle. But, on

the other hand, the double fraction, the 1/3 0th, was contained

in the circle of the zodiac approximately the same number of

times as there are days in the year, and consequently corre-

sponded nearly to the distance described by the sun along the

zodiac in one day. It would seem that this advantage was
sufficient to turn the scale in favour of dividing each sign of

the zodiac into 30 parts, giving 360 parts for the whole
circle.. While the Chaldaeans thus divided the ecliptic into

360 parts, it does not appear that they applied the same divi-

sion to the equator or any other circle. They measured angles

in general by ells, an ell representing 2°, so that the complete

circle contained 180, not 360, parts, which they called ells.

The explanation may perhaps be that the Chaldaeans divided

1 Tannery, ' La coudee astronomique et les anciennes divisions du
cercle ' (Memo ires scientifiques, ii, pp. 256-68).
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the diameter of the circle into 60 ells in accordance with their

usual sexagesimal division, and then came to divide the cir-

cumference into 180 such ells on the ground that the circum-

ference is roughly three times the diameter. The measure-

ment in ells and dactyl i (of which there were 24 to the ell)

survives in Hipparchus (On the Phaenomena ofEudoxus and
Aratus), and some measurements in terms of the same units

are given by Ptolemy. It was Hipparchus who first divided

the circle in general into 360 parts or degrees, and the

introduction of this division coincides with his invention of

trigonometry.

The contents of Hypsicles's tract need not detain us long.

The problem is : If we know the ratio which the length of the

longest day bears to the length of the shortest day at any
given place, to find how many time-degrees it takes any given

sign to rise ; and, after this has been found, the author finds

what length of time it takes any given degree in any sign to

rise, i.e. the interval between the rising of one degree-point on

the ecliptic and that of the next following. It is explained

that the longest day is the time during which one half of the

zodiac (Cancer, Leo, Virgo, Libra, Scorpio, Sagittarius) rises,

and the shortest day the time during which the other half

(Capricornus, Aquarius, Pisces, Aries, Taurus, Gemini) rises.

Now at Alexandria the longest day is to the shortest as 7

to 5; the longest therefore contains 210 'time-degrees', the

shortest 150. The two quadrants Cancer-Virgo and Libra-

Sagittarius take the same time to rise, namely 105 time-

degrees, and the two quadrants Capricornus-Pisces and Aries-

Gemini each take the same time, namely 75 time-degrees.

It is further assumed that the times taken by Virgo, Leo,

Cancer, Gemini, Taurus, Aries are in descending arithmetical

progression, while the times taken by Libra, Scorpio, Sagit-

tarius, Capricornus, Aquarius, Pisces continue the same de-

scending arithmetical series. The following lemmas are used

and proved :

I. If alt a
2

... a n , a n + 1
, an+2 ... a2n is a descending arithmeti-

cal progression of 2n terms with 8 (= a
x
— a

2
= a

2
—

a

3 =...)

as common difference,

a
1 + a

2
+...+an -(an+l + an+2 +...+a2n ) = n2

8.
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II. If Op a2 ...aw ... «2 n-i *s a descending arithmetical pro-

gression of 2ft— 1 terms with 8 as common difference and an
is the middle term, then

a
1 + a2 + ... + a2TO_1

= (2ft — l)an .

III. If a1} a
2
...an , ttn+l ...a2n is a descending arithmetical

progression of 2 ft terms, then

a
x + a

2 + ...+a2n = ^K + a2J = n{a2 + a2n.1)= ...

= w(an + an+1).

Now let ^4, 5, (7 be the descending series the sum of which

is 105, and D, E, F the next three terms in the same series

the sum of which is 75, the common difference being 8\ we
then have, by (I),

A + B + C-(D + E+F) = 98, or 30 = 98,

and 8= 3|.

Next, by (II), A + B + C = 3B, or 3B = 105, and B = 35;

therefore A, B, C, D, E, i^are equal to 38|, 35, 31 §, 28-J, 25,

21§ time-degrees respectively, which the author of the tract

expresses in time-degrees and minutes as 38*20', 35*, 31*40',

28* 20', 25*, 21* 40'. We have now to carry through the same

procedure for each degree in each sign. If the difference

between the times taken to rise by one sign and the next

is 3* 20', what is the difference for each of the 30 degrees in

the sign 1 We have here 30 terms followed by 30 other terms

of the same descending arithmetical progression, and the

formula (1) gives 3* .
20'= (30)

2
(Z, where d is the common

difference ; therefore d = -&> x 3*. 20'= 0* 0' 13" 20'". Lastly,

take the sign corresponding to 21* 40'. This is the sum of

a descending arithmetical progression of 30 terms a
Y

, a2
... <x30

with common difference 0* 0' 13" 20'". Therefore, by (III),

21* 40'= 15 (aj + c&ao), whence a
x
+ azo

= 1* 26' 40". Now,
since there are 30 terms a

x , a 2 ... a30 , we have

ai -a30
= 29d = 0* 6' 26" 40'".

It follows that a30 = 0* 40' 6" 40'" and a
x
= 0* 46' 33" 20"',
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and from these and the common difference l 0'13"20'" all

the times corresponding to all the degrees in the circle can be

found. /

The procedure was probably, as Tannery thinks, taken

direct from the Babylonians, who would no doubt use it for

the purpose of enabling the time to be determined at any

hour of the night. Another view is that the object was
astrological rather than astronomical (Manitius). In either

case the method was exceedingly rough, and the assumed

increases and decreases in the times of the risings of the signs

in arithmetical progression are not in accordance with the

facts. The book could only have been written before the in-

vention of trigonometry by Hipparchus, for the problem of

finding the times of rising of the signs is really one of

spherical trigonometry, and these times were actually cal-

culated by Hipparchus and Ptolemy by means of tables of

chords.

Dionysodorus is known in the first place as the author of

a solution of the cubic equation subsidiary to the problem of

Archimedes, On the Sphere and Cylinder, II. 4, To cut a given

sphere by a plane so that the volumes of the segments have to

one another a given ratio (see above, p. 46). Up to recently

this Dionysodorus was supposed to be Dionysodorus of Amisene

in Pontus, whom Suidas describes as ' a mathematician worthy

of mention in the field of education'. But we now learn from

a fragment of the Herculaneum Roll, No. 1044, that ' Philonides

was a pupil, first of Eudemus, and afterwards of Dionysodorus,

the son of Dionysodorus the Caunian '. Now Eudemus is

evidently Eudemus of Pergamum to whom Apollonius dedi-

cated the first two Books of his Conies, and Apollonius actually

asks him to show Book II to Philonides. In another frag-

ment Philonides is said to have published some lectures by

Dionysodorus. Hence our Dionysodorus may be Dionysodorus

of Caunus and a contemporary of Apollonius, or very little

later. 1 A Dionysodorus is also mentioned by Heron 2 as the

author of a tract On the Spire (or tore) in which he proved

that, if d be the diameter of the revolving circle which

1 W. Schmidt in Bibliotheca mathematica, iv3 , pp. 321-5.
2 Heron, Metrica, ii. 13, p. 128. 3.
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generates the tore, and c the distance of its centre from the

axis of revolution,

(volume of tore) : nc2
. d = \ird2

: \cd,

that is, (volume of tore) = \tv
2

. cd2
,

which is of course the product of the area of the generating

circle and the length of the path of its centre of gravity. The

form in which the result is stated, namely that the tore is to

the cylinder with height d and radius c as the generating

circle of the tore is to' half the parallelogram cd, indicates

quite clearly that Dionysodorus proved his result by the same

procedure as that employed by Archimedes in the Method and

in the book On Conoids and Spheroids ; and indeed the proof

on Archimedean lines is not difficult. »

Before passing to the mathematicians who are identified

with the discovery and development of trigonometry, it will

be convenient, I think, to dispose of two more mathematicians

belonging to the last century B.C., although this involves

a slight departure from chronological order ; I mean Posidonius

and Geminus. «

Posidonius, a Stoic, the teacher of Cicero, is known as

Posidonius of Apamea (where he was born) or of Rhodes

(where he taught) ; his date may be taken as approximately

135-51 B.C. In pure mathematics he is mainly quoted as the

author of certain definitions, or for views on technical terms,

e.g. 'theorem' and 'problem', and subjects belonging to ele-

mentary geometry. More important were his contributions

to mathematical geography and astronomy. He gave his

great work on geography the title On the Ocean, using the

word which had always had such a fascination for the Greeks
;

its contents are known to us through the copious quotations

from it in Strabo ; it dealt with physical as well as mathe-

matical geography, the zones, the tides and their connexion

with the moon, ethnography and all sorts of observations made
during extensive travels. His astronomical book bore the

title Meteorologica or irepl fierecopcov, and, while Geminus
wrote a commentary on or exposition of this work, we may
assign to it a number of views quoted from Posidonius in
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Cleomedes's work De motu circulari corporum caelestium.

Posidonius also wrote a separate tract on the size of the sun.

The two things which are sufficiently important to deserve

mention here are (1) Posidonius's measurement of the circum-

ference of the earth, (2) his hypothesis as to the distance and
size of the sun.

(1) He estimated the circumference of the earth in this

way. He assumed (according to Cleomedes *) that, whereas

the star Canopus, invisible in Greece, was just seen to graze the

horizon at Rhodes, rising and setting again immediately, the

meridian altitude of the same star at Alexandria was ' a fourth

part of a sign, that is, one forty-eighth part of the zodiac

circle' (= 7-|°) ; and he observed that the distance between

the two places (supposed to lie on the same meridian) ' was

considered to be 5,000 stades'. The circumference of the

earth was thus made out to be 240,000 stades. Unfortunately

the estimate of the difference of latitude, 7-|°, was very far

from correct, the true difference being 5j° only ; moreover

the estimate of 5,000 stades for the distance was incorrect,

being only the maximum estimate put upon it by mariners,

while some put it at 4.000 and Eratosthenes, by observations

of the shadows of gnomons, found it to be 3,750 stades only.

Strabo, on the other hand, says that Posidonius favoured ' the

latest of the measurements which gave the smallest dimen-

sions to the earth, namely about 180,000 stades'. 2 This is

evidently 48 times 3,750, so that Posidonius combined Erato-

sthenes's figure of 3,750 stades with the incorrect estimate

of 7|° for the difference of latitude, although Eratosthenes

presumably obtained the figure of 3,750 stades from bis own
estimate (250,000 or 252,000; of the circumference of the earth

combined with an estimate of the difference of latitude which

was about 5f° and therefore near the truth.

(2) Cleomedes 3 tells us that Posidonius supposed the circle

in which the sun apparently moves round the earth to be

10,000 times the size of a circular section of the earth through

its centre, and that with this assumption he combined the

1 Cleomedes, De motu circulari, i. 10, pp. 92-4.
2 Strabo, ii. c. 95.
3 Cleomedes, op. cit. ii. 1, pp. 144-6, p. 98. 1-5.
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statement of Eratosthenes (based apparently upon hearsay)

that at Syene, which is under the summer tropic, and

throughout a circle round it of 300 stades in diameter, the

upright gnomon throws no shadow at noon. It follows from

this that the diameter of the sun occupies a portion of the

sun's circle 3,000,000 stades in length ;
in other words, the

diameter of the sun is 3,000,000 stades. The assumption that

the sun's circle is 10,000 times as large as a great circle of the

earth was presumably taken from Archimedes, who had proved

in the' Sand-reckoner that the diameter of the sun's orbit is

less than 10,000 times that of the earth; Posidonius in fact

took the maximum value to be the true value ; but his esti-

mate of the sun's size is far nearer the truth than the estimates

of Aristarchus, Hipparchus, and Ptolemy. Expressed in terms

of the mean diameter of the earth, the estimates of these

astronomers give for the diameter of the sun the figures 6 j,

12§, and 5-| respectively; Posidonius's estimate gives 39J, the

true figure being 108-9.

In elementary geometry Posidonius is credited by Proclus

with certain definitions. He defined ' figure ' as ' confining

limit' (irepas avyKXelovY and ' parallels' as 'those lines which,

being in one plane, neither converge nor diverge, but have all

the perpendiculars equal which are drawn from the points of

one line to the other'. 2 (Both these definitions are included

in the Definitions of Heron.) He also distinguished seven

species of quadrilaterals, and had views on the distinction

between theorem and problem. Another indication of his

interest in the fundamentals of elementary geometry is the

fact 3 that he wrote a separate work in refutation of the

Epicurean Zeno of Sidon, who had objected to the very begin-

nings of the Elements on the ground that they contained un-

proved assumptions. Thus, said Zeno, even Eucl.1. 1 requires it

to be admitted that ' two straight lines cannot have a common
segment

'
; and, as regards the ' proof ' of this fact deduced

from the bisection of a circle by its diameter, he would object

that it has to be assumed that two arcs of circles cannot have

a common part. Zeno argued generally that, even if we
admit the fundamental principles of geometry, the deductions

1 Proclus on Eucl. I, p. 143. 8. 2
lb., p. 176. 6-10.

3
lb., pp. 199. 14-200. 3.
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from them cannot be proved without the admission of some-

thing else as well which has not been included in the said

principles, and he intended by means of these criticisms to

destroy the whole of geometry. 1 We can understand, there-

fore, that the tract of Posidonius was a serious work.

A definition of the centre of gravity by one ' Posidonius a

Stoic ' is quoted in Heron's Mechanics, but, as the writer, goes

on to say that Archimedes introduced a further distinction, we
may fairly assume that the Posidonius in question is not

-Posidonius of Rhodes, but another, perhaps Posidonius of

Alexandria, a pupil of Zeno of Cittium in the third cen-

tury B.C.

We now come to Geminus, a very important authority on

many questions belonging to the history of mathematics, as is

shown by the numerous quotations from him in Proclus's

Commentary on Euclid, Book I. His date and birthplace are

uncertain, and the discussions on the subject now form a whole

literature for which reference must be made to Manitius's

edition of the so-called Gemini elementa astronomiae (Teubner,

1898) and the article 'Geminus' in Pauly-Wissowa's Real-

Encyclopadie. The doubts begin with his name. Petau, who
included the treatise mentioned in his Uranologion (Paris,

1630), took it to be the Latin Geminus. Manitius, the latest

editor, satisfied himself that it was Geminus, a Greek name,

judging from the fact that it consistently appears with the

properispomenon accent in Greek (Tefuvos), while it is also

found in inscriptions with the spelling Tejidvos; Manitius

suggests the derivation from yep., as 'EpyTvos from kpy, and

'AXtgivos from d\e£ ; he compares also the unmistakably

Greek names 'Iktivo?, Kparivos. Now, however, we are told

(by Tittel) that the name is, after all, the Latin Ge'mmus,

that Teplvos came to be so written through false analogy

with 'AXegivos, &c, and that ref/^ea/o?, if the reading is

correct, is also wrongly formed on the model of AvTCdvelvos,

'Aypimreiva. The occurrence of a Latin name in a centre

of Greek culture need not surprise us, since Romans settled in

such centres in large numbers during the last century B.C.

Geminus, however, in spite of his name, was thoroughly Greek.

1 Proclus on Eucl. I, pp. 214. 18 215. 13, p. 216. 10-19, p. 217. 10-23.
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An upper limit for his date is furnished by the fact that he

wrote a commentary on or exposition of Posidonius's work

7T€pi /i€Te6pcou ; on the other hand, Alexander Aphrodisiensis

(about a.d. 210) quotes an important passage from an 'epitome'

of this egrjyrjais by Geminus. The view most generally

accepted is that he was a Stoic philosopher, born probably

in the island of Rhodes, and a pupil of Posidonius, and that

he wrote about 73-67 B.C.

Of Geminus's works that which has most interest for us

is a comprehensive work on mathematics. Proclus, though

he makes great use of it, does not mention its title, unless

indeed, in the passage where, after quoting from Geminus

a classification of lines which never meet, he says ' these

remarks I have selected from the (piXoKaXta of Geminus ',l

the word (piXoKaXia is a title or an alternative title. Pappus,

however, quotes a work of Geminus ' on the classification of

the mathematics' (kv rco irepl rrjs rcov fiadrj/jLccTCov rd^eoas),

while Eutocius quotes from ' the sixth book of the doctrine of

the mathematics ' (kv tco e/cro) ttjs tcov fxaOrjfjLa.Tooi' Oecopias).

The former title corresponds well enough to the long extract

on the division of the mathematical sciences into arithmetic,

geometry, mechanics, astronomy, optics, geodesy, canonic

(musical harmony) and logistic which Proclus gives in his

first prologue, and also to the fragments contained in the

Anonymi variae collectiones published by Hultsch in his

edition of Heron ; but it does not suit most of the other

passages borrowed by Proclus. The correct title was most

probably that given by Eutocius, The Doctrine, or Theory,

of the Mathematics; and Pappus probably refers to one

particular section of the work, say the first Book. If the

sixth Book treated of conies, as we may conclude from

Eutocius's reference, there must have been more Books to

follow; for Proclus has preserved us details about higher

curves, which must have come later. If again Geminus
finished his work and wrote with the same fullness about the

other branches of mathematics as he did about geometry,

there must have been a considerable number of Books

altogether. It seems to have been designed to give a com-

plete view of the whole science of mathematics, and in fact

1 Proclus on Eucl. I, p. 177. 24.
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to have been a sort of encyclopaedia of the subject. The
quotations of Proclus from Geminus's work do not stand

alone ; we have other collections of extracts, some more and
some less extensive, and showing varieties of tradition accord-

ing to the channel through which they came down. The
scholia to Euclid's Elements, Book I, contain a considerable

part of the commentary on the Definitions of Book I, and are

valuable in that they give Geminus mire and simple, whereas

Proclus includes extracts from other authors. Extracts from

Geminus of considerable length are included in the Arabic

commentary by an-Nairizi (about A.D. 900) who got them
through the medium of Greek commentaries on Euclid,

especially that of Simplicius. It does not appear to be

doubted any longer that ' Aganis ' in an-Nairizi is really

Geminus; this is inferred from the close agreement between

an-Nairizi's quotations from ' Aganis ' and the correspond-

ing passages in Proclus ; the difficulty caused by the fact

that Simplicius calls Aganis 'socius noster' is met by the

suggestion that the particular word socius is either the

result of the double translation from the Greek or means

nothing more, in the mouth of Simplicius, than ' colleague

'

in the sense of a worker in the same field, or ' authority '.

A few extracts again are included in the Anonymi variae

collectiones in Hultsch's Heron. Nos. 5-14 give definitions of

geometry, logistic, geodesy and their subject-matter, remarks

on bodies as continuous magnitudes, the three dimensions as

* principles ' of geometry, the purpose of geometry, and lastly

on optics, with its subdivisions, optics proper, Catoptrica and

(rKr]yoypa(j)LKrj, scene-painting (a sort of perspective), with some

fundamental principles of optics, e.g. that all light travels

along straight lines (which are broken in the cases of reflection

and refraction), and the division between optics and natural

philosophy (the theory of light), it being the province of the

latter to investigate (what is a matter of indifference to optics)

whether (1) visual rays issue from the eye, (2) images proceed

from the object and impinge on the eye, or (3) the intervening

air is aligned or compacted with the beam-like breath or

emanation from the eye.

Nos. 80-6 again in the same collection give the Peripatetic

explanation of the name mathematics, adding that the term
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was applied by the early Pythagoreans more particularly

to geometry and arithmetic, sciences which deal with the pure,

the eternal and the unchangeable, but was extended by later

writers to cover what we call ' mixed ' or applied mathematics,

which, though theoretical, has to do with sensible objects, e.g.

astronomy and optics. Other extracts from Geminus are found

in extant manuscripts in connexion with Damianus's treatise

on optics (published by R. Schone, Berlin, 1897). The defini-

tions of logistic and geometry also appear, but with decided

differences, in the scholia to Plato's Charmides 165 E. Lastly,

isolated extracts appear in Eutocius, (1) a remark reproduced

in the commentary on Archimedes's Plane Equilibriums to

the effect that Archimedes in that work gave the name of

postulates to what are really axioms, (2) the statement that

before Apollonius's time the conies were produced by cutting

different cones (right-angled, acute-angled, and obtuse-angled)

by sections perpendicular in each case to a generator.1

The object of Geminus's work was evidently the examina-

tion of the first principles, the logical building up of mathe-

matics on the basis of those admitted principles, and the

defence of the whole structure against the criticisms of

the enemies of the science, the Epicureans and Sceptics, some

of whom questioned the unproved principles, and others the

logical validity of the deductions from them. Thus in

geometry Geminus dealt first with the principles or hypotheses

(ap\ai, vnoOicreis) and then with the logical deductions, the

theorems and problems (ra fierce rd? dp)(ds). The distinction

is between the things which must be taken for granted but

are incapable of proof and the things which must not be

assumed but are matter for demonstration. The principles

consisting of definitions, postulates, and axioms, Geminus
subjected them severally to a critical examination from this

point of view, distinguishing carefully between postulates and
axioms, and discussing the legitimacy or otherwise of those

formulated by Euclid in each class. In his notes on the defini-

tions Geminus treated them historically, giving the various

alternative definitions which had been suggested for each

fundamental concept such as ' line ',
' surface ', ' figure ','body',

' angle ', &c., and frequently adding instructive classifications

1 Eutocius, Cbmm. on Apollonius's Conks, ad init.

1523.2 Q
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of the different species of the thing defined. Thus in the

case of ' lines ' (which include curves) he distinguishes, first,

the composite (e.g. a broken line forming an angle) and the

incomposite. The incomposite are subdivided into those

' forming a figure ' (o-xrjiioLronoLovcrai) or determinate (e.g.

circle, ellipse, cissoid) and those not forming a figure, inde-

terminate and extending without limit (e. g. straight line,

parabola, hyperbola, conchoid). In a second classification

incomposite lines are divided into (1) ' simple ', namely the circle

and straight line, the one ' making a figure ', the other extend-

ing without limit, and (2) 'mixed'. 'Mixed' lines again are

divided into (a) 'lines in planes', one kind being a line meet-

ing itself (e.g. the cissoid) and another a line extending

without limit, and (6) ' lines on solids ', subdivided into lines

formed by sections (e.g. conic sections, spiric curves) and

'lines round solids' (e.g. a helix round a cylinder, sphere, or

cone, the first of which is uniform, homoeomeric, alike in all

its parts, while the others are non-uniform). Geminus gave

a corresponding division of surfaces into simple and mixed,

the former being plane surfaces and spheres, while examples

of the latter are the tore or anchor-ring (though formed by
the revolution of a circle about an axis) and the conicoids of

revolution (the right-angled conoid, the obtuse-angled conoid,

and the two spheroids, formed by the revolution of a para-

bola, a hyperbola, and an ellipse respectively about their

axes). He observes that, while there are three homoeomeric

or uniform ' lines ' (the straight line, the circle, and the

cylindrical helix), there are only two homoeomeric surfaces,

the plane and the sphere. Other classifications are those of

' angles ' (according to the nature of the two lines or curves

which form them) and of figures and plane figures.

When Proclus gives definitions, &c, by Posidonius, it is

evident that he obtained them from Geminus's work. Such

are Posidonius's definitions of ' figure ' and ' parallels ', and his

division of quadrilaterals into seven kinds. We may assume

further that, even where Geminus did not mention the name
of Posidonius, he was, at all events so far as the philosophy of

mathematics was concerned, expressing views which were

mainly those of his master.
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Attempt to prove the Parallel-Postulate.

Gemimis devoted much attention to the distinction between

postulates and axioms, giving the views of earlier philoso-

phers and mathematicians (Aristotle, Archimedes, Euclid,

Apollonius, the Stoics) on the subject as well as his own. It

was important in view of the attacks of the Epicureans and

Sceptics on mathematics, for (as Geminus says) it is as futile

to attempt to prove the indemonstrable (as Apollonius did

when he tried to prove the axioms) as it is incorrect to assume

what really requires proof, ' as Euclid did in the fourth postu-

late [that all right angles are equal] and in the fifth postulate

[the parallel-postulate] '- 1

The fifth postulate was the special stumbling-block.

Geminus observed that the converse is actually proved by

Euclid in L 1 7 ; also that it is conclusively proved that an

angle equal to a right angle is not necessarily itself a right

angle (e.g. the ' angle ' between the circumferences of two semi-

circles on two equal straight lines with a common extremity

and at right angles to one another) ; we cannot therefore admit

that the converses are incapable of demonstration. 2 And

' we have learned from the very pioneers of this science not to

have regard to mere plausible imaginings when it is a ques-

tion of the reasonings to be included in our geometrical

doctrine. As Aristotle says, it is as justifiable to ask scien-

tific proofs from a rhetorician as to accept mere plausibilities

from a geometer ... So in this case (that of the parallel-

postulate) the fact that, when the right angles are lessened, the

straight lines converge is true and necessary ; but the state-

ment that, since they converge more and more as they are

produced, they will sometime meet is plausible but not neces-

sary, in the absence of some argument showing that this is

true in the case of straight lines. For the fact that some lines

exist which approach indefinitely but yet remain non-secant
(dcrvfjnrTcoToi), although it seems improbable and paradoxical,
is nevertheless true and fully ascertained with reference to

other species of lines [the hyperbola and its asymptote and
the conchoid and its asymptote, as Geminus says elsewhere].
May not then the same thing be possible in the case of

1 Proclus on Eucl. I, pp. 178-82. 4; 183. 14-184. 10.
2

lb., pp. 183. 26-184. 5.

Q 2
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straight lines which happens in the case of the lines referred

to? Indeed, until the statement in the postulate is clinched

by proof, the facts shown in the case of the other lines may
direct our imagination the opposite way. And, though the

controversial arguments against the* meeting of the straight

lines should contain much that is surprising, is there not all

the more reason why we should expel from our body of

doctrine this merely plausible and unreasoned (hypothesis) 1

It is clear from this that we must seek a proof of the present

theorem, and that it is alien to the special character of

postulates.' 1

Much of this might have been written by a modern
geometer. Geminus's attempted remedy was to substitute

a definition of parallels like that of Posidonius, based on the

notion of eqvAdistance. An-Naiiizi gives the definition as

follows :
' Parallel straight lines are straight lines situated in

the same plane and such that the distance between them, if

they are produced without limit in both directions at the same
time, is everywhere the same ', to which Geminus adds the

statement that the said distance is the shortest straight line

that can be drawn between them. Starting from this,

Geminus proved to his own satisfaction the propositions of

Euclid regarding parallels and finally the parallel-postulate.

He first gave the propositions (l) that the ' distance ' between

the two lines as defined is perpendicular to both, and (2) that,

if a straight line is perpendicular to each of two straight lines

and meets both, the two straight lines are parallel, and the

' distance ' is the intercept on the perpendicular (proved by

reductio ad absurdum). Next come (3) Euclid's propositions

I. 27, 28 that, if two lines are parallel, the alternate angles

made by any transversal are equal, &c. (easily proved by

drawing the two equal ' distances ' through the points of

intersection with the transversal), and (4) Eucl. I. 29, the con-

verse of I. 28, which is proved by reductio ad absurdum, by

means of (2) and (3). Geminus still needs Eucl. I. 30, 31

(about parallels) and I. 33, 34 (the first two propositions

relating to parallelograms) for his final proof of the postulate,

which is to the following effect.

Let AB, CD be two straight lines met by the straight line

1 Proclus on Eucl. I, pp. 192. 5-193. 3.
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EF, and let the interior angles BEF, EFD be together less

than two right angles.

Take any point H on FD and draw IIK parallel to AB
meeting EF in K. Then, if we bisect EF at L, LF nt M, AIF

at N, and so on, we shall at last have a length, as FN, less

than FK. Draw FG, NOP parallel to AB. Produce FO to Q,

and let FQ be the same multiple of FO that FE is of FN
;

then shall AB, CD meet in Q.

Let S be the middle point of FQ and i2 the middle point of

FS. Draw through R, S, Q respectively the straight lines

RPG, STU, QV parallel to EF. Join MR, LS and produce

them to T, V. Produce FG to U.

Then, in the triangles FON, ROP, two angles are equal

respectively, the vertically opposite angles FON, ROP and

the alternate angles NFO, PRO ; and FO = OR ; therefore

RP = FN.
And FN, PG in the parallelogram FNPG are equal ; there-

fore RG = 2FN = FM (whence AIR is parallel to FG or AB).

Similarly we prove that SU= 2FM = FL< and LS is

parallel to FG or AB.
Lastly, by the triangles FLS, QVS, in which the sides FS,

SQ are equal and two angles are respectively equal, QV = FL.

Therefore QV = LE.

Since then EL, QV are equal and parallel, so are EQ, LV,
and (says Geminus) it follows that AB passes through Q.
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What follows is actually that both EQ and AB (or EB)
are. parallel to LV, and Geminus assumes that EQ, AB
are coincident (in other words, that through a given point

only one parallel can be drawn to a given straight line, an

assumption known as PJayfair's Axiom, though it is actually

stated in Proclus on Eucl. I. 31).

The proof therefore, apparently ingenious as it is, breaks

down. Indeed the method is unsound frpm the beginning,

since (as Saccheri pointed out), before even the definition of

parallels by Geminus can be used, it has to be proved that
1 the geometrical locus of points equidistant from a straight

line is a straight line ', and this cannot be proved without a

postulate. But the attempt is interesting as the first which

has come down to us, although there must have been many
others by geometers earlier than Geminus.

Coming now to the things which follow from the principles

(rd /jieTa ras dpyds), we gather from Proclus that Geminus
carefully discussed such generalities as the nature of elements,

the different views which had been held of the distinction

between theorems and problems, the nature and significance

of Siopia/xoi (conditions and limits of possibility), the meaning

of ' porism ' in the sense in which Euclid used the word in his

Porisms as distinct from its other meaning of ' corollary ', the

different sorts of problems and theorems, the two varieties of

converses (complete and partial), topical or Zoctts-theorems,

with the classification of loci. He discussed also philosophical

questions, e.g. the question whether a line is made up of

indivisible parts (e£ d^poav), which came up in connexion

with Eucl. I. 10 (the bisection of a straight line).

The book was evidently not less exhaustive as regards

higher geometry. Not only did Geminus mention the spiric

curves, conchoids and cissoids in his classification of curves
;

he showed how they were obtained, and gave proofs, presum-

ably of their principal properties. Similarly he gave the

proof that there are three homoeomeric or uniform lines or

curves, the straight line, the circle and the cylindrical helix.

The proof of ' uniformity ' (the property that any portion of

the line or curve will coincide with any other portion of the

same length) was preceded by a proof that, if two straight

lines be drawn from any point to meet a uniform line or curve
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and make equal angles with it, the straight lines are equal.1

As Apollonius wrote on the cylindrical helix and proved the

fact of its uniformity, we may fairly assume that Geininus

was here drawing upon Apollonius.

Enough has been said to show how invaluable a source of

information Geminus's work furnished to Proclus and all

writers on the history of mathematics who had access to it.

In astronomy we know that Geminus wrote an egrjyrjo-is of

Posidonius's work, the Meteorologica or irepi fitTeooptov. This

is the source of the famous extract made from Geminus by
Alexander i\phrodisiensis, and reproduced by Simplicius in

,

his commentary on the Physics of Aristotle,2 on which Schia-

parelli relied in his attempt to show that it was Heraclides of

Pontus, not Aristarchus of Samos, who first put forward the

heliocentric, hypothesis. The extract is on the distinction

between physical and astronomical inquiry as applied to the

heavens. It is the business of the physicist to consider the

substance of the heaven and stars, their force and quality,

their coming into being and decay, and he is in a position to

prove the facts about their size, shape, and arrangement;

astronomy, on the other hand, ignores the physical side,

proving the arrangement of the heavenly bodies by considera-

tions based on the view that the heaven is a real koct/xos, and,

when it tells us of the shapes, sizes and distances of the earth,

sun and moon, of eclipses and conjunctions, and of the quality

and extent of the movements of the heavenly bodies, it is

connected with the mathematical investigation of quantity,

size, form, or shape, and uses arithmetic and geometry to

prove its conclusions. Astronomy deals, not with causes, but

with facts ; hence it often proceeds by hypotheses, stating

certain expedients by which the phenomena may be saved.

For example, why do the sun, the moon and the planets

appear to move irregularly ? To explain the observed facts

we may assume, for instance, that the orbits are eccentric

circles or that the stars describe epicycles on a carrying

circle ; and then we have to go farther and examine other

ways in which it is possible for the phenomena to be brought

about. ' Hence we actually find a certain person [Heraclides

1 Proclus on Eucl. I, pp. 112. 22-113. 3, p. 251. 3-11.
2 Simpi. in Phys., pp. 291-2, ed. Diels.



232 SUCCESSORS OF THE GREAT GEOMETERS

of Pontus] coming forward and saying that, even on the

assumption that the earth m,oves in a certain way, while

the sun is in a certain way at rest, the apparent irregularity

with reference to the sun may be saved! Philological con-

siderations as well as the other notices which we possess

about Heraclid.es make it practically certain that ' Heraclides

of Pontus ' is an interpolation and that Geminus said tl?

simply, ' a certain person ', without any name, though he

doubtless meant Aristarchus of Samos. 1

Simplicius says that Alexander quoted this extract from

the epitome of the e£rjyr]<rLs by Geminus. As the original

work was apparently made the subject of an abridgement, we
gather that it must have been of considerable scope. It is

a question whether e£rjyr](Tis means 'commentary' or 'ex-

position
'

; I am inclined to think that the latter interpretation

is the correct one, and that Geminus reproduced Posidonius's

work in its entirety with elucidations and comments ; this

seems to me to be suggested by the words added by Simplicius

immediately after the extract ' this is the account given by

Geminus, or Posidonius in Geminus, of the difference between

physics and astronomy ', which seems to imply that Geminus

in our passage reproduced Posidonius textually.

' Introduction to the Phaenomena ' attributed to Geminus.

There remains the treatise, purporting to be by Geminus,

which has come down to us under the title Pe/xtVof elaaycoyrj

eh ra ^aLi/ofieua. 2 What, if any, is the relation of this work
to the exposition of Posidonius's Meteorologlca or the epitome

of it just mentioned ? One view is that the original Isagoge

of Geminus and the k^fjyqcris of Posidonius were one and the

same work, though the Isagoge as we have it is not by
Geminus, but by an unknown compiler. The objections to

this are, first, that it does not contain the extract given by

Simplicius, which would have come in usefully at the begin-

ning of an Introduction to Astronomy, nor the other extract

given by Alexander from Geminus and relating to the rainbow

which seems likewise to have come from the tgijyrjo-is
3

;

1 Cf. Aristarchus of Samos, pp. 275-83.
2 Edited by Manitius (Teubner, 1898).
3 Alex. Aphr. on Aristotle's Meteorologica, hi. 4, 9 (Ideler. ii, p. 128;

p. 152. 10, Hayduck).
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secondly, that it does not anywhere mention the name of

Posidonius (not, perhaps, an insuperable objection) ; and,

thirdly, that there are views expressed in it which are not

those held by Posidonius but contrary to them. Again, the

writer knows how to give a sound judgement as between

divergent views, writes in good style on the whole, and can

hardly have been the mere compiler of extracts from Posi-

donius which the view in question assumes him to be. It

seems in any case safer to assume that the Isagoge and the

egij-yrjaris were separate works. At the same time, the Isagoge,

as we have it, contains errors which we cannot attribute to

Geminus. The choice, therefore, seems to lie between two

alternatives : either the book is by Geminus in the main, but

has in the course of centuries suffered deterioration by inter-

polations, mistakes of copyists, and so on, or it is a compilation

of extracts from an original Isagoge by Geminus with foreign

and inferior elements introduced either by the compiler him-

self or by other prentice hands. The result is a tolerable ele-

mentary treatise suitable for teaching purposes and containing

the most important doctrines of Greek astronomy represented

from the standpoint of Hipparchus. Chapter 1 treats of the

zodiac, the solar year, the irregularity of the sun's motion,

which is explained by the eccentric position of the sun's orbit

relatively to the zodiac, the order and the periods of revolution

of the planets and the moon. In § 23 we are told that all

the fixed stars do not lie on one spherical surface, but some
are farther away than others— a doctrine due to the Stoics.

Chapter 2, again, treats of the twelve signs of the zodiac,

chapter 3 of the constellations, chapter 4 of the axis of

the universe and the poles, chapter 5 of the circles on the

sphere (the equator and the parallel circles, arctic, summer-
tropical, winter-tropical, antarctic, the colure-circles, the zodiac

or ecliptic, the horizon, the meridian, and the Milky Way),

chapter 6 of Day and Night, their relative lengths in different

latitudes, their lengthening and shortening, chapter 7 of

the times which the twelve signs take to rise. Chapter 8

is a clear, interesting and valuable chapter on the calendar,

the length of months and years and the various cycles, the

octaeteris, the 16-years and 160-years cycles, the 19-years

cycle of Euctemon (and Meton), and the cycle of Callippus
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(76 years). Chapter 9 deals with the moon's phases, chapters

10,11 with eclipses of the sun and moon, chapter 1 2 with the

problem of accounting for the motions of the sun, moon and
planets, chapter 13 with Risings and Settings and the various

technical terms connected therewith, chapter 14 with the

circles described by the fixed stars, chapters 15 and 16 with

mathematical and physical geography, the zones, &c. (Geminus
follows Eratosthenes's evaluation of the circumference of the

earth, not that of Posidonius). Chapter 17, on weather indica-

tions, denies the popular theory that changes of atmospheric

conditions depend on the rising and setting of certain stars,

and states that the predictions of weather (kirio-rniacrLai) in

calendars (TTapanrjyfiara) are only derived from experience

and observation, and have no scientific value. Chapter 18 is

on the e^Xty/xo?, the shortest period which contains an integral

number of synodic months, of days, and of anomalistic revolu-

tions of the moon ; this period is three times the Chaldaean

period of 223 lunations used for predicting eclipses. The end

of the chapter deals with the maximum, mean, and minimum
daily motion of the moon. The chapter as a whole does not

correspond to the rest of the book ; it deals with more difficult

matters, and is thought by Manitius to be a fragment only of

a discussion to which the compiler did not feel himself equal.

At the end of the work is a calendar (Partvpegma) giving the

number of days taken by the sun to traverse each sign of

the zodiac, the risings and settings of various stars and the

weather indications noted by various astronomers, Democritus,

Eudoxus, Dositheus, Euctemon, Meton, Callippus ; this calendar

is unconnected with the rest of the book and the contents

are in several respects inconsistent with it, especially the

division of the year into quarters which follows Callippus

rather than Hipparchus. Hence it has been, since Boeckh's

time, generally considered not to be the work of Geminus.

Tittel, however, suggests that it is not impossible that Geminus

may have reproduced an older Partvpegma of Callippus.



XVI

SOME HANDBOOKS

The' description of the handbook on the elements of

astronomy entitled the Introduction to the Phaenomena and

attributed to Geminus might properly have been reserved

for this chapter. It was, however, convenient to deal with

Geminus in close connexion with Posidonius ; for Geminus
wrote an exposition of Posidonius's Meteorological related to the

original work in such a way that Simplicius, in quoting a long

passage from an epitome of this work, could attribute the

passage to either Geminus or ' Posidonius in Geminus
'

; and it

is evident that, in other subjects too, Geminus drew from, and
was influenced by, Posidonius.

The small work Be motu circulari corporum caelestium by
Cleomedes (KXeo/xrjSovs kvkXlkt) Seoopia) in two Books is the

production of a much less competent person, but is much more
largely based on Posidonius. This is proved by several refer-

ences to Posidonius by name, but it is specially true of the

very loug first chapter of Book II (nearly half of the Book)

which seems for the most part to be copied bodily from

Posidonius, in accordance with the author's remark at the

end of Book I that, in giving the refutation of the Epicurean

assertion that the sun is just as large as it looks, namely one

foot in diameter, he will give so much as suffices for such an

introduction of the particular arguments used by ' certain

authors who have written whole treatises on this one topic

(i. e. the size of the sun), among whom is Posidonius \ The
interest of the book then lies mainly in what is quoted from

Posidonius ; its mathematical interest is almost nil.

The date of Cleomedes is not certainly ascertained, but, as

he mentions no author later than Posidonius, it is permissible

to suppose, with Hultsch, that he wrote about the middle of
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the first century B. c. As he Seems to know nothing of the

works of Ptolemy, he can hardly, in any case, have lived

later than the beginning of the second century A. d.

Book I begins with a chapter the object of which is to

prove that the universe, which has the shape of a sphere,

is limited and surrounded by void extending without limit in

all directions, and to refute objections to this view. Then
follow chapters on the five parallel circles in the heaven and

the zones, habitable and uninhabitable (chap. 2) ; on the

motion of the fixed stars and the independent (TrpoaipeTiKat)

movements of the planets including the sun and moon
(chap. 3); on the zodiac and the effect of the sun's motion in

it (chap. 4) ; on the inclination of the axis of the universe and

its effects on the lengths of days and nights at different places

(chap. 5); on the inequality in the rate of increase in the

lengths of the days and nights according to the time of year,

the different lengths of the seasons due to the motion of the

sun in an eccentric circle, the difference between a day-and-

night and an exact revolution of the universe owing to the

separate motion of the sun (chap. 6) ; on the habitable regions

of the globe including Britain and the ' island of Thule ', said

to have been visited by Pytheas, where, when the sun is in

Cancer and visible, the day is a month long ; and so on (chap. 7).

Chap. 8 purports to prove that the universe is a sphere by

proving first that the earth is a sphere, and then that the air

about it, and the ether about that, must necessarily make up

larger spheres. The earth is proved to be a sphere by the

method of exclusion ; it is assumed that the only possibilities

are that it is (a) flat and plane, or (b) hollow and deep, or

(c) square, or (d) pyramidal, or (e) spherical, and, the first four

hypotheses being successively disposed of, only the fifth

remains. Chap. 9 maintains that the earth is in the centre of

the universe; chap. 10, on the size of the earth, contains the

interesting reproduction of the details of the measurements of

the earth by Posidonius and Eratosthenes respectively which

have been given above in their proper places (p. 220, pp. 1 06-7)

;

chap. 1 1 argues that the earth is in the relation of a point to,

i. e. is negligible in size in comparison with, the universe or

even the sun's circle, but not the moon's circle (cf. p. 3 above).

Book II, chap. 1, is evidently the piece de resistance, con-
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sisting of an elaborate refutation of Epicurus and his followers,

who held that the sun is just as large as it looks, and further

asserted (according to Cleomedes) that the stars are lit up as

they rise and extinguished as they set. The chapter seems to

be almost wholly taken from Posidonius ; it ends with some

pages of merely vulgar abuse, comparing Epicurus with Ther-

sites, with more of the same sort. The value of the chapter

lies in certain historical traditions mentioned in it, and in the

account of Posidonius's speculation as to the size and distance

of the sun, which does, as a matter of fact, give results much
nearer the truth than those obtained by Aristarchus, Hippar-

chus, and Ptolemy. Cleomedes observes (1) that by means of

water-clocks it is found that the apparent diameter of the sun

is 1/ 750th of the sun's circle, and that this method of

measuring it is said to have been first invented by the

Egyptians; (2) that Hipparchus is said to have found that

the sun is 1,050 times the size of the earth, though, as regards

this, we have the better authority of Adrastus (in Theon of

Smyrna) and of Chalcidius, according to whom Hipparchus

made the sun nearly 1,880 times the size of the earth (both

figures refer of course to the solid content). We have already

described Posidonius's method of arriving at the size and

distance of the sun (pp. 220-1). After he has given this, Cleo-

medes, apparently deserting his guide, adds a calculation of

his own relating to the sizes and distances of the moon and

the sun which shows how little he was capable of any scien-

tific inquiry. 1 Chap. 2 purports to prove that the sun is

1 He says (pp. 146. 17-148. 27) that in an eclipse the breadth of the
earth's shadow is stated to be two moon-breadths ; hence, he says, it

seems credible (mOuvou) that the earth is twice the size of the moon (this

practically assumes that the breadth of the earth's shadow is equal to

the diameter of the earth, or that the cone of the earth's shadow is

a cylinder!). Since then the circumference of the earth, according to

Eratosthenes, is 250,000 stades, and its diameter therefore ' more than
80,000 ' (he evidently takes n = 3), the diameter of the moon will be
40,000 stades. Now. the moon's circle being 750 times the moon's
diameter, the radius of the moon's circle, i.e. the distance of the moon
from the earth, will be |th of this (i.e. n = 3) or 125 moon-diameters;
therefore the moon's distance is 5,000,000 stades (which is much too
great). Again, since the moon traverses its orbit 13 times to the sun's

once, he assumes that the sun's orbit is 13 times as large as the moon's,
and consequently that the diameter of the sun is 13 times that of the
moon, or 520,000 stades and its distance 13 times 5,000,000 or 65,000,000
stades

!
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larger than the earth ; and the remaining chapters deal with

the size of the moon and the stars (chap. 3), the illumination

of the moon by the sun (chap. 4), the phases of the moon and

its conjunctions with the sun (chap.- 5), the eclipses of the

moon (chap. 6), the maximum deviation in latitude of the five

planets (given as 5° for Venus, 4° for Mercury, 2j° for Mars

and Jupiter, 1° for Saturn), the maximum elongations of

Mercury and Venus from the sun (20° and 50° respectively),

and the synodic periods of the planets (Mercury 116 days,

Venus 584 days, Mars 780 days, Jupiter 398 days, Saturn

378 days) (chap. 7).

There is only one other item of sufficient interest to be

mentioned here. In Book II, chap. 6, Cleomedes mentions

that there were stories of extraordinary eclipses which ' the

more ancient of the mathematicians had vainly tried to ex-

plain'; the supposed ' paradoxical ' case was that in which,

while the sun seems to be still above the horizon, the eclipsed

moon rises in the east. The passage has been cited above

(vol. i, pp. 6-7), where I have also shown that Cleomedes him-

self gives the true explanation of the phenomenon, namely

that it is due to atmospheric refraction.

The first and second centuries of the Christian era saw

a continuation of the work of writing manuals or introduc-

tions to the, different mathematical subjects. About A. D. 100

came Nicomachus, who wrote an Introduction to ArMimetic
and an Introduction to Harmony ; if we may judge by a

remark of his own,1 he would appear to have written an intro-

duction to geometry also. The Arithmetical Introduction has

been sufficiently described above (vol. i, pp. 97-112).

There is yet another handbook which needs to be mentioned

separately, although we have had occasion to quote from it

several times already. This is the book by Theon of Smyrna
which goes by the title Expositio rerum mathematicarum ad

legendum Plato riem utilium. There are two main divisions

of this work, contained in two Venice manuscripts respec-

tively. The first was edited by Bullialdus (Paris, 1644), the

second by T. H. Martin (Paris, 1849); the whole has been

1 Nicom. Arith. ii. 6. 1.
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edited by E. Hiller (Teubner, 1878) arid finally, with a French

translation, by J. Dupuis (Paris, 1892).

Theon's date is approximately fixed by two considerations.

He is clearly the person whom Theon of Alexandria called

'the old Theon', rov TraXaiov Gecova, 1 and there is no reason

to doubt that he is the ' Theon the mathematician ' (6 /laOr)-

liariKos) who is credited by Ptolemy with four observations

of the planets Mercury and Venus made in a.d. 127, 129, 130

and 132. 2 The latest writers whom Theon himself mentions

are Thrasyllus, who lived in the reign of Tiberius, and

Adrastus the Peripatetic, who belongs to the middle of the

second century a.d. Theon's work itself is a curious medley,

valuable, not intrinsically, but for the numerous historical

notices which it contains. The title, which claims that the

book contains things useful for, the study of Plato, must not

be taken too seriously. It was no doubt an elementary

introduction or vade-mecum for students of philosophy, but

there is little in it which has special reference to the mathe-

matical questions raised in Plato. The connexion consists

mostly in the long proem quoting the views of Plato on the

paramount importance of mathematics in the training of

the philosopher, and the mutual relation of the five different

branches, arithmetic, geometry, stereometry, astronomy and

music. The want of care shown by Theon in the quotations

from particular dialogues of Plato prepares us for the patch-

work character of the whole book.

In the first chapter he promises to give the mathematical

theorems most necessary for the student of Plato to know,

in arithmetic, music, and geometry, with its application to

stereometry and astronomy? But the promise is by no means
kept as regards geometry and stereometry : indeed, in a

later passage Theon seems to excuse himself from including

theoretical geometry in his plan, on the ground that all those

who are likely to read his work or the writings of Plato may
be assumed to have gone through an elementary course of

theoretical geometry. 4 But he writes at length on figured

1 Theon of Alexandria, Comm. on Ptolemy's Syntaxis. Basel edition,

pp. 390, 395, 396.
2 Ptolemy, Syntaxis, ix. 9, x. 1, 2.
3 Theon of Smyrna, ed. Hiller, p. J. 10-17.
4 lb., p. 16. 17-20.
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numbers, plane and solid, which are of course analogous to

the corresponding geometrical figures, and he may have con-

sidered that he was in this way sufficiently fulfilling his

promise with regard to geometry and stereometry. Certain

geometrical definitions, of point, line, straight line, the three

dimensions, rectilinear plane and solid figures, especially

parallelograms and parallelepipedal figures including cubes,

pllnthides (square bricks) and SoKtSes (beams), and scalene

figures with sides unequal every way (= /3oofiio-KOL in the

classification of solid numbers), are dragged in later (chaps.

53-5 of the section on music) 1 in the middle of the discussion

of proportions and means ; if this passage is not an inter-

polation, it confirms the supposition that Theon included in

his work only this limited amount of geometry and stereo-

metry.

Section I is on Arithmetic in the same sense as Nicomachus's

Introduction. At the beginning Theon observes that arith-

metic will be followed by music. Of music in its three

aspects, music in instruments {kv opydvois), music in numbers,

i.e. musical intervals expressed in numbers or pure theoretical

music, and the music or harmony in the universe, the first

kind (instrumental music) is not exactly essential, but the other

two must be discussed immediately after arithmetic. 2 The con-

tents of the arithmetical section have been sufficiently indicated

in the chapter on Pythagorean arithmetic (vol. i, pp. 112-13)

;

it deals with the classification of numbers, odd, even, and

their subdivisions, prime numbers, composite numbers with

equal or unequal factors, plane numbers subdivided into

square, oblong, triangular and polygonal numbers, with their

respective 'gnomons' and their properties as the sum of

successive terms of arithmetical progressions beginning with

1 as the first term, circular and spherical numbers, solid num-
bers with three factors, pyramidal numbers and truncated

pyramidal numbers, perfect numbers with their correlatives,

the over-perfect and the deficient; this is practically what

we find in Nicomachus. But the special value of Theon's

exposition lies in the fact that it contains an account of the

famous ' side- ' and ' diameter- ' numbers of the Pythagoreans. 3

1 Theon of Smyrna, ed. Hiller, pp. 111-13. 2
lb., pp. 16. 24-17. 11.

3 lb., pp. 42. 10-45. 9. Cf. vol. i, pp. 91-3.



THEON OF SMYRNA 241

In the Section on Music Theon says he will first speak of

the two kinds of music, the audible or instrumental, and the

intelligible or theoretical subsisting in numbers, after which

he promises to deal lastly with ratio as predicable of mathe-

matical entities in general and the ratio constituting the

harmony in the universe, ' not scrupling to set out once again

the things discovered by our predecessors, just as we have

given the things handed down in former times by the Pytha-

goreans, with a view to making them better known, without

ourselves claiming to have discovered any of them \* Then

follows a discussion of audible music, the intervals which

give harmonies, &c, including substantial quotations from

Thrasyllus and Adrastus, and references to views of Aris-

toxenus, Hippasus, Archytas, Eudoxus and Plato. With
chap. 17 (p. 72) begins the account of the 'harmony in

numbers ', which turns into a general discussion of ratios,

proportions and means, with more quotations from Plato,

Eratosthenes and Thrasyllus, followed by Thrasyllus's divisio

canonis, chaps. 35, 36 (pp. 87-93). After a promise to apply

the latter division to the sphere of the universe, Theon

purports to return to the subject of proportion and means.

This, however, does not occur till chap. 50 (p. 106), the

intervening chapters being taken up with a discussion of

the #e/ca? and rerpaKrvs (with eleven applications of the

latter) and the mystic or curious properties of the numbers

from 2 to 10; here we have a part of the theologumena of

arithmetic. The discussion of proportions and the different

kinds of means after Eratosthenes and Adrastus is again

interrupted by the insertion of the geometrical definitions

already referred to (chaps. 53-5, pp. 111-13), after which

Theon resumes the question of means for ' more precise

'

treatment.

The Section on Astronomy begins on p. 120 of Hiller's

edition. Here again Theon is mainly dependent upon

Adrastus, from whom he makes long quotations. Thus, on

the sphericity of the earth, he says that for the neces-

sary conspectus of the arguments it will be sufficient to

refer to the grounds stated summarily by Adrastus. In

explaining (p. 124) that the unevennesses in the surface of

1 Theon of Smyrna, ed. Hiller, pp. 46. 20-47. 14.

1523.2 R
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the earth, represented e.g. by mountains, are negligible in

comparison with the size of the whole, he quotes Eratosthenes

and Dicaearchus as claiming to have discovered that the

perpendicular height of the highest mountain above the normal

level of the land is no more than 1 stades ; and to obtain the

diameter of the earth he uses Eratosthenes's figure of approxi-

mately 252,000 stades for the circumference of the earth,

which, with the Archimedean value of -2
Y
2- for tt, gives a

diameter of about 80,182 stades. The principal astronomical

circles in the heaven are next described (chaps. 5-12, pp.

129-35) ; then (chap. 12) the assumed maximum deviations in

latitude are given, that of the sun being put at 1°, that of the

moon and Venus at 12°, and those of the planets Mercury,

Mars, Jupiter and Saturn at 8°, 5°, 5° and 3° respectively; the

obliquity of the ecliptic is given as the side of a regular polygon

of 15 sides described in a circle, i.e. as 24° (chap. 23, p. 151).

Next the order of the orbits of the sun, moon and planets is ex-

plained (the system is of course geocentric) ; we are told (p. 13 8)

that ' some of the Pythagoreans ' made the order (reckoning

outwards from the earth) to be moon, Mercury, Venus, sun,

Mars, Jupiter, Saturn, whereas (p. 142) Eratosthenes put the

sun next to the moon, and the mathematicians, agreeing with

Eratosthenes in this, differed only in the order in which they

placed Venus and Mercury after the sun, some putting Mercury

next and some Venus (p. 143). The order adopted by 'some

of the Pythagoreans ' is the Chaldaean order, which was not

followed by any Greek before Diogenes of Babylon (second

century B.C.); 'some of the Pythagoreans' are therefore the

later Pythagoreans (of whom Nicomachus was one) ; the other

order, moon, sun, Venus, Mercury, Mars, Jupiter, Saturn, was

that of Plato and the early Pythagoreans. In chap. 15

(p. 138 sq.) Theon quotes verses of Alexander 'the Aetolian'

(not really the ' Aetolian ', but Alexander of Ephesus, a con-

temporary of Cicero, or possibly Alexander of Miletus, as

Chalcidius calls him) assigning to each of the planets (includ-

ing the earth, though stationary) with the sun and moon and

the sphere of the fixed stars one note, the intervals between

the notes being so arranged as to bring the nine into an

octave, whereas with Eratosthenes and Plato the earth was

excluded, and the eight notes of the octachord were assigned
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to the seven heavenly bodies and the sphere of the fixed stars.

The whole of this passage (chaps. 15 to 16, pp. 138-47) is no

doubt intended as the promised account of the ' harmony in

the universe ', although at the very end of the work Theon

implies that this has still to be explained on the basis of

Thrasyllus's exposition combined with what he has already

given himself.

The next chapters deal with the forward movements, the

stationary points, and the retrogradations, as they respectively

appear to us, of the five planets, and the ' saving of the pheno-

mena ' by the alternative hypotheses of eccentric circles and

epicycles (chaps. 17-30, pp. 147-78). These hypotheses are

explained, and the identity of the motion produced by the

two is shown by Adrastus in the case of the sun (chaps. 26, 27,

pp. 166-72). The proof is introduced with the interesting

remark that ' Hipparchus says it is worthy of investigation

by mathematicians why, on two hypotheses so different from

one another, that of eccentric circles and that of concentric

circles with epicycles, the same results appear to follow '. It

is not to be supposed that the proof of the identity could be

other than easy to a mathematician like Hipparchus ; the

remark perhaps merely suggests that the two hypotheses were

discovered quite independently, and it was not till later that

the effect was discovered to be the same, when of course the

fact would seem to be curious and a mathematical proof would

immediately be sought. Another passage (p. 188) says that

Hipparchus preferred the hypothesis of the epicycle, as being

his own. If this means that Hipparchus claimed to have

discovered the epicycle-hypothesis, it must be a misapprehen-

sion ; for Apollonius already understood the theory of epi-

cycles in all its generality. According to Theon, the epicycle-

hypothesis is more ' according to nature '
; but it was presum-

ably preferred because it was applicable to all the planets,

whereas the eccentric-hypothesis, when originally suggested,

applied only to the three superior planets ; in order to make
it apply to the inferior planets it is necessary to suppose the

circle described by the centre of the eccentric to be greater

than the eccentric circle itself, which extension of the hypo-

thesis, though known to Hipparchus, does not seem to have

occurred to Apollonius.

R 2
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We next have (chap. 31, p. 178) an allusion to the systems

of Eudoxus, Callippus and Aristotle, and a description

(p. 180 sq.) of a system in which the 'carrying' spheres

(called ' hollow ') have between them ' solid spheres which by
their own motion will roll (ave\i£ovo-i) the carrying spheres in

the opposite direction, being in contact with them '. These
' solid ' spheres (which carry the planet fixed at a point on

their surface) act in practically the same way as epicycles.

In connexion with this description Theon (i.e. Adrastus)

speaks (chap. 33, pp. 186-7) of two alternative hypotheses in

which, by comparison with Chalcidius, 1 we recognize (after

eliminating epicycles erroneously imported into both systems)

the hypotheses of Plato and Heraclides respectively. It is

this passage which enables us to conclude for certain that

Heraclides made Venus and Mercury revolve in circles about

the sun, like satellites, while the sun in its turn revolves in

a circle about the earth as centre. Theon (p. 187) gives the

maximum arcs separating Mercury and Venus respectively

from the sun as 20° and 50°, these figures being the same as

those given by Cleomedes.

The last chapters (chaps. 37-40), quoted from Adrastus, deal

with conjunctions, transits, occupations and eclipses. The
book concludes with a considerable extract from Dercyllides,

a Platonist with Pythagorean leanings, who wrote (before the

time of Tiberius and perhaps even before Varro) a book on

Plato's philosophy. It is here (p. 198. 14) that we have the

passage so often quoted from Eudemus

:

' Eudemus relates in his Astronomy that it was Oenopides
who first discovered the girdling of the zodiac and the revolu-

tion (or cycle) of the Great Year, that Thales was the first to

discover the eclipse of the sun and the fact that the sun's

period with ^respect to the solstices is not always the same,

that Anaximander discovered that the earth is (suspended) on
high and lies (substituting Keirai for the reading of the manu-
scripts, KLvelrai, moves) about the centre of the universe, and
that Anaximenes said that the moon has its light from the

sun and (explained) how its eclipses come about' (Anaxi-

menes is here apparently a mistake for Anaxagoras).

1 Chalcidius, Comm. on Timaeus, c. 110. Cf. Aristarchns of Samos,

pp. 256-8.
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TRIGONOMETRY: HIPPARCHUS, MENELAUS,
PTOLEMY

We have seen that Sphaeric, the geometry of the sphere,

was very early studied, because it was required so soon as

astronomy became mathematical ; with the Pythagoreans the

word Sphaeric, applied to one of the subjects of the quadrivium,

actually meant astronomy. The subject was so far advanced

before Euclid's time that there was in existence a regular

textbook containing the principal propositions about great

and small circles on the sphere, from which both Autolycus

and Euclid quoted the propositions as generally known.

These propositions, with others of purely astronomical in-

terest, were collected afterwards in a work entitled Sphaerica,

in three Books, by Theodosius.

Suidas has a notice, s. v. QeoSoaio?, which evidently con-

fuses the author of the Sphaerica with another Theodosius,

a Sceptic philosopher, since it calls him ' Theodosius, a philoso-

pher ', and attributes to him, besides the mathematical works,
' Sceptic chapters ' and a commentary on the chapters of

Theudas. Now the commentator on Theudas must have

belonged, at the earliest, to the second half of the second

century a.d., whereas our Theodosius was earlier than Mene-
laus {ji. about a.d. 100), who quotes him by name. The next

notice by Suidas is of yet another Theodosius, a poet, who
came from Tripolis. Hence it was at one time supposed that

our Theodosius was of Tripolis. But Vitruvius J mentions a

Theodosius who invented a sundial ' for any climate
'

; and

Strabo, in speaking of certain Bithynians distinguished in

their particular sciences, refers to ' Hipparchus, Theodosius

and his sons, mathematicians

'

2
. We conclude that our Theo-

1 De architectura ix. 9.
2 Strabo, xii. 4, 9, p. 566.
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dosius was of Bithynia and not later in date than Vitruvius

(say 20 B.C.); but the order in which Strabo gives the

names makes it not unlikely that he was contemporary with

Hipparchus, while the character of his Sphaerlca suggests a

date even earlier rather than later.

Works by Theodosius.

Two other works of Theodosius besides the Sphaerlca,

namely On habitations and On Days and Nights, seem to

have been included in the 'Little Astronomy.' (jxiKpbs dcrTpo-

vo/xovfievos, sc. t6ttos). These two treatises need not detain us

long. They are extant in Greek (in the great MS. Vaticanus

Graecus 204 and others), but the Greek text has not appar-

ently yet been published. In the first, On habitations, in 12

propositions, Theodosius explains the different phenomena due

to the daily rotation of the earth, and the particular portions

of the whole system which are visible to inhabitants of the

different zones. In the second, On Days and Nights, contain-

ing 13 and 19 propositions in the two Books respectively,

Theodosius considers the arc of the ecliptic described by the

sun each day, with a view to determining -the conditions to be

satisfied in order that the solstice may occur in the meridian

at a given place, and in order that the day and the night may
really be equal at the equinoxes; he shows also that the

variations in the day and night must recur exactly after

a certain time, if the length of the solar year is commen-

surable with that of the day, while on the contrary assump-

tion they will not recur so exactly.

In addition to the works bearing on astronomy, Theodosius

is said 1 to have written a commentary, now lost, on the tcpSSiov

or Method of Archimedes (see above, pp. 27-34).

Contents of the Sphaerlca.

We come now to the Sphaerlca, which deserves a short

description from the point of view of this chapter. A text-

book on the geometry of the sphere was wanted as a supple-

ment to the Elements of Euclid. In the Elements themselves

1 Suidas, loc. cit.
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(Books XII and XIII) Euclid included no general properties

of the sphere except the theorem proved in XII. 16-18, that

the volumes of two spheres are in the triplicate ratio of their

diameters ; apart from this, the sphere is only introduced in

the propositions about the regular solids, where it is proved

tEaTthey are severally inscribable in a sphere, and it was doubt-

less with a view to his proofs of this property in each case that

he gave a new definition of a sphere as the figure described by

the revolution of a semicircle about its diameter, instead of

the more usual definition (after the manner of the definition

of a circle) as the locus of all points (in space instead of in

a plane) which are equidistant from a fixed point (the centre).

No doubt the exclusion of the geometry of the sphere from

the Elements was due to the fact that it was regarded as

belonging to astronomy rather than pure geometry.

Theodosius defines the sphere as ' a solid figure contained

by one surface such that all the straight lines falling upon it

from one point among those lying within the figure are equal

to one another ', which is exactly Euclid's definition of a circle

with* ' solid ' inserted before ' figure ' and ' surface ' substituted

for ' line '. The early part of the work is then generally

developed on the lines of Euclid's Book III on the • circle.

Any plane section of a sphere is a circle (Prop. 1). The
straight line from the centre of the sphere to the centre of

a circular section is perpendicular to the plane of that section

(1, Por. 2 ; cf. 7, 23); thus a plane section serves for finding

the centre of the sphere just as a chord does for finding that

of a circle (Prop. 2). The propositions about tangent planes

(3-5) and the relation between the sizes of circular sections

and their distances from the centre (5, 6) correspond to

Euclid III. 16-19 and 15; as the small circle corresponds to

any chord, the great circle (' greatest circle ' in Greek) corre-

sponds to the diameter. The poles of a circular section

correspond to the extremities of the diameter bisecting

a chord of a circle at right angles (Props. 8-10). Great

circles bisecting one another (Props. 11-12) correspond to

chords which bisect one another (diameters), and great circles

bisecting small circles at right angles and passing through
their poles (Props. 13-15) correspond to diameters bisecting

chords at right angles. The distance of any point of a great
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circle from its pole is equal to the side of a square inscribed

in the great circle and conversely (Props. 16, 17). Next come
certain problems : To find a straight line equal to the diameter

of any circular section or of the sphere itself (Props. 18, 19)

;

to draw the great circle through any two given points on

the surface (Prop. 20) ; to find the pole of any given circu-

lar section (Prop. 21). Prop. 22 applies Eucl. III. 3 to the

sphere.

Book II begins with a definition of circles on a sphere

which touch one another ; this happens ' when the common
section of the planes (of the circles) touches both circles '.

Another series of* propositions follows, corresponding again

to propositions in Eucl., Book III, for the circle. Parallel

circular sections have the same poles, and conversely ('Props.

1, 2). Props. 3-5 relate to circles on the sphere touching

one another and therefore having their poles on a great

circle which also passes through the point of contact (cf.

Eucl. III. 11, [12] about circles touching one another). If

a great circle touches a small circle, it also touches another

small circle equal and parallel to it (Props. 6, 7), and if a

great circle be obliquely inclined to another circular section,

> it touches each of two equal circles parallel to that section

(Prop. 8). If two circles on a sphere cut one another, the

great circle drawn through their poles bisects the intercepted

segments of the circles (Prop. 9). If there are any number of

parallel circles on a sphere, and any number of great circles

drawn through their poles, the arcs of the parallel circles

intercepted between any two of the great circles are similar,

and the arcs of the great circles intercepted between any two

of the parallel circles are equal (Prop. 10).

The last proposition forms a sort of transition to the portion

of the treatise (II. 11-23 and Book III) which contains pro-

positions of purely astronomical interest, though expressed as

propositions in pure geometry without any specific reference

to the various circles in the heavenly sphere. The proposi-

tions are long and complicated, and it would neither be easy

nor worth while to attempt an enumeration. They deal with

circles or parts of circles (arcs intercepted on one circle by

series of other circles and the like). We have no difficulty in

recognizing particular circles which come into many proposi-
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tions. A particular small circle is the circle which is the

limit of the stars which do not set, as seen by an observer at

a particular place on the earth's surface ; the pole of this

circle is the pole in the heaven. A great circle which touches

this circle and is obliquely inclined to the ' parallel circles ' is the

circle of the horizon ; the parallel circles of course represent

the apparent motion of the fixed stars in the diurnal rotation,

and have the pole of the heaven as pole. A second great

circle obliquely inclined to the parallel circles is of course the

circle of the zodiac or ecliptic. The greatest of the ' parallel

circles ' is naturally the equator. All that need be said of the

various propositions (except two which will be mentioned

separately) is that the sort of result proved is like . that of

Props. 12 and 13 of Euclid's Phaenomena to the effect that in

the half of the zodiac circle beginning with Cancer (or Capri-

cornus) equal arcs set (or rise) in unequal times ; those which

are nearer the tropic circle take a longer time, those further

from it a shorter; those which take the shortest time are

those adjacent to the equinoctial points ; those which are equi-

distant from the equator rise and set in equal times. In like

manner Theodosius (III. 8) in effect takes equal and con-

tiguous arcs of the ecliptic all on one side of the equator,

draws through their extremities great circles touching the

circumpolar ' parallel ' circle, and proves that the correspond-

ing arcs of the equator intercepted between the latter great

circles are unequal and that, of the said arcs, that correspond-

ing to the arc of the ecliptic which is nearer the tropic circle

is the greater. The successive great circles touching the

circumpolar circle are of course successive positions of the

horizon as the earth revolves about its axis, that is to say,

the same length of arc on the ecliptic takes a longer or shorter

time to rise according as it is nearer to or farther from the

tropic, in other words, farther from or nearer to the equinoctial

points.

It is, however, obvious that investigations of this kind,

which only prove that certain arcs are greater than others,

and do not give the actual numerical ratios between them, are

useless for any practical purpose such as that of telling the

hour of the night by the stars, which was one of the funda-

mental problems in Greek astronomy ; and in order to find
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the required numerical ratios a new method had to be invented,

namely trigonometry.

No actual trigonometry in Theodosius.

It is perhaps hardly correct to say that spherical triangles

are nowhere referred to in Theodosius, for in III. 3 the con-

gruence-theorem for spherical triangles corresponding to Eucl.

I. 4 is practically proved ; but there is nothing in the book

that can be called trigonometrical. The nearest approach is

in III. 11, 12, where ratios between certain straight lines are

compared with ratios between arcs. AGc (Prop. 11) is a great

circle through the poles A, A' \ GDc, CD are two other great

circles, both of which are at right angles to the plane of ACc,

but GDc is perpendicular to AA\ while CD is inclined to it at

an acute angle. Let any other great circle AB'BA' through

AA' cut GD in any point B between G and D, and CD in B'.

Let the ' parallel ' circle EB'e be drawn through B\ and let

Cc' be the diameter of the ' parallel ' circle touching the great

circle CD. Let L, K be the centres of the ' parallel ' circles,

and let R, p be the radii of the ' parallel ' circles CDc, Cc'

respectively. It is required to prove that

2R:2p>(alTcGB):(a,rcCB').

Let CO, Ee meet in N, and join NBf
.

Then B'N, being the intersection of two planes perpendicu-

lar to the plane of ACGA', is perpendicular to that plane and

therefore to both Ee and CO.
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Now, the triangle NLO being right-angled at L, NO > NL\

Measure NT along NO equal to NL, and join TB'.

Then in the triangles B'NT, B'NL two sides B'N, NT are

equal to two sides B'N, NL, and the included angles (both

being right) are equal ; therefore the triangles are equal in all

respects, and lNLB'= INTB'.

Now 2R:2p = 0C':C'K

= 0N:NL
= 0N:NT

[= tun NTB': tun NOB']

> /.NTB'-.lNOB'

> INLB'.INOB'

> LGOB-.LNOB'

> (arc BC): (arc B'C).

If a', b', c' are the sides of the spherical triangle AB'C, this

result is equivalent (since the angle COB subtended by the arc

OB is equal to A) to

1 : sin b'= tanA : tan a'

> a: a',

where a — BG, the side opposite A in the triangle ABO.
The proof is based on the fact (proved in Euclid's Optics

and assumed as known by Aristarchus of Samos and Archi-

medes) that, if a, /? are angles such that \ it > oc > /?,

tan a/tan @ > oc//3.

While, therefore, Theodosius proves the equivalent of the

formula, applicable in the solution of a spherical triangle

right-angled at C, that tana = sin b tan A, he is unable, for

want of trigonometry, to find the actual value of a/a', and

can only find a limit for it. He is exactly in the same position

as Aristarchus, who can only approximate to the values of the

trigonometrical ratios which he needs, e.g. sin 1°, cos 1°, sin 3°,

by bringing them within upper and lower limits with the aid

of the inequalities

tan a a sin a

tan ft ft sin ft

'

where -| w > oc > ft.
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We may contrast with this proposition ojf Theodosius the

corresponding proposition in Menelaus's Sphaerica (III. 15)

dealing with the more general case in which C", instead of

being the tropical point on the ecliptic, is, like B'
y
any point

between the tropical point and D. If R, p have the same

meaning as above and r
x , r2

are the radii of the parallel circles

through B' and the new C\ Menelaus proves that

sin a Ro
sin a r

x
r
2

which, of course, with the aid of Tables, gives the means
of finding the actual values of a or a' when the other elements

are given.

Tb£ proposition III. 1 2 of Theodosius proves a result similar

to that of III. 11 for the case where the great circles AB'B,
AC'C, instead of being great circles through the poles, are

great circles touching ' the circle of the always-visible stars
',

i.e. different positions of the horizon, and the points C\ Bf
are

any points on the arc of the oblique circle between the tropical

and the equinoctial points ; in this case, with the same notation,

4R:2 P > (arc BG) : (arc B'C).

It is evident that Theodosius was simply a laborious com-

piler, and that there was practically nothing original in his

work. It has been proved, by means of propositions quoted

verbatim or assumed as known by Autolycus in his Moving

Sphere and by Euclid in his Phaenomena, that the following

propositions in Theodosius are pre-Euclidean, I. 1, 6 a, 7, 8, 11,

12, 13, 15, 20 ; II. 1, 2, 3, 5, 8, 9, 10 a, 13, 15, 17, 18, 19, 20, 22
;

III. lb, 2, 3, 7, 8, those shown in thick type being quoted

word for word.

The beginnings of trigonometry.

But this is not all. In Menelaus's Sphaerica, III. 15, there

is a reference to the proposition (III. 11) of Theodosius proved

above, and in Gherard of Cremona's translation from the

Arabic, as well as in Halley's translation from the Hebrew

of Jacob b. Machir, there is an addition to the effect that this

proposition was used by Apollonius in a book the title of

which is given in the two translations in the alternative
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forms ' liber aggregativus ' and ' liber de principiis universa-

libus'. Each of these expressions may well mean the work
of Apollonius which Marinus refers to ns the 'General

Treatise ' (77 kcc66\ov npay{larda). There is no apparent

reason to doubt that the remark in question was really

contained in Menelaus's original work ; and, even if it is an

Arabian interpolation, it is not likely to have been made
without some definite authority. If then Apollonius was the

discoverer of the proposition, the fact affords some ground for

thinking that the beginnings of trigonometry go as far back,

at least, as Apollonius. Tannery 1 indeed suggested that not

only Apollonius but Archimedes before him may have com-

piled a ' table of chords ', or at least shown the way to such

a compilation, Archimedes in the work of which we possess

only a fragment in the Measurement ofa Circle, and Apollonius

in the cokvtoklov, where he gave an approximation to the value

of TV closer than that obtained by Archimedes ; Tannery

compares the Indian Table of Sines in the Surya-Siddhdrda,

where the angles go by 24ths of a right angle (l/24th= 3° 45',

2/24ths=7° 30', &c), as possibly showing Greek influence.

This, is, however, in the region of conjecture ; the first person

to make systematic use of trigonometry is, so far as we know,
Hipparchus.

Hipparchus, the greatest astronomer of antiquity, was
born at Nicaea in Bithynia. The period of his activity is

indicated by references in Ptolemy to observations made by
him the limits of which are from 161 B.C. to 126 B.C. Ptolemy

further says that from Hipparchus's time to the beginning of

the reign of Antoninus Pius (a.d. 138) was 265 years.2 The
best and most important observations made by Hipparchus

were made at Rhodes, though an observation of the vernal

equinox at Alexandria on March 24, 146 B.C., recorded by him
may have been his own. His main contributions to theoretical

and practical astronomy can here only be indicated in the

briefest manner.

1 Tannery, Recherches sur Vhist. de Vastronomie ancienne, p. 64.
8 Ptolemy, Syntaxis, vii. 2 (vol. ii, p. 15).
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The work of Hipparchus.

Discovery of precession.

1. The greatest is perhaps his discovery of the precession

of the equinoxes. Hipparchus found that the bright star

Spica was, at the time of his observation of it, 6° distant

from the autumnal equinoctial point, whereas he deduced from

observations recorded by Timocharis that Timocharis had

made the distance 8°. Consequently the motion had amounted
to 2° in the period between Timocharis's observations, made in

283 or 295 B.C., and 129/8 B.C., a period, that is, of 154 or

166 years; this gives about 46-8" or 43-4" a year, as compared

with the true value of 50-3757".

Calculation of mean lunar month.

2. The same discovery is presupposed in his work On the

length of the Year, in which, by comparing an observation

of the summer solstice by Aristarchus in 281/0 B.C. with his

own in 136/5 B.C., he found that after 145 years (the interval

between the two dates) the summer solstice occurred half

a day-and-night earlier than it should on the assumption of

exactly 365^ days to the year; hence he concluded that the

tropical year contained about 3^o^n °^ a day-and-night less

than 365J days. This agrees very nearly with Censorinus's

statement that Hipparchus's cycle was 304 years, four times

the 76 years of Callippus, but with 111,035 days in it

instead of 111,036 (= 27,759x4). Counting in the 304 years

12x304 + 112 (intercalary) months, or 3,760 months in all,

Hipparchus made the mean lunar month 29 days 12 hrs.

44 min. 2-J sec, which is less than a second out in comparison

with the present accepted figure of 29-53059 days!

3. Hipparchus attempted a new determination of the sun's

motion by means of exact equinoctial and solstitial obser-

vations; he reckoned the eccentricity of the sun's course

and fixed the apogee at the point 5° 30' of Gemini. More
remarkable still was his investigation of the moon's

course. He determined the eccentricity and the inclination

of the orbit to the ecliptic, and by means of records of

observations of eclipses determined the moon's period with

extraordinary accuracy (as remarked above). We now learn
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that the lengths of the mean synodic, the sidereal, the

anomalistic and the draconitic month obtained by Hipparchus

agree exactly with Babylonian cuneiform tables of date not

later than Hipparchus, and it is clear that Hipparchus was

in full possession of all the results established by Babylonian

astronomy.

Improved estimates of sizes and distances of sun

and moon.

4. Hipparchus improved on Aristarchus's calculations of the

sizes and distances of the sun and moon, determining the

apparent diameters more exactly and noting the changes in

them ; he made the mean distance of the sun 1
3
245D, the mean

distance of the moon 33|D, the diameters of the sun and

moon 1 2§ D and -| D respectively, where D is the mean

diameter of the earth.

Epicycles and eccentrics.

5. Hipparchus, in investigating the motions of the sun, moon
and planets, proceeded on the alternative hypotheses of epi-

cycles and eccentrics ; he did not invent these hypotheses,

which were already fully understood and discussed by

Apollonius. While the motions of the sun and moon could

with difficulty be accounted for by the simple epicycle and

eccentric hypotheses, Hipparchus found that for the planets it

was necessary to combine the two, i.e. to superadd epicycles to

motion in eccentric circles.

Catalogue of stars.

6. He compiled a catalogue of fixed stars including 850 or

more such stars ; apparently he was the first to state their

positions in terms of coordinates in relation to the ecliptic

(latitude and longitude), and his table distinguished the

apparent sizes of the stars. His work was continued by
Ptolemy, who produced a catalogue of 1,022 stars which,

owing to an error in his solar tables affecting all his longi-

tudes, has by many erroneously been supposed to be a mere

reproduction of Hipparchus's catalogue. That Ptolemy took

many observations himself seems certain.1

1 See two papers by Dr. J. L. E. Dreyer in] the 'Monthly Notices of the

Royal Astronomical Society, 1917, pp. 528-39, and 1918, pp. 343-9.
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Improved Instruments.

7. He made great improvements in the instruments used for

observations. Among those which he used were an improved
dioptra, a ' meridian-instrument ' designed for observations in

the meridian only, and a universal instrument (darTpo\d(3oi>

opyavov) for more general use. He also made a globe on
which he showed the positions of the fixed stars as determined

by him ; it appears that he showed a larger number of stars

on his globe than in his catalogue.

Geography.

In geography Hipparchus wrote a criticism of Eratosthenes,

in great part unfair. He checked Eratosthenes's data by
means of a sort of triangulation ; he insisted on the necessity

of applying astronomy to geography, of fixing the position of

places by latitude and longitude, and of determining longitudes

by observations of lunar eclipses.

Outside the domain of astronomy and geography, Hipparchus

wrote a book On things borne dovm by their weight from

which Simplicius (on Aristotle's De caelo, p. 264 sq.) quotes

two propositions. It is possible, however, that even in this

work Hipparchus may have applied his doctrine to the case of

the heavenly bodies.

In pure mathematics he is said to have considered a problem

in permutations and combinations, the problem of finding the

number of different possible combinations of 10 axioms or

assumptions, which he made to be 103,049 (v. I. 101,049)

or 310,952 according as the axioms were affirmed or denied l
:

it seems impossible to make anything of these figures. When
the Fihrist attributes to him works ' On the art of algebra,

known by the title of the Rules ' and ' On the division of num-
bers ', we have no confirmation : Suter suspects some confusion,

in view of the fact that the article immediately following in

the Fihrist is on Diophantus, who also ' wrote on the art of

algebra \*&'

1 Plutarch, Quaest. Conviv. viii. 9. 8, 732 f, De Stoicorum repugn. 29.

1047 d.
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First systematic use of Trigonometry.

We come now to what is the most important from the

point of view of this work, Hipparchus's share in the develop-

ment of trigonometry. Even if he did not invent it,

Hipparchus is the first person of whose systematic use of

trigonometry we have documentary evidence. (1) Theon

of Alexandria says on the Syntaxis of Ptolemy, a propos of

Ptolemy's Table of Chords in a circle (equivalent to sines),

that Hipparchus, too, wrote a treatise in twelve books on

straight lines (i.e. chords) in a circle, while another in six

books was written by Menelaus. 1 In the Syntaxis I. 10

Ptolemy gives the necessary explanations as to the notation

used in his Table. The circumference of the circle is divided

into 360 parts or degrees; the diameter is also divided into

120 parts, and one of such parts is the unit of length in terms

of which the length of each chord is expressed ; each part,

whether of the circumference or diameter, is divided into 60

parts, each of these again into 60, and so on, according to the

system of sexagesimal fractions. Ptolemy then sets out the

minimum number of propositions in plane geometry upon
which the calculation of the chords in the Table is based (did

77J? e/c 7W ypauucov /j.e6o8iKrjs avTGov (TV&Tdaeoos). The pro-

positions are famous, and it cannot be doubted that Hippar-

chus used a set of propositions of the same kind, though his

exposition probably ran to much greater length. As Ptolemy

definitely set himself to give the necessary propositions in the

shortest form 'possible, it will be better to give them under

Ptolemy rather than here. (2) Pappus, in speaking of Euclid's

propositions about the inequality of the times which equal arcs

of the zodiac take to rise, observes that ' Hipparchus in his book
On the rising of the twelve signs of the zodiac shows by means

of numerical calculations (oY dpiOficov) that equal arcs of the

semicircle beginning with Cancer which set in times having

a certain relation to one another do not everywhere show the

same relation between the times in which they rise ',2 and so

on. We have seen that Euclid, Autolycus, and even Theo-

dosius could only prove that the said times are greater or less

1 Theon, Comm. on Syntaxis, p. 110, ed. Halma.
2 Pappus, vi, p. 600. 9-13.

1523.2 S
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in relation to one another ; they could not calculate the actual

times. As Hipparchus proved corresponding propositions by
means of numbers, we can only conclude that he used proposi-

tions in spherical trigonometry, calculating arcs from others

which are given, by means of tables. (3) In the only work
of his which survives, the Commentary on the Phaenomena

of Eudoxus and Aratus (an early work anterior to the

discovery of the precession of the equinoxes), Hipparchus

states that (presumably in the latitude of Rhodes) a star which

lies 27^° north of the equator describes above the horizon an

arc containing 3 minutes less than 15/24ths of the whole

circle 1
; then, after some more inferences, he says, ' For each

of the aforesaid facts is proved by means of lines (8ta tcov

ypafj.fj.cov) in the general treatises on these matters compiled

by me '. In other places 2 of the Commentary he alludes to

a work On simultaneous risings (toc irepl tcov crvvavaToXcov),

and in II. 4. 2 he says he will state summarily, about each of

the fixed stars, along with what sign of the zodiac it rises and

sets and from which degree to which degree of each sign it

rises or sets in the regions about Greece or wherever the

longest day is 1 4§ equinoctial hours, adding that he has given

special proofs in another work designed so that it is possible

in practically every place in the inhabited earth to follow

the differences between the concurrent risings and settings.3

Where Hipparchus speaks of proofs ' by means of lines ', he

does not mean a merely graphical method, by construction

only, but theoretical determination by geometry, followed by
calculation, just as Ptolemy uses the expression €/c tcov ypa.fi-

ficov of his calculation of chords and the expressions crcfxxLpiKal

Seigeis and ypafifiiKal Setgeis of the fundamental proposition

in spherical trigonometry (Menelaus's theorem applied to the

sphere) and its various applications to particular cases. It

is significant that in the Syntaxis VIII. 5, where Ptolemy

applies the proposition to the very problem of finding the

times of concurrent rising, culmination and setting of the

fixed stars, he says that the times can be obtained ' by lines

only ' (8ia fiovcov tcov ypafificov).* Hence we may be certain

that, in the other books of his own to which Hipparchus refers

1 Ed. Manitius, pp. 148-50. 2 lb., pp. 128. 5, 148. 20.
3

lb., pp. 182. 19-184. 5.
4 Syntaxis, vol. ii, p. 193.
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in his Commentary, he used the formulae of spherical trigono-

metry to get his results. In the particular case'where it is

required to find the time in which a star of 27-|° northern

declination describes, in the latitude of Rhodes, the portion of

its arc above the horizon, Hipparchus must have used the

equivalent of the formula in the solution of a right-angled

spherical triangle, tan b — cos A tan c, where C is the right

angle. Whether, like Ptolemy, Hipparchus obtained the

formulae, such as this one, which he used from different

applications of the one general theorem (Menelaus's theorem)

it is not possible to say. There was of course no difficulty

in calculating the tangent or other trigonometrical function

of an angle if only a table of sines was given ; for Hippar-

chus and Ptolemy were both aware of the fact expressed by

sin2 a -I- cos
2 a = 1 or, as they would have written it,

(crd. 2a) 2 + {crd. (180°-2a)} 2 = 4r2
,

where (crd. 2 a) means the chord subtending an arc 2 a, and r

is the radius, of the circle of reference.

Table of Chords.

We have no details of Hipparchus's Table of Chords suffi-

cient to enable us to compare it with Ptolemy's, which goes

by half-degrees, beginning with angles of |°, 1°, 1^°, and so

on. But Heron 1 in his Metrica says that 'it is proved in the

books about chords in a circle ' that, if a
9
and an are the sides

of a regular enneagon (9-sided figure) and hendecagon (11-sided

figure) inscribed in a circle of diameter d, then (1) a
9
= ^d,

(2) an = zTd very nearly, which means that sin 20° was
taken as equal to 0-3333 ... (Ptolemy's table makes it

— (20-1—- + jr%)> so that the first approximation is •§•), and

sin ^ . 180° or sin 16° 21' 49" was made equal to 0-28 (this cor-

responds to the chord subtending an angle of 32° 43' 38", nearly

half-way between 32^° and 33°, and the mean between the two
1 /16 54 55 \

chords subtending the latter angles gives — ( + h )
as& & 6 60\ 60 60V

the required sine, while ^o (
16To) = §§§> which only differs

1 Heron, Metrica, i. 22, 24, pp. 58. 19 and 62. 17.

s2
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by eJo from -|f§ or £$, Heron's figure). There is little doubt

that it is to Hipparchus's work that Heron refers, though the

author is not mentioned.

While for our knowledge of Hipparchus's trigonometry we
have to rely for the most part upon what we can infer from

Ptolemy, we fortunately possess an original source of infor-

mation about Greek trigonometry in its highest development

in the 8rphaerica of Menelaus.

The date of Menelaus of Alexandria is roughly indi-

cated by the fact that Ptolemy quotes an observation of

his made in the first year of Trajan's reign (a.d. 98). He
was therefore a contemporary of Plutarch, who in fact

represents him as being present at the dialogue De facie in

orbe lunae, where (chap. 17) Lucius apologizes to Menelaus 'the

mathematician ' for questioning the fundamental proposition

in optics that the angles of incidence and reflection are equal.

He wrote a variety of treatises other than the Sphaerica.

We have seen that Theon mentions his work on Chords in a

Circle in six Books. Pappus says that he wrote a treatise

(Trpayfiareia) on the setting (or perhaps only rising) of

different arcs of the zodiac. 1 Proclus quotes an alternative

proof by him of Eucl. I. 25, which is direct instead of by

reductio ad absurdum,2 and he would seem to have avoided

the latter kind of proof throughout. Again, Pappus, speaking

of the many complicated curves ' discovered by Demetrius of

Alexandria (in his " Linear considerations ") and by Philon

of Tyana as the result of interweaving plectoids and other

surfaces of all kinds ', says that one curve in particular was

investigated by Menelaus and called by him ' paradoxical

'

(wapdSogos) 3
', the nature of this curve can only be conjectured

(see below).

But Arabian tradition refers to other works by Menelaus,

( 1
) Elements of Geometry, edited by Thabit b. Qurra, in three

Books, (2) a Book on triangles, and (3) a work the title of

which is translated by Wenrich de cognitione quantitatis

discretae corporiim permixtorum. Light is thrown on this

last title by one al-Chazini who (about A.D. 1121) wrote a

1 Pappus, vi, pp. 600-2.
2 Proclus on Eucl. I, pp. 345. 14-346. 11.
3 Pappus, iv, p. 270. 25.
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treatise about the hydrostatic balance, i.e. about the deter-

mination of the specific gravity of homogeneous or mixed

bodies, in the course of which he mentions Archimedes and

Menelaus (among others) as authorities on the subject ; hence

the treatise (3) must have been a book on hydrostatics dis-

cussing such problems as that of the crown solved by Archi-

medes. The alternative proof of Eucl. I. 25 quoted by

Proclus might have come either from the Elements of Geometry

or the Book on triangles. With regard to the geometry, the

' liber trium fratrum ' (written by three sons of Musa b. Shakir

in the ninth century) says that it contained a solution of the

duplication of the cube, which is none other than that of

Archytas. The solution of Archytas having employed the

intersection of a tore and a cylinder (with a cone as well),

there would, on the assumption that Menelaus reproduced the

solution, be a certain appropriateness in the suggestion of

Tannery 1 that the curve which Menelaus called the irapdSo^os

ypafx/irj was in reality the curve of double curvature, known
by the name of Viviani, which is the intersection of a sphere

with a cylinder touching it internally and having for its

diameter the radius of the sphere. This curve is a particular

case of Eudoxus's hippopede, and it has the property that the

portion left outside the curve of the surface of the hemisphere

on which it lies is equal to the square on the diameter of the

sphere ; the fact of the said area being squareable would
justify the application of the word napaSo^os to the curve,

and the quadrature itself would not probably be beyond the

powers of the Greek mathematicians, as witness Pappus's

determination of the area cut off between a complete turn of

a certain spiral on a sphere and the great circle touching it at

the origin.2

The Sphaerica of Menelaus.

This treatise in three Books is fortunately preserved in

the Arabic, and although the extant versions differ con-

siderably in form, the substance is beyond doubt genuine;

the original translator was apparently Ishaq b. Hunain
(died A. D. 910). There have been two editions, (1) a Latin

1 Tannery, Memoires scientijiques^ ii, p. 17. 2 Pappus, iv, pp. 264-8.
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translation by Maurolycus (Messina, 1558) and (2) Halley's

edition (Oxford, 1758). The former is unserviceable because

Maurolycus's manuscript was very imperfect, and, besides

trying to correct and restore the propositions, he added

several of his own. Halley seems to have made a free

translation of the Hebrew version of the work by Jacob b.

Machir (about 1273), although he consulted Arabic manuscripts

to some extent, following them, e.g., in dividing the work into

three Books instead of two. But an earlier version direct

from the Arabic is available in manuscripts of the thirteenth

td fifteenth centuries at Paris and elsewhere ; this version is

without doubt that made by the famous translator Gherard

of Cremona (1114-87). With the help of Halley's edition,

Gherard's translation, and a Leyden manuscript (930) of

the redaction of the work by Abu-Nasr-Mansur made in

a.d. 1007-8, Bjornbo has succeeded in presenting an adequate

reproduction of the contents of the Sphaerica}

Book I.

In this Book for the first time we have the conception and

definition of a spherical triangle. Menelaus does not trouble

to give the usual definitions of points and circles related to

the sphere, e.g. pole, great circle, small circle, but begins with

that of a spherical triangle as ' the area included by arcs of

great circles on the surface of a sphere ', subject to the restric-

tion (Def. 2) that each of the sides or legs of the triangle is an

arc less than a semicircle. The angles of the triangle are the

angles contained by the arcs of great circles on the sphere

(Def. 3), and one such angle is equal to or greater than another

according as the planes containing the arcs forming the first

angle are inclined at the same angle as, or a greater angle

than, the planes of the arcs forming the other (Defs. 4, 5).

The angle is a right angle if the planes of the arcs are at right

angles (Def. 6). Pappus tells us that Menelaus in his Sphaerica

calls the figure in question (the spherical triangle) a ' three-

side ' (tp'nrXtvpov) 2
; the word triangle (Tpiyoavov) was of course

1 Bjornbo, Studien iiber Menelaos* Spharik (Abhandlungen zur Gesch. d.

math. Wissenschaften,Heft xiv. 1902).
2 Pappus, vi, p. 476. 16.
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already appropriated for the plane triangle. We should gather

from this, as well as from the restriction of the definitions to

the spherical triangle and its parts, that the discussion of the

spherical triangle as such was probably new ; and if the pre-

face in the Arabic version addressed to a prince and beginning

with the words, ' O prince ! I have discovered an excellent

method of proof . .

.

' is genuine, we have confirmatory evidence

in the writer's own claim.

Menelaus's object, so far as Book I is concerned, seems to

have been to give the main propositions about spherical

triangles corresponding to Euclid's propositions about plane

triangles. At the same time he does not restrict himself to

Euclid's methods of proof even where they could be adapted

to the case of the sphere ; he avoids the form of proof by
reductio ad absurdum, but, subject to this, he prefers the

easiest proofs. In some respects his treatment is more com-

plete than Euclid's treatment of the analogous plane cases.

In the congruence-theorems, for example, we have I. 4 a

corresponding to Eucl. I. 4, I. 4b to Eucl. I. 8, I. 14, 16 to

Eucl. I. 26 a, b; but Menelaus includes (I. 13) what we know
as the ' ambiguous case ', which is enunciated on the lines of

Eucl. VI. 7. I. 12 is a particular case of I. 16. Menelaus

includes also the further case which has no analogue in plane

triangles, that in which the three angles of one triangle are

severally equal to the three angles of the other (1.17). He
makes, moreover, no distinction between the congruent and
the symmetrical, regarding both as covered by congruent. 1.

1

is a problem, to construct a spherical angle equal to a given

spherical angle, introduced only as a lemma because required

in later propositions. I. 2, 3 are the propositions about

isosceles triangles corresponding to Eucl. I. 5, 6 ; Eucl. 1. 18, 19

(greater side opposite greater angle and vice versa) have their

analogues in I. 7, 9, and Eucl. I. 24, 25 (two sides respectively

equal and included angle, or third side, in one triangle greater

than included angle, or third side, in the other) in I. 8. I. 5

(two sides of a triangle together greater than the third) corre-

sponds to Eucl. I. 20. There is yet a further group of proposi-

tions comparing parts of spherical triangles, I. 6, 18, 19, where
I. 6 (corresponding to Eucl. I. 21) is deduced from I. 5, just as

the first part of Eucl. I. 21 is deduced from Eucl. I. 20.
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Eucl. I. 16, 32 are not true of spherical triangles, and

Menelaus has therefore the corresponding but different pro-

positions. I. 10 proves that, with the usual notation a, b, c,

A, B, C, for the sides and opposite angles of a spherical

triangle, the exterior angle at C, or 180° — C, < = or > A
according as c-fa> = or < 180°, and vice versa. The proof

of this and the next proposition shall be given as specimens.

In the triangle ABC suppose that c + a > = or < 180° ; let

D be the pole opposite to A.

Then, according as c + a > = or < 180°, BG > = or < BD
(since AD = 180°),

and therefore ID >= or < IBCD (= 180°-C), [I. 9]

i.e. (since ID = IA) 180°- G< = or > A.

Menelaus takes the converse for granted.

As a consequence of this, I. 11 proves that A + B + G> 180°.

Take the same triangle ABC, with the pole D opposite

to J., and from B draw the great circle BE such that

LDBE = IBDE.
Then CE+EB = CD < 180°, so that, by the preceding

proposition, the exterior angle ACB to the triangle BCE is

greater than ACBE,

i.e. C>LCBE.

Add A or D (= lEBD) to the unequals

;

therefore C + A > Z.CBD,

whence A+B + C> LCBD +B or 180°.

After two lemmas I. 21, 22 we have some propositions intro-

ducing M, N, P the middle points of a, 6, c respectively. I. 23

proves, e.g., that the arc MN of a great circle >\c, and I. 20

that AM < = or >\a according as A > = or < (B + C). The

last group of propositions, 26-35, relate to the figure formed
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by the triangle ABC with great circles drawn through B to

meet AC (between A and G) in D, E respectively, and the

case where D and E coincide, and they prove different results

arising from different relations between a and c (a>c), com-

bined with the equality of AD and EG (or DC), of the angles

ABD and EBG (or DBG), or ofa + c and BD + BE (or 2BD)
respectively, according as a + c< = or > 180°.

Book II has practically no interest for us. The object of it

is to establish certain propositions, of astronomical interest

only, which are nothing more than generalizations or exten-

sions of propositions in Theodosius's Sphaerica, Book III.

Thus Theodosius III. 5, 6, 9 are included in Menelaus II. 10,

Theodosius III. 7-8 in Menelaus II. 12, while Menelaus II. 11

is an extension of Theodosius III. 13. The proofs are quite

different from those of Theodosius, which are generally very

long-winded.

Book III. Trigonometry.

It will have been noticed that, while Book I of Menelaus

gives the geometry of the spherical triangle, neither Book I

nor Book II contains any trigonometry. This is reserved for

Book III. As I shall throughout express the various results

obtained in terms of the trigonometrical ratios, sine, cosine,

tangent, it is necessary to explain once for all that the Greeks

did not use this terminology, but, instead of sines, they used

the chords subtended by arcs of a

circle. In the accompanying figure

let the arc AD of a circle subtend an

angle a at the centre 0. Draw AM
perpendicular to OD, and produce it

to meet the circle again in A''. Then
sin a = AM/AO, and AM is \AA'
or half the chord subtended b}^ an

angle 2 a at the centre, which may
shortly be denoted by f(crd. 2 a).

Since Ptolemy expresses the chords as so many 120th parts of

the diameter of the circle, while AM/AO — AA'/2A0, it

follows that sin a and ^(crd. 2a) are equivalent. Cos a is

of course sin (90°— a) and is therefore equivalent to f crd.

(180°-2a).
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(a) ' Menelaus's theorem ' for the sphere.

The first proposition of Book III is the famous ' Menelaus's

theorem ' with reference to a spherical triangle and any trans-

versal (great circle) cutting the sides of a triangle, produced

if necessary. Menelaus does not, however, use a spherical

triangle in his enunciation, but enunciates the proposition in

terms of intersecting great circles. ' Between two arcs ADB,
AEC of great circles are two other arcs of great circles DFC
and BFE which intersect them and also intersect each other

in F. All the arcs are less than a semicircle. It is required

to prove that

sin Off sin OF sin DB ,

sin EA " sin FD sin BA
'

It appears that Menelaus gave three or four cases, sufficient

to prove the theorem completely. The proof depends on two

simple propositions which Menelaus assumes without proof;

the proof of them is given by Ptolemy.

(1) In the figure on the last page, if OD be a radius cutting

a chord AB in C, then

AC : CB = sinAD : sin DB.

For draw AM, BN perpendicular to OD. Then

AG:GB = AM:BN

= J(crd. 2 AD) :i(crd. 2DB)

= sin AD: sin DB.

(2) If AB meet the radius OC produced in T, then

AT:BT= sin AC: sin BC.
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For, if AM, I?lV are perpendicular to 00, we have, as before,

AT:TB = AM:BN

= §(crd. 2j.C):|(crd. 2BC)

— sin AC: sin BO.

Now let the arcs of great circles ADB, AEC be cut by the

arcs of great circles DFC, BFE which themselves meet in F.

Let G be the centre of the sphere and join GB, GF, GE, AD.
Then the straight lines AD, GB, being in one plane, are

either parallel or not parallel. If they are not parallel, they

will meet either in the direction of D, B or of A, G.

Let AD, GB meet in T.

Draw the straight lines ARC, DLC meeting GE, GF in K, L
respectively.

Then K, L, T must lie on a straight line, namely the straight

line which is the section of the planes determined by the arc

EFB and by the triangle ACD}

Thus we have two straight lines AC, AT cut by the two
straight lines CD, TK which themselves intersect in L.

Therefore, by Menelaus's proposition in plane geometry,

OK CL DT
KA~ LD'TA

1 So Ptolemy. In other words, since the straight lines GB, GE, GFT

which are in one plane, respectively intersect the straight lines AD, AC,
CD which are also in one plane, the points of intersection T, K, L are in
both planes, and therefore lie on the straight line in which the planes-
intersect.
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But, by the propositions proved above,

GK sin GE GL sin GF DT sin DB
KA

Z=
sin JSA

9

LD~sln~FD' TA ~ sJn~BA '

therefore, by substitution, we have

sin GE _ sin GF sinDB
sin EA ~~

sin FD ' sin BA
'

Menelaus apparently also gave the proof for the cases in

which AD, GB meet towards A, G, and in which AD, GB are

parallel respectively, and also proved that in like manner, in

the above figure,

sin GA sin GD sin FB
sin AE sin DF sin BE

(the triangle cut by the transversal being here GFE instead of

ADG). Ptolemy 1 gives the proof of the above case only, and
dismisses the last-mentioned result with a ' similarly '.

(j8) Deductions from Menelaus s Theorem.

III. 2 proves, by means of I. 14,10 and III. 1, that, if ABG,
A /B/G/

be two spherical triangles in which A = A', and G, G'

are either equal or supplementary, sin c/sin a = sin c'/sin of

and conversely. The particular case in which C, Gf
are right

angles gives what was afterwards known as the ' regula

quattuor quantitatum ' and was fundamental in Arabian

trigonometry. 2 A similar association attaches to the result of

III. 3, which is the so-called ' tangent or ' shadow-rule ' of the

Arabs. If ABG, A'B'G' be triangles right-angled at A, A', and

G, C' are equal and both either > or < 90°, and if P, P f

be

the poles of AG, A'G', then

sin AB _ sinA'B' sin BP
sin AG ~~

sin^'C" ' sin B'P'
'

Apply the triangles so that (7 falls on G, G'B' on GB as GE,

and G A' on GA as GD ; then the result follows directly from

III. 1. Since sin BP = cos AB, and sin &P' = cos A'B\ the

result becomes
sinGA tan AB
sin CM' ~ ta^J75/5

which is the ' tangent-rule ' of the Arabs. 3

1 Ptolemy, Syntax-is, i. 13, vol. i, p. 76.
2 See Braunmiihl, Gesch. tier Trig, i, pp. 17, 47, 58-60, 127-9.
3 Cf. Braunmiihl, op. cit. i, pp. 17-18, 58, 67-9, &c.
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It follows at once (Prop. 4) that, if AM, A'M' are great

circles drawn perpendicular to the bases BC, B'C' of two

spherical triangles ABC, A'B'C in which B = B\ G = C,

sin BM sin MG / . ,

'

, . tanAM \—

—

^nnn = -

—

TT77*-, I since both are equal to -
, , ^ )•

smB'M' smM'C'K ^ tan A'M'/

III. 5 proves that, if there are two spherical triangles J.BG,

A'B'C' right-angled at A, A' and such that C =C, while b

and &' are less than 90°,

sin (a + b) sin (a
7

-f £/)

sin (a— 6) sin {a'— b')

from which we may deduce 1 the formula

sin (a + b) 1 + cos C
sin (a— b)

"
1 — cos

which is equivalent to tan b = tan a cos (7.

(y) Anharmonic ^)Toperty of four great circles through

one point.

But more important than the above result is the fact that

the proof assumes as known the anhar-

monic property of four great circles

drawn from a point on a sphere in rela-

tion to any great circle intersecting them
all, viz. that, if ABCD, A'B'C'D' be two
transversals,

sin AD sin BC sin A'D' sin B'C
sin DC sin AB ~ sin B'C' smA'B'

1 Braunmiihl, op. cit. i, p. 18; Bjornbo, p. 96.



270 TRIGONOMETRY

It follows that this proposition was known before Mene-
laus's time. It is most easily proved by means of ' Menelaus's

Theorem ', III. 1, or alternatively it may be deduced for the

sphere from the corresponding proposition in plane geometry,

just as Menelaus's theorem is transferred by him from the

plane to the sphere in III. 1. We may therefore fairly con-

clude that both the anharmonic property and Menelaus's

theorem with reference to the sphere were already included

in some earlier text-book ; and, as Ptolemy, who built so much
upon Hipparchus, deduces many of the trigonometrical

formulae which he uses from the one theorem (III. 1) of

Menelaus, it seems probable enough that both theorems were

known to Hipparchus. The corresponding plane theorems

appear in Pappus among his lemmas to Euclid's Porisms,1 and

there is therefore every probability that they were assumed

by Euclid as known.

(8) Propositions analogous to Eucl. VI. 3.

Two theorems following, III. 6, 8, have their analogy in

Eucl. VI. 3. In III. 6 the vertical angle A of a spherical

triangle is bisected by an arc of a great circle meeting BG in

D, and it is proved that sin BD/ sin DC = sin BA/ sin AG;
in III. 8 we have the vertical angle bisected both internally

and externally by arcs of great circles meeting BG in D and

E, and the proposition proves the harmonic property

sin BE sin BD
sin EG sin DG

III. 7 is to the effect that, if arcs of great circles be drawn

through B to meet the opposite side AG of a spherical triangle

in D, E so that lABD = I EBG, then

sin EA . sin AD _ sin2AB
sin DG. sin GE ~~

sin2 £C'

As this is analogous to plane propositions given by Pappus as

lemmas to different works included in the Treasury of

Analysis, it is clear that these works were familiar to

Menelaus.

1 Pappus, vii, pp. 870-2, 874.
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III. 9 and III. 10 show, for a spherical triangle, that (1) the

great circles bisecting the three angles, (2) the great circles

through the angular points meeting the opposite sides at

right angles meet in a point.

The remaining propositions, III. 11-15, return to the same

sort of astronomical problem as those dealt with in Euclid's

Phaenomena, Theodosius's Sphaerica and Book II of Mene-

laus's own work. Props. 11-14 amount to theorems in

spherical trigonometry such as the following.

Given arcs a15 a2 , a3 , a4 , ft, /?2 , /83 , /?4 , such that

90°g:a
1
> a

2
>a3 >a4 ,

90°>ft>£2 >&>/34 ,

and also a
1 >/3 1 , a2 >/? 2 , a3 >/? 3 , a4 >/?4 ,

(1) If sin ofj : sin a
2

: sin cx3
: sin a4

= sin /3j : sin /?
2

: sin /?3
: sin/3

4 ,

then «L=&>gl=&.
a3-«4 ft~ft

(2) If
sin

(
a

i + ft) _ sin («2 + ft) = sin(«3 + g3)

sin (^-ft)
""

sin (a2 -/32)
" sin(a

3
-0

3 )

sin fa4 + ft4 )

sin(a
4
-/?

4
)'

ai~ a
2 ^ ft~ftthen -4 a <

sin (a
3
— a4 ) sin (03

- /34 )

then ?^<'{C{|'.
a3 -«4 ft -ft

Again, given three series of three arcs such that

oc
l
>oc

2
>oc

3 , ft>ft>ft, 90° >y l >y2 >y„

and sin (o^ — y j) : sin (a
2
— y2 ) : sin (a

3—

y

3)

= sin (/?!
- yT )

: sin (02
- y,) : sin (/33

- y3 )

= sin yl
: sin y2

: sin y3
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(1) If (X
1 >P 1

>2 7l , a2 >ft>2y2 , a
3 >£3 >2y3 ,

then «LI«.^ft-fc
oc

2
~

(2) If P1 <oc1 <y1) ft < a
2 < y2 , 3

< oc
z
< y3 ,

'/j;-/3:
;and

then
ai- a2< ft -ft

«3 ft~fta

III. 15, the last proposition, is in four parts. The first part

is the proposition corresponding to Theodosius III. 11 above

alluded to. Let BA, BG be two quadrants of great circles

(in which we easily recognize the equator and the ecliptic),

P the pole of the former, PA
Y , PA Z

quadrants of great circles

meeting the other quadrants in A 13 A z
and Gv Gz

respectively.

Let R be the radius of the sphere, r, i\, r
3
the radii of the

' parallel circles ' (with pole P) through C, G
l , Cz

respectively.

Then shall
sin A^A

Z _ Rr
sin C

Y
G

Z
"r^g

In the triangles PGG
Z , BA Z

G
Z
the angles at G, Az

are right,

and the angles at C3
equal ; therefore (III. 2)

sin PG sin BA
Z

sin PC ~ sin BC»
'
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But, by III. 1 applied to the triangle BG\A
l
cut by the

transversal PG
3
A

? ,

sinJ.^3 sin G
Y
C

3
sin PA^

sin BA
3

"
sin BC

3
sin PC

1

sinJ.
1
^l

3 _ sinPJ.
1

sinJ5^4
3

sinP^ sin PC
sin C

X
G
3
" sin PG

1
sin BC3

'
" sin PG^ sin PG

3

from above,

Pr

Part 2 of the proposition proves that, if PC
2
A

2
be drawn

such that sin2 PC
2
= sin PA

2
. sin PC, or ?

,

2
2 = Rr (where r

2
is

the radius of the parallel circle through C
2),
BG

2
—BA

2
is a

maximum, while Parts 3, 4 discuss the limits to the value of

the ratio between the arcs A
X
A^ and G

x
G

?t
.

Nothing is known of the life of Claudius Ptolemy except

that he was of Alexandria, made observations between the

years A.D. 125 and 141 or perhaps 151, and therefore presum-

ably wrote his great work about the middle of the reign of

Antoninus Pius (A.D. 138-61). A tradition handed down by

the Byzantine scholar Theodorus Meliteniota (about 1361)

states that he was born, not at Alexandria, but at Ptolemais

r] 'Ep/jL^cov. Arabian traditions, going back probably to

Hunain b. Ishaq, say that he lived to the age of 78, and give

a number of personal details to which too much weight must
not be attached.

The MaOrjfjLaTiKrj orvvra^Ls (Arab. Almagest),

Ptolemy's great work, the definitive achievement of Greek
astronomy, bore the title MaOtjfxaTLKTJ? 3Wra£e<s)9 PifiXia ly,

the Mathematical Collection in thirteen Books. By the time

of the commentators who distinguished the lesser treatises on
astronomy forming an introduction to Ptolemy's work as

fxiKpbs do-Tpovofiovfievo? (tokos), the 'Little Astronomy', the

book came to be called the ' Great Collection
',

/leydXr) o~vv-

Tct£is. Later still the Arabs, combining the article Al with
1523.2 T
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the superlative fieyio-To?, made up a word Al-majisti, which

became Almagest ; and it has been known by this name ever

since. The complicated character of the system expounded

by Ptolemy is no doubt responsible for the fact that it

speedily became the subject of elaborate commentaries.

Commentaries on the Syntaxis.

Pappus 1 cites a passage from his own commentary on

Book I of the Mathematica, which evidently means Ptolemy's

work. Part of Pappus's commentary on Book V, as well as

his commentary on Book VI, are actually extant in the

original. Theon of Alexandria, who wrote a commentary on

the Syntaxis in eleven Books, incorporated as much as was
available of Pappus's commentary on Book V with full

acknowledgement, though not in Pappus's exact words. In

his commentary on Book VI Theon made much more partial

quotations from Pappus ; indeed the greater part of the com-

mentary on this Book is Theon's own or taken from other

sources. Pappus's commentaries are called scholia, Theon's

vwojij/rjfjiaTa. Passages in Pappus's commentary on Book V
allude to ' the scholia preceding this one ' (in the plural), and

in particular to the scholium on Book IV. It is therefore all

but certain that he wrote on all the Books from I to VI at

least. The text of the eleven Books of Theon's commentary

was published at Basel by Joachim Camerarius in 1538, but

it is rare and, owing to the way in which it is printed, with

insufficient punctuation marks, gaps in places, and any number
of misprints, almost unusable ; accordingly little attention has

so far been paid to it except as regards the first two Books,

which were included, in a more readable form and with a Latin

translation, by Halma in his edition of Ptolemy.

Translations and editions.

The Syntaxis was translated into Arabic, first (we are told)

by translators unnamed at the instance of Yahya b. Khalid b.

Barmak, then by al-Hajjaj, the translator of Euclid (about

786-835), and again by the famous translator Ishaq b. Hunain

(d. 910), whose translation, as improved by Thabit b. Qurra

1 Pappus, viii, p. 1106. 13.
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(died 901), is extant in part, as well as the version by Nasirad-

din at-TusI (1201-74).

The first edition to be published was the Latin translation

made by Gherard of Cremona from the Arabic, which was

finished in 1175 but was not published till 1515, when it was

brought out, without the author's name, by Peter Liechten-.

stein at Venice. A translation from the Greek had been made
about 1160 by an unknown writer for a certain Henricus

Aristippus, Archdeacon of Catania, who, having been sent by
William I, King of Sicily, on a mission to the Byzantine

Emperor Manuel I. Comnenus in 1158, brought back with

him a Greek manuscript of the Syntaxis as a present ; this

translation, however, exists only in manuscripts in the Vatican

and at Florence. The first Latin translation from the Greek

to be published was that made by Georgius ' of Trebizond ' for

Pope Nicolas V in 1451 ; this was revised and published by
Lucas Gauricus at Venice in 1528. The editio princeps of the

Greek text was brought out by Grynaeus at Basel in 1538.

The next complete edition was that of Halma published

1813-16, which is now rare. All the more welcome, there-

fore, is the definitive Greek text of the astronomical works
of Ptolemy edited by Heiberg (1899-1907), to which is now
added, so far as the Syntaxis is concerned, a most valuable

supplement in the German translation (with notes) by Manitius

(Teubner, 1912-13).

Summary of Contents.

The Syntaxis is most valuable for the reason that it con-

tains very full particulars of observations and investigations

by Hipparchus, as well as of the earlier observations recorded

by him, e.g. that of a lunar eclipse in 721 B.C. Ptolenvy

based himself very largely upon Hipparchus, e.g. in the

preparation of a Table of Chords (equivalent to sines), the

theory of eccentrics and epicycles, &c. ; and it is questionable

whether he himself contributed anything of great value except

a definite theory of the motion of the five planets, for which

Hipparchus had only collected material in the shape of obser-

vations made by his predecessors and himself. A very short

indication of the subjects of the different Books is all that can

T 2
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bo given here. Book I : Indispensable preliminaries to the

study of the Ptolemaic system, general explanations of

the different motions of the heavenly bodies in relation to

the earth as centre, propositions required for the preparation

of Tables of Chords, the Table itself, some propositions in

spherical geometry leading to trigonometrical calculations of

the relations of arcs of the equator, ecliptic, horizon and
meridian, a ' Table of Obliquity ', for calculating declinations

for each degree-point on the ecliptic, and finally a method of

finding the right ascensions for arcs of the ecliptic equal to

one-third of a sign or 10°. Book II: The same subject con-

tinued, i.e. problems on the sphere, with special reference to

the differences between various latitudes, the length of the

longest day at any degree of latitude, and the like. Book III

:

On the length of the year and the motion of the sun on the

eccentric and epicycle hypotheses. Book IV : The length of the

months and the theory of the moon. Book V : The construc-

tion of the astrolabe, and the theory of the moon continued,

the diameters of the sun, the moon and the earth's shadow,

the distance of the sun and the dimensions of the sun, moon
and earth. Book VI : Conjunctions and oppositions of sun

and moon, solar and lunar eclipses and their periods. Books

VII and VIII are about the fixed stars and the precession of

the equinoxes, and Books IX-XIII are devoted to the move-

ments of the planets.

Trigonometry in Ptolemy.

What interests the historian of mathematics is the trigono-

metry in Ptolemy. It is evident that no part of the trigono-

metry, or of the matter preliminary to it, in Ptolemy was new.

What he did was to abstract from earlier treatises, and to

condense into the smallest possible space, the minimum of

propositions necessary to establish the methods and formulae

used. Thus at the beginning of the preliminaries to the

Table of Chords in Book I he says

:

' We will first show how we can establish a systematic and

speedy method of obtaining the lengths of the chords based on

the uniform use of the smallest possible number of proposi-

tions, so that we may not only have the lengths of the chords
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set out correctly, but may be in possession of a ready proof of

our method of obtaining them based on geometrical con-

siderations.' 1

He explains that he will use the division (1) of the circle into

360 equal parts or degrees and (2) of the diameter into 120

equal parts, and will express fractions of these parts on the

sexagesimal system. Then come the geometrical propositions,

as follows.

(a) Lemma for finding sin 18° and sin 36°.

To find the side of a pentagon and decagon inscribed in

a circle or, in other words, the chords subtending arcs of 72°

and 36° respectively.

Let AB be the diameter of a circle, the centre, OC the

radius perpendicular to AB.
Bisect OB at D, join DC, and measure

DE along DA equal to DC. Join EC.

Then shall OE be the side of the in-

scribed regular decagon, and EG the side

of the inscribed regular pentagon.

For, since OB is bisected at D,

BE.E0 + 0D 2 = DE*

= DC2 = DO* + OC2
.

Therefore BE. EO = OC2 = OB2
,

and BE is divided in extreme and mean ratio.

But (Eucl. XIII. 9) the sides of the regular hexagon and the

regular decagon inscribed in a circle when placed in a straight

line with one another form a straight line divided in extreme

and mean ratio at the point of division.

Therefore, BO being the side of the hexagon, EO is the side

of the decagon.

Also (by Eucl. XIII. 10)

(side of pentagon) 2 = (side of hexagon) 2 + (side of decagon) 2

= CO 2 + OE2 = EC2
;

therefore EC is the side of the regular pentagon inscribed

in the circle.

1 Ptolemy, Syittaxis, i. 10, pp. 31 2.
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The construction in fact easily leads to the results

E0 = %a(V5-l), EC=iaV(lO-2</5),

where a is the radius of the circle.

Ptolemy does not however use these radicals, but calculates

the lengths in terms of ' parts ' of the diameter thus.

DO = 30, and DO2 = 900 ; OG = 60 and OG 1 = 3600

;

therefore BE2 = DC2 = 4500, and BE = 67 p 4' 55" nearly

;

therefore side of decagon or (crd. 36°)=BE—BO = 37P 4' 55".

Again OE2 = (37^ 4' 55") 2 = 1375 .
4' 15", and 0<72 =3600;

therefore CE 2 = 4975 .
4' 15", and GE - 70P 32' 3" nearly,

i.e. side of pentagon or (crd. 72°) = 70^ 32' 3".

The method of extracting the square root is explained by
Theon in connexion with the first of these cases, \/4500 (see

above, vol. i, pp. 61-3).

The chords which are the sides of other regular inscribed

figures, the hexagon, the square and the equilateral triangle,

are next given, namely,

crd. 60° = 60^,

crd. 90° = 7(2 . 60 2
) = 7(7200) = 84^ 51' 10",

crd. 120° = V(3. 60 2
) = 7(10800) = 103/' 55' 23".

(/?) Equivalent of sin2 + cos2 6 — 1.

It is next observed that, if x be any arc,

(crd. #)
2 + {crd. (180°-^)} 2 = (diam.)2 = 120 2

,

a formula which is of course equivalent to sin2 + cos2 6 — 1.

We can therefore, from crd. 72°, derive crd. 108°, from

crd. 36°, crd. 144°, and so on.

(y) ' Ptolemy's theorem ', giving the equivalent of

sin (0 — (p) = sin cos (p — cos sin 0.

The next step is to find a formula which will give us

crd. (ot — fi) when crd. oc and crd. (3 are given. (This for

instance enables us to find crd. 12° from crd. 72° and crd. 60°.)
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The proposition giving the required formula depends upon

a lemma, which is the famous ' Ptolemy's theorem \

Given a quadrilateral ABCD inscribed in a circle, the

diagonals being AC, BD, to prove that

AC.BD = AB.DC+AD. BG.

The proof is well known. Draw BE so that the angle ABE
is equal to the angle DBG, and let BE
meet AG in E. •

Then the triangles ABE, DBG are

equiangular, and therefore

AB : AE = BD : DG,

or AB.DG= AE.BD. (1)

Again, to each of the equal angles

ABE, DBG add the angle EBD
;

then the angle ABD is equal to the angle EBG, and the

triangles ABD, EBG are equiangular
;

therefore BG : CE =BD:DA,

or AD.BG=CE.BD.

By adding (1) and (2), we obtain

AB.DG+AD.BG = AG.BD.

(2)

Now let AB, AG be two arcs terminating at A, the extremity

of the diameter AD of a circle, and let

AC (= a) be greater than AB (=/?;.

Suppose that (crd. AC) and (crd. AB)
are given : it is required to find

(crd. BG).

Join BD, CD.

Then, by the above theorem,

AC.BD = BC.AD + AB.CD.

Now AB, AC are given; therefore BD = crd. (180° -AB)
and CD = crd. (180° —AG) are known. And AD is known.

Hence the remaining chord BG (crd. BG) is known.
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The equation in fact gives the formula,

{crd. («-£)}. (crd. 180°) = (crd. oc) . {crd. (180°-/3)}

-(crd. 0). {crd. (180° -a)},

which is, of course, equivalent to

sin (0 — (p) = sin cos — cos sin (p, where a = 20, (3 =
2(f).

By means of this formula Ptolemy obtained

crd. 12° = crd. (72°- 60°) = 12P 32' 36".

(8) Equivalent of sin2
J0 = \ (1 — cos#).

But, in order to get the chords of smaller angles still, we
want a formula for finding the chord of half an arc when the

chord of the arc is given. This is the subject of Ptolemy's

next proposition.

Let BG be an arc of a circle with diameter AC, and let the

arc BG be bisected at D. Given (crd. BG), it is required to

find (crd. DC).

Draw DF perpendicular to AG,

and join AB, AD, BD, DG. Measure

AE along AG equal to AB, and join

BE.
Then shall FG be equal to EF, or

FG shall be half the difference be-

tween AG and AB.
For the triangles ABD, AED are

equal in all respects, since two sides

of the one are equal to two sides of the other and the included

angles BAD, EAD, standing on equal arcs, are equal.

Therefore ED = BD = DC,

and the right-angled triangles DEF, DCF are equal in all

respects, whence EF = FG, or GF = \(AG-AB).

Now AC.CF=CD\
whence (crd. CD) 2 = \AC (AG-AB)

= J(crd. 180°).{(crd.l80
o)-(crd.l80 o

-£<7)}.

This is, of course, equivalent to the formula

sin 2
J<9 = |(1 -cos 0).
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By successively applying this formula, Ptolemy obtained

(crd. 6°), (crd. 3°) and finally (crd. lj ) = V> 34' 15" and

(crd. |°) = 0i } 47' 8". But we want a table going by half-

degrees, and hence two more things are necessary ; we have to

get a value for (crd. 1°) lying between (crd. 1J°) and (crd. | ),

and we have to obtain an addition formula enabling us when
(crd. ol) is given to find {crd. (a + ^°)}, and so on.

(e) Equivalent of cos (0 + 0) = cos cos — sin sin 0.

To find the addition formula. Suppose AD is the diameter

of a circle, and AB, BC two arcs. Given (crd. AB) and

(crd. BC), to find (crd. AC). Draw the diameter BOE, and
join CE, CD, DE, BD.

Now, (crd. AB) being known,

(crd. BD) is known, and therefore

also (crd. DE), which is equal to

(crd. AB) ; and, (crd. BC) being

known, (crd. CE) is known.

And, by Ptolemy's theorem,

BD . CE = BC . DE+BE. CD.

The diameter BE and all the chords in this equation except

CD being given, we can find CD or crd. (180°—A C). We have

in fact

(crd. 180°) . [crd. (\%0°-AC)\

= {crd.(180°-^^)].{crd.(180°- JB(7)}-(crd.^5).(crd. JBa);

thus crd. (180° —AC) and therefore (crd. AC) is known.

If AB = 2 0, BC = 2 0, the result is equivalent to

cos (0 + <p) = cos cos (p — sin S sin
<f>.

(^) Method of interpolation based on formula

sin a /sin /8<a//3 (where f 7r>a>/3).

Lastly we have to find (crd. 1°), having given (crd. If°) and
(crd. |°).

Ptolemy uses an ingenious method of interpolation based on
a proposition already assumed as known by Aristarchus.

If AB, BC be unequal chords in a circle, BC being the



282 TRIGONOMETRY

Now

greater, then shall the ratio of GB to BA be less than the

ratio of the arc GB to the arc BA.
Let BD bisect the angle ABG, meeting AG in E and

the circumference in D. The arcs

AD, DG are then equal, and so are

the chords AD, DG. Also GE>EA
(since GB:BA = GE:EA).
Draw DF perpendicular to AG;

then AD>DE>DF, so that the

circle with centre D and radius DE
will meet DA in G and DF produced

in IT.

FE: EA = AFED : AAED
< (sector HED) : (sector GED)

< IFDE:IEDA.

Gomponendo, FA:AE < Z FDA : Z ADE.

Doubling the antecedents, we have

GA:AE < LGDA-.LADE,

and, separando, GE: EA < Z CDE: Z EDA
;

therefore (since GB:BA = GE:EA)

CB:BA < ACDBilBDA

< (arc GB): (arc BA),

i. e. (crd. GB) : (crd. BA) < (arc GB) : (aoc 5^1 ).

[This is of course equivalent to sin oc : sin f3 <ol: (3, where

|7r>a>/?.]
'

It follows (1) that (crd. 1°) : (crd. j°)< 1 :|,

and (2) that (crd. li°) : (crd. 1°) < 1| : 1.

That is, | . (crd. |°) > (crd. 1°) > | . (crd. 1|°).

But (crd. |°) = OP 47' 8", so that |(crd. |°) = 1^ 2
r 50"

nearly (actually V> 2' 50%")
;

and (crd. 1|°) = IP 34' 15", so that |(crd. lj°) = IP 2' 50".

Since, then, (crd. 1°) is both less and greater than a length

which only differs inappreciably from IP 2' 50", we may say

that (crd. 1°) = 1^2' 50" as nearly as possible.
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(77) Table of Chords.

From this Ptolemy deduces that (crd. J°) is very nearly

CW' 31' 25", and by the aid of the above propositions he is in

a position to complete his Table of Chords for arcs subtending

angles increasing from -J° to 180° by steps of J°; in other

words, a Table of Sines for angles from j° to 90° by steps

ofi°.

(0) Further use of proportional increase.

Ptolemy carries further the principle of proportional in-

crease as a method of finding approximately the chords of

arcs containing an odd number of minutes between 0' and 30'.

Opposite each chord in the Table he enters in a third column

3
Xoth of the excess of that chord over the one before, i.e. the

chord of the arc containing 30' less than the chord in question.

For example (crd. 2-|°) is stated in the second column of the

Table as 2P 2>Y 4" The excess of (crd. 2J°) over (crd. 2°) in the

Table is 0/' 31' 24"; ^th of this is 0^ V 2" 48"', which is

therefore the amount entered in the third column opposite

(crd. 2J°). Accordingly, if we want (crd. 2° 25'), we take

(crd. 2°) or 2P 5' 40'' and add 25 times OP l'2"48'"; or we
take (crd. 2|°) or 2V 37' 4" and subtract 5 times 0^ l' 2" 48'".

Ptolemy adds that if, by using the approximation for 1° and

i°, we gradually accumulate an error, we can check the calcu-

lation by comparing the chord with that of other related arcs,

e.g. the double, or the supplement (the difference between the

arc and the semicircle).

Some particular results obtained from the Table may be

mentioned. Since (crd. 1°) =lP2 f
50", the whole circumference

= 360 (1^2' 50"), nearly, and, the length of the diameter

being 120P, the value of it is 3 (1 +^_ + _|o_
)
= 3+ _8_ + _|o_

which is the value used later by Ptolemy and is equivalent to

3-14166... Again, </3 = 2 sin 60° and, 2 (crd. 120°) being-

equal to 2 (103/ ; 55' 23"), we have ^3 = ^ (103 + §§ + ^§th>)

43 55 23
= 1 -f— + - 5 + -r=-= 1-7320509,

60 60a 603

which is correct to 6 places of decimals. Speaking generally,
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the sines obtained from Ptolemy's Table are correct to 5

places.

(i) Plane trigonometry in effect used.

There are other cases in Ptolemy in which plane trigono-

metry is in effect used, e.g. in the determination of the

eccentricity of the sun's orbit. 1 Suppose that ACBD is

the eccentric circle with centre 0,

and A B, CD are chords at right

angles through E, the centre of the

earth. To find OE. The arc BG
is known (= a, say) as also the arc

GA (=/3). If BF be the chord

parallel to CD, and CG the chord

parallel to AB, and if lV, P be the

middle points of the arcs BF, GG,

Ptolemy finds (1) the arc BF
(=oc + /3- 180°), then the chord BF,

crd. (a+/3-lS0°), then the half of it, (2) the arc GC
= arc (a + /3— 2/3) or arc (oc — /3), then the chord GC, and

lastly half of it. He then adds the squares on the half-

chords, i.e. he obtains

0#2 = J{crd.
(
a + /?-180)} 2 + i{crd.(a-/3)} 2

,

that is, 0E2/r* = cos2
J (a + /?) + sin2 | (a - /?).

He proceeds to obtain the angle OEC from its sine OB / OE,

which he expresses as a chord of double the angle in the

circle on OE as diameter in relation to that diameter.

Spherical trigonometry : formulae in solution of

spherical triangles.

In spherical trigonometry, as already stated, Ptolemy

obtains everything that he wants by using the one funda-

mental proposition known as ' Menelaus's theorem ' applied

to the sphere (Menelaus III. 1), of which he gives a proof

following that given by Menelaus of the first case taken in

his proposition. Where Ptolemy has occasion for other pro-

positions of Menelaus's Sphaerica, e.g. III. 2 and 3, he does

1 Ptolemy, Syntaxis, iii. 4, vol. i, pp. 234-7.
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not quote those propositions, as he might have done, but proves

them afresh by means of Menelaus's theorem. 1 The appli-

cation of the theorem in other cases gives in effect the

following different formulae belonging to the solution of

a spherical triangle ABC right-angled at C\ viz.

sin a = sine sin .4,

tan a = sin b tan A,

cos c — cos a cos b,

tan b — tan c cos A.

One illustration of Ptolemy's procedure will be sufficient.2

Let HAH' be the horizon, PEZH the meridian circle, EE'
the equator, ZZ' the ecliptic, F an

equinoctial point. Let EE'', ZZ f

cut the horizon in A, B. Let P be

the pole, and let the great circle

through P, B cut the equator at G.

Now let it be required to find the

time which the arc FB of the ecliptic

takes to rise ; this time will be

measured by the arc FA of the

equator. (Ptolemy has previously found the length of the

arcs BC, the declination, and FC, the right ascension, of B,

I. 14, 16.)

By Menelaus's theorem applied to the arcs AE\ E'P cut by
the arcs AH' , PC which also intersect one another in B,

crd. 2PH' crd. 2PB crd. 2 CA

that is,

crd. 2H'E'

sin PHf

crd. 2BC 'crd. 2 AEn

sin PB sin GA
sin H'Ef ~ sin 5(7 sin AE'

Now sinPH'= cosH'E\ sin P£= cos 56', and sinA£'=l;

therefore cot #' i?'= cot BC . sin CM

,

in other words, in the triangle ABC right-angled at C,

cot A — cot a sin b,

or tan a — sin ?; tan A.

1 Syntaxis, vol. i, p. 169 and pp. 126-7 respectively.
2

/&,, vol. i, pp. 121-2.
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Thus AC is found, and therefore FC-AC or FA.
The lengths of BC, FC are found in I. 14, 16 by the same

method, the four intersecting great circles used in the figure

being in that case the equator KEf

, the ecliptic ZZ ', the great

circle PBCP' through the poles, and the great circle PKLP'
passing through the poles of both the ecliptic and the equator.

In this case the two arcs PL, AEf
are cut by the intersecting

great circles PC, FK, and Menelaus's theorem gives (1)

sinPZ sin OP sin BF
sin KL ' sin BC sin FK

But sinPZ=l, sin KL = sin BFC, sin OP =1, sin PA' = 1,

and it follows that

sin BC = sin BF sin BFC,

corresponding to the formula for a triangle right-angled at 0,

sin a = sin c sin A.

(2) We have
sin PK _ sinPP sin CF
sin KL ~

sin BC sin FL
'

and sin PK = cos KL — cos BFC, sin PB = cos BC, sin FL—\,

so that tan BC = sin CF tan PPO,

corresponding to the formula

tan a = sin b tan A.

While, therefore, Ptolemy's method implicitly gives the

formulae for the solution of right-angled triangles above

quoted, he does not speak of right-angled triangles at all, but

only of arcs of intersecting great circles. The advantage

from his point of view is that he works in sines and cosines

only, avoiding tangents as such, and therefore he requires

tables of only one trigonometrical ratio, namely the sine (or,

as he has it, the chord of the double arc).

The Analcmma.

Two other works of Ptolemy should be mentioned here.

The first is the Analemma. The object of this is to explain

a method of representing on one plane the different points
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and arcs of the heavenly sphere by means of orthogonal

projection upon three planes mutually at right angles, the

meridian, the horizon, and the ' prime vertical '. The definite

problem attacked is that of showing the position of the sun at

any given time of the day, and the use of the method and

of the instruments described in the book by Ptolemy was

connected with the construction of sundials, as we learn from

Vitruvius. 1 There was another avd\r)fiiia besides that of

Ptolemy ; the author of it was Diodorus of Alexandria, a con-

temporary of Caesar and Cicero (' Diodorus, famed among the

makers of gnomons, tell me the time !
' says the Anthology 2

),

and Pappus wrote a commentary upon it in which, as he tells

us,3 he used the aonchoid in order to trisect an angle, a problem

evidently required in the Analemma in order to divide any

arc of a circle into six equal parts (hours). The word

dvdX-qfxfia evidently means ' taking up ' (' Aufnahme ') in the

sense of ' making a graphic representation ' of something, in

this case the representation on a plane of parts of the heavenly

sphere. Only a few fragments remain of the Greek text of

the Analemma of Ptolemy; these are contained in a palimpsest

(Ambros. Gr. L. 99 sup., now 491) attributed to the seventh

century but probably earlier. Besides this, we have a trans-

lation by William of Moerbeke from an Arabic version.

This Latin translation was edited with a valuable commentary
by the indefatigable Commandinus (Rome, 1562); but it is

now available in William of Moerbeke's own words, Heiberg

having edited it from Cod. Vaticanus Ottobon. lat. 1850 of the

thirteenth century (written in William's own hand), and in-

cluded it with the Greek fragments (so far as they exist) in

parallel columns in vol. ii of Ptolemy's works (Teubner, 1907).

The figure is referred to three fixed planes (1) the meridian,

(2) the horizon, (3) the prime vertical; these planes are the

planes of the three circles APZB, AGB, ZQG respectively

shown in the diagram below. Three other great circles are

used, one of which, the equator with pole P, is fixed; the

other two are movable and were called by special names;
the first is the circle represented by any position of the circle

of the horizon as it revolves round G0& as diameter (GSM in

1 Vitruvius, De architect, ix. 4. 2 Anth, Palat, xiv. 139.
3 Pappus, iv, p. 246. 1.



288 TRIGONOMETRY

the diagram is one position of it, coinciding with the equator),

and it was called iKTrj/iopos kvkXos ('the circle in six parts')

because the highest point of it above the horizon corresponds

to the lapse of six hours ; the second, called the hour-circle, is

the circle represented by any position, as BSQA, of the circle

of the horizon as it revolves round BA as axis.

The problem is, as above stated, to find the position of the

sun at a given hour of the day. In order to illustrate

the method, it is sufficient, with A. v. Braunmuhl,1 to take the

simplest case where the sun is on the equator, i.e. at one of

the equinoctial points, so that the hectemoron circle coincides

with the equator.

Let S be the position of the sun, lying on the equator MSC,
P the pole, MZA the meridian, BOA the horizon, BSQA the

hour-circle, and let the vertical great circle ZSV be drawn

through S, and the vertical great circle ZQC through Z the

zenith and G the east-point.

We are given the arc SC = 90° — t, where t is the hour-

angle, and the arc MB = 90°— 0, where <p is the elevation of

the pole ; and we have to find the arcs SV (the sun's altitude),

•d
| J7\ ——^ \K
/%

T ^N. \P

\ G

/
E
\

/V: \

vnT"H

/

VC, the 'ascensional difference', SQ and QC. Ptolemy, in

fact, practically determines the position of S in terms of

certain spherical coordinates.

Draw the perpendiculars, SF to the plane of the meridian,

SH to that of the horizon, and SE to the plane of the prime

1 Braunmuhl, Gesck. der Trigonometrie, i, pp. 12. 13.
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vertical ; and draw FG perpendicular to BA, and ET to OZ.

Join HG, and we have FG = £#, GH = FS = ET.

We now represent SF in a separate figure (for clearness'

sake, as Ptolemy uses only one figure), where B'Z'A' corre-

sponds to BZA, F' to P and O'M' to OM. Set off the arc

P'S' equal to OS (= 90° -t), and draw £'jF' perpendicular

to O'M'. Then /S'Jf'= #Jf, and S'F'= SF; it is as if in the

original figure we had turned the quadrant MSC round MO
till it coincided with the meridian circle.

In the two figures draw IFK, I'F'K' parallel to BA, B'A\
and LFG, L'F'G' parallel to OZ, O'Z'.

Then (1) arc ZI = arc ZS = arc (90° — SV), because if we
turn the quadrant ZSV about ZO till it coincides with the

i' Z

meridian, 8 falls on 1, and V on B. It follows that the

required arc SV = arc B'l' in the second figure.

(2) To find the arc VC, set off G'X (in the second figure)

along G'F' equal to FS or F'S', and draw O'X through to

meet the circle in X'. Then arc ^'X'=arc VC; for it is as if

we had turned the quadrant BVG about BO till it coincided

with the meridian, when (since G'X = FS = GH) H would

coincide with X and V with X'. Therefore SFis also equal

to B'X'.

(3) To find QC or ZQ, set off along T'F' in the second figure

T'Y equal to F'S', and draw O'Y through to Y' on the circle.

Then arc B'Y'= arc QG; for it is as if we turned the prime

vertical ZQG about ZO till it coincided with the meridian,

when (since T'Y=S'F'= TE) E would fall on Y, the radius

OEQ on O'YY' and Q on Y'.

(4) Lastly, arc BS = arc BL = arc B'L', because S, L are

u1523.2
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both in the plane LSHG at right angles to the meridian

;

therefore arc SQ = arc L'Z'.

Hence all four arcs SV, VG, QC, QS are represented in the

auxiliary figure in one plane.

So far the procedure amounts to a method of graphically

constructing the arcs required as parts of an auxiliary circle

in one plane. But Ptolemy makes it clear that practical

calculation followed on the basis of the figure. 1 The lines

used in the construction are SF— sin t (where the radius =1),

FT = OFsin (/>, FG = OF sin (90°- $), and this was fully

realized by Ptolemy. Thus he shows how to calculate the

arc SZ, the zenith distance (= d, say) or its complement SV,

the height of the sun (= h, say), in the following way. He
says in effect: Since G is known, and LF'O'G' — 90° — 0, the

ratios O'F' : F'T and O'F' : O'T are known.

O'F' D
[In fact tttttt/ — —, , ^ , x . where D is the diameter
L O'T' crd. (180° -20)'

of the sphere.]

Next, since the arc MS or M'S' is known [ = £], and there-

fore the arc P'S' [= 90°-*], the ratio of O'F' to D is known
[in fact O'F'/D = {crd.,(180-2*)}/22).

It follows from these two results that

0/r,= crd.(180°- 2Q ^ _
2D v r/J

Lastly, the arc SV (= h) being equal to B'I\ the angle h is

equal to the angle O'I'T in the triangle I'O'T. And in this

triangle O'l', the radius, is known, while O'T' has been found
;

and we have therefore

OT'_crd.(2/0_crd.(180°-2£) crd. (18O°-20)
jyj? — ~r

— —
jy~

'

j)
j irom above.

[In other words, sin h — cos t cos
;

or, if u — SO — 90°— t,

sin h = sin u cos 0, the formula for finding sin h in the right-

angled spherical triangle SVC]
For the azimuth co (arc BV = arc B'X'), the figure gives

XG'_ S'F' _ S'F' WF_ 1

tan co -
G ,Q/ -jtjT,- ,F, rr - tan t .^ ^

,

1 See Zeuthen in Bibliotheca mathematical, i3 , 1900, pp. 23-7.
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or tan VG = tsmSCcosSGV in the right-angled spherical

triangle SVG.
Thirdly,

tan QZ = tan Z'Y' =^ = qtj, •^ = tan t. --
;

that is, —L-=^-rn?j which is Menelaus, Sphaerica,
' tan&¥ sin i?i¥' z

III. 3, applied to the right-angled spherical triangles ZBQ,

MBS with the angle B common.

Zeuthen points out that later in the same treatise Ptolemy

finds the arc 2 a described above the horizon by a star of

given declination 8', by a procedure equivalent to the formula

cos (X — tan <$' tan 0,

and this is the same formula which, as we have seen,

Hipparchus must in effect have used in his Commentary on

the Phaenomena of Eudoxus and Aratus.

Lastly, with regard to the calculations of the height h and

the azimuth a> in the general case where the sun's declination

is 8\ Zeuthen has shown that they may be expressed by the

formulae

sin h = (cos 8' cos t— sin 5' tan 0) cos 0,

cos 8
/
sin t

and tan co =

or

r + (cos <S
r
cos t — sin 8' tan 0) sin

COS
V Tt T

cos 8' sin t

sin 8' cos + cos 8' cos t sin

The statement therefore of A. v. Braunmuhl l that the

Indians were the first to utilize the method of projection

contained in the Analemma for actual trigonometrical calcu-

lations with the help of the Table of Chords or Sines requires

modification in so far as the Greeks at all events showed the

way to such use of the figure. Whether^the practical applica-

tion of the method of the Analemma for what is equivalent

to the solution of spherical triangles goes back as far as

Hipparchus is not certain ; but it is quite likely that it does,

1 Braunmuhl, i, pp. 13, 14, 38-41.

U 2
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seeing that Diodorus wrote his Analemma in the next cen-

tury. The other alternative source for Hipparchus's spherical

trigonometry is the Menelaus-theorem applied to the sphere,

on which alone Ptolemy, as we have seen, relies in his

Syntaxis. In any case the Table of Chords or Sines was in

full use in Hipparchus's works, for it is presupposed by either

method.

The Planisphaerium.

With the Analemma of Ptolemy is associated another

work of somewhat similar content, the Plani^haerium.
This again has only survived in a Latin translation from an

Arabic version made by one Maslama b. Ahmad al-Majritl, of

Cordova (born probably at Madrid, died 1007/8) ; the transla-

tion is now found to be, not by Rudolph of Bruges, but by
' Hermannus Secundus ', whose pupil Rudolph was ; it was

first published at Basel in 1536, and again edited, with com-

mentary, by Commandinus (Venice, 1558). It has been

re-edited from the manuscripts by Heiberg in vol. ii. of his

text of Ptolemy. The book is an explanation of the system

of projection known as stereographic, by which points on the

heavenly sphere are represented on the plane of the equator

by projection from one point, a pole ; Ptolemy naturally takes

the south pole as centre of projection, as it is the northern

hemisphere which he is concerned to represent on a plane.

Ptolemjr is aware that the projections of all circles on the

sphere (great circles—other than those through the poles

which project into straight lines—and small circles either

parallel or not parallel to the equator) are likewise circles.

It is curious, however, that he does not give any general

proof of the fact, but is content to prove it of particular

circles, such as the ecliptic, the horizon, &c. This is remark-

able, because it is easy to show that, if a cone be described

with the pole as vertex and passing through any circle on the

sphere, i.e. a circular cone, in general oblique, with that circle

as base, the section of the cone by the plane of the equator

satisfies the criterion found for the ' subcontrary sections ' by

Apollonius at the beginning of his Conies, and is therefore a

circle. The fact that the method of stereographic projection is

so easily connected with the property of subcontrary sections
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of oblique circular cones has led to the conjecture that Apollo-

nius was the discoverer of the method. But Ptolemy makes no

mention of Apollonius, and all that we know is that Synesius

of Gyrene (a pupil of Hypatia, and born about a.d. 365-370)

attributes the discovery of the method and its application to

Hipparchus ; it is curious that he does not mention Ptolemy's

treatise on the subject, but speaks of himself alone as having

perfected the theory. While Ptolemy is fully aware that

circles on the sphere become circles in the projection, he says

nothing about the other characteristic of this method of pro-

jection, namely that the angles on the sphere are represented

by equal angles on the projection.

We must content ourselves with the shortest allusion to

other works of Ptolemy. There are, in the first place, other

minor astronomical works as follows

:

(1) $dcreis dnXavcov acnkp&v of which only Book II sur-

vives, (2) 'Tnodecreis tcov Tr\av<£>\ikv<£>v in two Books, the first

of which is extant in Greek, the second in Arabic only, (3) the

inscription in Canobus, (4) Upoyj.ip<£>v kolvovcov oWracn? kccI

yjrr](po(popLa. All these are included in Heiberg's edition,

vol. ii.
'

The Optics.

Ptolemy wrote an Optics in five Books, which was trans-

lated from an Arabic version into Latin in the twelfth

century by a certain Admiral Eugenius Siculus 1
; Book I,

however, and the end of Book V are wanting. Books I, II

were physical, and dealt with generalities ; in Book III

Ptolemy takes up the theory of mirrors, Book IV deals with

concave and composite mirrors, and Book V with refraction.

The theoretical portion would suggest that the author was
not very proficient in geometry. Many questions are solved

incorrectly, owing to the assumption of a principle which is

clearly false, namely that ' the image of a point on a mirror is

at the point of concurrence of two lines, one of which is drawn
from the luminous point to the centre of curvature of the

mirror, while the other is the line from the eye to the point

1 See G. Govi, L'ottica di Claudio Tolomeo di JEuyenio Ammiraylio d*

Sicilia, ... Torino, 1884; and particulars in G. Loria. Le acieuze enitte.

nelV antica Grecia, pp. 570, 571.
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on the mirror where the reflection takes place
'

; Ptolemy uses

the principle to solve various special cases of the following

problem (depending in general on a biquadratic equation and
now known as the problem of Alhazen), ' Given a reflecting

surface, the position of a luminous point, and the position

of a point through which the reflected ray is required to pass,

to find the point on the mirror where the reflection will take

place.' Book V is the most interesting, because it seems to

be the first attempt at a theory of refraction. It contains

many details of experiments with different media, air, glass,

and water, and gives tables of angles of refraction (r) corre-

sponding to different angles of incidence (i) ; these are calcu-

lated on the supposition that r and i are connected by an
equation of the following form,

v — ai— bi2
,

where a, b are constants, which is worth noting as the first

recorded attempt to state a law of refraction.

The discovery of Ptolemy's Optics in the Arabic at once

made it clear that the work Be speculis formerly attributed

to Ptolemy is not his, and it is now practically certain that it

is, at least in substance, by Heron. This is established partly

by internal evidence, e.g. the style and certain expressions

recalling others which are found in the same author's Auto-

mata and Dioptra, and partly by a quotation by Damianus
(On hypotheses in Optics, chap. 14) of a proposition proved by
' the mechanician Heron in his own Catoptrica ', which appears

in the work in question, but is not found in Ptolemy's Optics,

or in Euclid's. The proposition in question is to the effect

that of all broken straight lines from the eye to the mirror

and from that again to the object, that particular broken line

is shortest in which the two parts make equal angles with the

surface of the mirror; the inference is that, as nature does

nothing in vain, we must assume that, in reflection from a

mirror, the ray takes the shortest course, i.e. the angles of

incidence and reflection are equal. Except for the notice in

Damianus and a fragment in Olympiodorus : containing the

proof of the proposition, nothing remains of the Greek text

;

1 Olympiodorus on Aristotle, Meteor, iii. 2, ed. Ideler, ii, p. 96, ed.

Stiive, pp. 212 5-213. 20.
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but the translation into Latin (now included in the Teubner

edition of Heron, ii, 1900, pp. 316-64), which was made by

William of Moerbeke in 1269, was evidently made from the

Greek and not from the Arabic, as is shown by Graecisms in

the translation.

A mechanical work, liepi po-nav.

There are allusions in Simplicius 1 and elsewhere to a book

by Ptolemy of mechanical content, irepl poncou, on balancings

or turnings of the scale, in which Ptolemy maintained as

against Aristotle that air or water (e.g.) in their own ' place
'

have no weight, and, when they are in their own ' place ', either

remain at rest or rotate simply, the tendency to go up or to

fall down being due to the desire of things which are not in

their own places to move to them. Ptolemy went so far as to

maintain that a bottle full of air was not only not heavier

than the same bottle empty (as Aristotle held), but actually

lighter when inflated than when empty. The same work is

apparently meant by the ' book on the elements ' mentioned

by Simplicius. 2 Suidas attributes to Ptolemy three Books of

Mechanica.

Simplicius 3 also mentions a single book, irepl Stao-Tdaeco?,

'On dimension', i.e. dimensions, in which Ptolemy tried to

show that the possible number of dimensions is limited to

three.

Attempt to prove the Parallel-Postulate.

Nor should we omit to notice Ptolemy's attempt to prove

the Parallel-Postulate. Ptolemy devoted a tract to this

subject, and Proclus 4 has given us the essentials of the argu-

ment used. Ptolemy gives, firstjka proof of Euch I. 28, and
then an attempted proof of I. 29, from which he deduces

Postulate 5.

1 Simplicius on Arist. De caelo, p. 710. 14, Heib. (Ptolemy, ed. Heib.,
vol. ii, p. 263).

2
lb., p. 20. 10 sq.

3
lb., p. 9. 21 sq., (Ptolemy, ed. Heib., vol. ii, p. 265).

4 Proclus on Eucl. I, pp. 362. 14 sq., 365. 7-367. 27 (Ptolemy, ed. Heib.,
vol. ii, pp. 266-70).
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I. To prove I. 28, Ptolemy takes two straight lines AB, CD,

and a transversal EFGH. We have to prove that, if the sum

of the angles BFG, FGD is equal to two right angles, the

straight lines AB, CD are parallel, i.e. non-secant.

Since AFG is the supplement of BFG, and FGC of FGD, it

follows that the sum of the angles AFG, FGC is also equal to

two right angles.

Now suppose, if possible, that FB, GD, making the sum of*

the angles BFG, FGD equal to two right angles, meet at K

;

then similarly FA, GC making the sum of the angles AFG,
FGC equal to two right angles must also meet, say at L.

[Ptolemy would have done better to point out that not

only are the two sums equal but the angles themselves are

equal in pairs, i.e. AFG to FGD and FGC to BFG, and we can

therefore take the triangle KFG and apply it to FG on the other

side so that the sides FK, GK may lie along GC, FA respec-

tively, in which case GC, FA will meet at the point where

K falls.]

Consequently the straight lines LABK, LCDK enclose a

space : which is impossible.

It follows that AB, CD cannot meet in either direction

;

they are therefore parallel.

II. To prove I. 29, Ptolemy takes two parallel lines AB,
CD and the transversal FG, and argues thus. It is required

to prove that Z AFG + Z CGF == two right angles.

For, if the sum is not equal to two right angles, it must be

either (1) greater or (2) less.

(1) If it is greater, the sum of the angles on the other side,

BFG, FGD, which are the supplements of the first pair of

angles, must be less than two right angles.

But AF, CG are no more parallel than FB, GD, so that, if

FG makes one 'pair of angles AFG, FGC together greater than
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hvo right angles, it must also make the other pair BFG, FGD
together greater than two right angles.

But the latter pair of angles were proved less than two

right angles : which is impossible. <

Therefore the sum of the angles AFG, FGG cannot be

greater than two right angles.

(2) Similarly we can show that the sum of the two angles

AFG, FGG cannot be less than two right angles.

Therefore AAFG + A CGF = two right angles.

[The fallacy here lies in the inference which I have marked

by italics. When Ptolemy says that AF, GG are no more

parallel than FB, GD, he is in effect assuming that through

any one point only one parallel can be drawn to a given straight

line, which is an equivalent for the very Postulate he is

endeavouring to prove. The alternative Postulate is known
as ' Playfair's axiom ', but it is of ancient origin, since it is

distinctly enunciated in Proclus's note on Eucl. I. 31.]

III. Post. 5 is now deduced, thus.

Suppose that the straight lines making with a transversal

angles the sum of which is less than two right angles do not

meet on the side on which those angles are.

Then, a fortiori, they will not meet on the other side on

which are the angles the sum of which is greater than two

right angles. [This is enforced by a supplementary proposi-

tion showing that, if the lines met on that side, Eucl. I. 16

would be contradicted.]

Hence the straight lines cannot meet in either direction :

they are therefore parallel.

But in that case the angles made with the transversal are

equal to two right angles : which contradicts the assumption.

Therefore the straight lines will meet.



XVIII

MENSURATION: HERON OF ALEXANDRIA

Controversies as to Heron's date.

The vexed question of Heron's date has perhaps called

forth as much discussion as any doubtful point in the history

of mathematics. In the early stages of the controversy much
was made of the supposed relation of Heron to Ctesibius.

The Belopoe'ica of Heron has, in the best manuscript, the

heading "Hpoovos KrrjaL^iov BeXoTrouKa, and from this, coupled

with an expression used by an anonymous Byzantine writer

of the tenth century, 6 'AaKprji/b? Ktt}<tlI3lo? 6 tov AXegavSpim
"Hpwos KaOrjyrjTrjs, 'Ctesibius of Ascra, the teacher of Heron
of Alexandria ', it was inferred that Heron was a pupil of

Ctesibius. The question then was, when did Ctesibius live ?

Martin took him to be a certain barber of that name who
lived in the time of Ptolemy Euergetes II, that is, Ptolemy VII,

called Physcon (died 117 B.C.), and who is said to have made
an improved water-organ l

; Martin therefore placed Heron at

the beginning of the first century (say 126-50) B.C. But

Philon of Byzantium, who repeatedly mentions Ctesibius by

name, says that the first mechanicians (rex^Tai) had the

great advantage of being under kings who loved fame and

supported the arts. 2 This description applies much better

to Ptolemy II Philadelphus (285-247) and Ptolemy III Euer-

getes I (247-222). It is more probable, therefore, that Ctesibius

was the mechanician Ctesibius who is mentioned by Athenaeus

as having made an elegant drinking-horn in the time of

Ptolemy Philadelphus 3
; a pupil then of Ctesibius would

probably belong to the end of the third and the beginning of

the second century B.C. But in truth we cannot safely con-

clude that Heron was an immediate pupil of Ctesibius. The

Byzantine writer probably only inferred this from the title

1 Athenaeus, Deipno-Soph. iv. e. 75, p. 174 b-e : cf. Vitruvius, x. 9, 13.
2 Philon, Median Si/ut., p. 50. 38, ed. Scheme.
3 Athenaeus, xi. c. 97, p. 497 b-e.
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above quoted ; the title, however, in itself need not imply

more than that Heron's work was a new edition of a similar

work by Ctesibius,and the Krrjcrifiiov may even have been added

by some well-read editor who knew both works and desired to

indicate that the greater part of the contents of Heron's work
was due to Ctesibius. One manuscript ha,s"Hpcoi/os 'A\e£av-

Speco? BeXo7rouKcc, which corresponds to the titles of the other

works of Heron and is therefore more likely to be genuine.

The discovery of the Greek text of the Metrica by R. Schone

in 1896 made it possible to fix with certainty an upper limit.

In that work there are a number of allusions to Archimedes,

three references to the -^ooptov dwoTOfirj of Apollonius, and

two to ' the (books) about straight lines (chords) in a circle

'

(SeSeiKTca Se kv rols nepl t&v kv kvkXcd evOeLcov). Now, although

the first beginnings of trigonometry may go back as far as

Apollonius, we know of no work giving an actual Table of

Chords earlier than that of Hipparchus. We get, therefore,

at once the date 150 B.C. or thereabouts as the terminus £>od£

quern. A terminus ante quern is furnished by the date of the

composition of Pappus's Collection ; for Pappus alludes to, and
draws upon, the works of Heron. As Pappus was writing in

the reign of Diocletian (a.d. 284-305), it follows that Heron
could not be much later than, say, a.d. 250. In speaking of

the solutions by 'the old geometers' (ol TraXaiol yecofxerpat) of

the problem of finding the two mean proportionals, Pappus may
seem at first sight to include Heron along with Eratosthenes,

Nicomedes and Philon in that designation, and it has been

argued, on this basis, that Heron lived long before Pappus.

But a close examination of the passage 1 shows that this is

by no means necessary. The relevant words are as follows

:

' The ancient geometers were not able to solve the problem
of the two straight lines [the problem of finding two mean
proportionals to them] by ordinary geometrical methods, since

the problem is by nature '" solid "... but by attacking it with
mechanical means they managed, in a wonderful way, to

reduce the question to a practical and convenient construction,

as may be seen in the Mesolabon of Eratosthenes and in the

mechanics of Philon and Heron . . . Nicomedes also solved it

by means of the cochloid curve, with which he also trisected

an angle.'
1 Pappus, iii, pp. 54-6.
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Pappus goes on to say that he will give four solutions, one

of which is his own ; the first, second, and third he describes

as those of Eratosthenes, Nicomedes and Heron. But in the

earlier sentence he mentions Philon along with Heron, and we
know from Eutocius that Heron's solution is practically the

same as Philon's. Hence we may conclude that by the third

solution Pappus really meant Philon's, and that he only men-
tioned Heron's Mechanics because it was a convenient place in

which to find the same solution.

Another argument has been based on the fact that the

extracts from Heron's Mechanics given at the end of Pappus's

Book VIII, as we have it, are introduced by the author with

a complaint that the copies of Heron's works in which he

found them were in many respects corrupt, having lost both

beginning and end. 1 But the extracts appear to have been

added, not by Pappus, but by some later writer, and the

argument accordingly falls to the ground.

The limits of date being then, say, 150 B.C. to A. d. 250, our

only course is to try to define, as well as possible, the relation

in time between Heron and the other mathematicians who
come, roughly, within the same limits. This method has led

one of the most recent writers on the subject (Tittel 2
) to

place Heron not much later than 100 B.C., while another,?

relying almost entirely on a comparison between passages in

Ptolemy and Heron, arrives at the very different conclusion

that Heron was later than Ptolemy and belonged in fact to

the second century a.d.

In view of the difference between these results, it will be

convenient to summarize the evidence relied on to establish

the earlier date, and to consider how far it is or is not con-

clusive against the later. We begin with the relation of

Heron to Philon. Philon is supposed to come not more than

a generation later than Ctesibius, because it would appear that

machines for throwing projectiles constructed by Ctesibius

and Philon respectively were both available at one time for

inspection by experts on the subject 4
; it is inferred that

1 Pappus, viii, p. 1116. 4-7.
2 Art. ' Heron von Alexandreia ' in Pauly-Wissowa's Real-Encyclopcidie

der class. Altertumsivissenschaft, vol. 8. 1, 1912.
3

I. Hammer-Jensen in Hermes, vol. 48, 1913, pp. 224-35.
4 Philon, Mech. Synt. iv, pp. 68. 1, 72. 36.



CONTROVERSIES AS TO HERON'S DATE 301

Philon's date cannot be later than the end of the second

century B.C. (If Ctesibius nourished before 247 B.C. the argu-

ment would apparently suggest rather the beginning than the

end of the second century.) Next, Heron is supposed to have

been a younger contemporary of Philon, the grounds being

the following. (1) Heron mentions a ' stationary-automaton'

representation by Philon of the Nauplius-story,1 and this is

identified by Tittel with a representation of the same story by

some contemporary of Heron's (ol kccO' 77/zay 2
). But a careful

perusal of the whole passage seems to me rather to suggest

that the latter representation was not Philon's, and that

Philon was included by Heron among the ' ancient ' auto-

maton-makers, and not amonghis contemporaries." (2) Another

argument adduced to show that Philon was contemporary

1 Heron, Autom., pp. 404. 11-408. 9.
2

lb., p. 412. 13.
3 The relevant remarks of Heron are as follows. (1) He says that he

has found no arrangements of 'stationary automata' better or more
instructive than those described by Philon of Byzantium (p. 404. 11).

As an instance he mentions Philon's setting of the Nauplius-story, in

which he found everything good except two things (a) the mechanism
for the appearance of Athene, which was too difficult (ipycadeo-Tepov), and
(b) the absence of an incident promised by Philon in his description,

namely the falling of a thunderbolt on Ajax with a sound of thunder
accompanying it (pp. 404. 15-408. 9). This latter incident Heron could
not find anywhere in Philon, though he had consulted a great number
of copies of his work. He continues (p. 408. 9-13) that we are not to

suppose that he is running down Philon or charging him with not being
capable of carrying out what he promised. On the contrary, the omission
was probably due to a slip of memory, for it is easy enough to make
stage-thunder (he proceeds to show how to do it). But the rest of
Philon's arrangements seemed to him satisfactory, and this, he says, is

why he has not ignored Philon's work :
' for I think that my readers will

get the most benefit if they are shown, first what has been well said by
the ancients and then, separately from this, what the ancients overlooked
or what in their work needed improvement ' (pp. 408. 22-410. 6). (2) The
next chapter (pp. 410. 7-412. 2) explains generally the sort of thing the
automaton-picture has to show, and Heron says he will give one example
which he regards as the best. Then (3), after drawing a contrast between
the simpler pictures made by ' the ancients ', which involved three different'

movements only, and the contemporary (ol Ka^ rjpas) representations of

interesting stories by means of more numerous and varied movements
(p. 412. 3-15), he proceeds to describe a setting of the Nauplius-story.
This is the representation which Tittel identifies with Philon's. But it

is to be observed that the description includes that of the episode of the
thunderbolt striking Ajax (c. 30, pp. 448. 1-452. 7) which Heron expressly
says that Philon omitted. Further, the mechanism for the appearance
of Athene described in c. 29 is clearly not Philon's ' more difficult

'

arrangement, but the simpler device described (pp. 404. 18-408. 5) as

possible and preferable to Philon's (cf. Heron, vol. i, ed. Schmidt, pp.
lxviii-lxix).
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with Heron is the fact that Philon has some criticisms of

details of construction of projectile-throwers which are found

in Heron, whence it is inferred that Philon had Heron's work
specifically in view. But if Heron's BeXo7rouKd was based on

the work of Ctesibius, it is equally possible that Philon may
be referring to Ctesibius.

A difficulty in the way of the earlier date is the relation in

which Heron stands to Posidonius. In Heron's Mechanics,

i. 24, there is a definition of ' centre of gravity ' which is

attributed by Heron to ' Posidonius a Stoic \ But this can

hardly be Posidonius of Apamea, Cicero's teacher, because the

next sentence in Heron, stating a distinction drawn by Archi-

medes in connexion with this definition, seems to imply that

the Posidonius referred to lived before Archimedes. But the

Definitions of Heron do contain definitions of geometrical

notions which are put down by Proclus to Posidonius of

Apamea or Rhodes, and, in particular, definitions of ' figure

'

and of 'parallels'. Now Posidonius lived from 135 to 51 B.C.,

and the supporters of the earlier date for Heron can only

suggest that either Posidonius was not the first to give these

definitions, or alternatively, if he was, and if they were

included in Heron's Definitions by Heron himself and not by

some later editor, all that this obliges us to admit is that

Heron cannot have lived before the first century B. c.

Again, if Heron lived at the beginning of the first cen-

tury B.C., it is remarkable that he is nowhere mentioned by

Vitruvius. The De architectural was apparently brought out

in 14 B.C. and in the preface to Book VII Vitruvius gives

a list of authorities on machinationes from whom he made
extracts. The list contains twelve names and has every

appearance of being scrupulously complete ; but, while it

includes Archytas (second), Archimedes (third), Ctesibius

(fourth), and Philon of Byzantium (sixth), it does not men-

tion Heron. Nor is it possible to establish interdependence

between Heron and Vitruvius ; the differences seem, on the

whole, to be more numerous than the resemblances. A few of

the differences may be mentioned. Vitruvius uses 3 as the

value of 7r, whereas Heron always uses the Archimedean value

3^. Both writers make extracts from the Aristotelian

Mrj^ayiKa TTpof3\rjfj.aTa, but their selections are different. The
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machines used by the two for the same purpose frequently

differ in details ; e. g. in Vitruvius's hodometer a pebble drops

into a box at the end of each Roman mile. 1 while in Heron's

the distance completed is marked by a pointer. 2 It is indeed

pointed out that the water-organ of Heron is in many respects

more primitive than that of Vitruvius ; but, as the instru-

ments are altogether different, this can scarcely be said to

prove anything.

On the other hand, there are points of contact between

certain propositions of Heron and of the Roman agrimen-

sores. Columella, about a.d. 62, gave certain measurements of

plane figures which agree with the formulae used by Heron,

notably those for the equilateral triangle, the regular hexagon

(in this case not only the formula but the actual figures agree

with Heron's) and the segment of a circle which is less than

a semicircle, the formula in the last case being

where s is the chord and h the height of the segment. Here

there might seem to be dependence, one way or the other

;

but the possibility is not excluded that the two writers may
merely have drawn from a common source ; for Heron, in

giving the formula for the area of the segment of a circle,

states that it was the formula used by ' the more accurate

investigators' (ol aKpifika-rtpov e^rjTrj /cores1

).
3

We have, lastly, to consider the relation between Ptolemy

and Heron. If Heron lived about 100 B.C., he was 200 years

earlier than Ptolemy (a.d. 100—178). The argument used to

prove that Ptolemy came some time after Heron is based on

a passage of Proclus where Ptolemy is said to have remarked

on the untrustworthiness of the method in vogue among the
1 more ancient ' writers of measuring the apparent diameter of

the sun by means of water-clocks.4 Hipparchus, says Pro-

clus, used his dioptra for the purpose, and Ptolemy followed

him. Proclus proceeds

:

' Let us then set out here not only the observations of

the ancients but also the construction of the dioptra of

1 Vitruvius, x. 14. 2 Heron, Dioptra, c. 34.
3 Heron, Metrica, i. 31, p. 74. 21.
4 Proclus, Hypotyposis, pp. 120. 9-15, 124. 7-26.
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Hipparchus. And first we will show how we can measure an
interval of time by means of the regular efflux of water,
a procedure which was explained by Heron the mechanician
in his treatise on water-clocks.'

Theon of Alexandria has a passage to a similar effect. 1 He
first says that the most ancient mathematicians contrived

a vessel which would let water flow out uniformly through a

small aperture at the bottom, and then adds at the end, almost

in the same words as Proclus uses, that Heron showed how
this is managed in the first book of his work on water-

clocks. Theon's account is from Pappus's Commentary on

the Syntaxis, and this is also Proclus's source, as is shown by
the fact that Proclus gives a drawing of the water-clock

which appears to have been lost in Theon's transcription from

Pappus, but which Pappus must have reproduced from the

work of Heron. Tittel infers that Heron must have ranked

as one of the ' more ancient ' writers as compared with

Ptolemy. But this again does not seem to be a necessary

inference. No doubt Heron's work was a convenient place to

refer to for a description of a water-clock, but it does not

necessarily follow that Ptolemy was referring to Heron's

clock rather than some earlier form of the same instrument.

An entirely different conclusion from that of Tittel is

reached in the article ' Ptolemaios and Heron ' already alluded

to.
2 The arguments are shortly these. (1) Ptolemy says in

his Geography (c. 3) that his predecessors had only been able

to measure the distance between two places (as an arc of a

great circle on the earth's circumference) in the case where

the two places are on the same meridian. He claims that he

himself invented a way of doing this even in the case where

the two places are neither on the same meridian nor on the

same parallel circle, provided that the heights of the pole at

the two places respectively, and the angle between the great

circle passing through both and the meridian circle through

one of the places, are known. Now Heron in his Dioptra

deals with the problem of measuring the distance between

two places by means of the dioptra, and takes as an example

1 Theon, Comm. on the Syntaxis, Basel, 1538, pp. 261 sq. (quoted in

Proclus, Hypotyposis, ed. Manitius, pp. 309-11).
2 Hammer-Jensen, op. cit.

i
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the distance between Rome and Alexandria. 1 Unfortunately

the text is in places corrupt and deficient, so that the method

cannot be reconstructed in detail. But it involved the obser-

vation of the same lunar eclipse at Rome and Alexandria

respectively and the drawing of the analemma for Rome.

That is to say, the mathematical method which Ptolemy

claims to have invented is spoken of by Heron • as a thing

generally known to experts and not more remarkable than

other technical matters dealt with in the same book. Conse-

quently Heron must have been later than Ptolemy. (It is

right to add that some hold that the chapter of the Dioptra

in question is not germane to the subject of the treatise, and

was probabry not written by Heron but interpolated by some

later editor ; if this is so, the argument based upon it falls to

the ground.) (2) The dioptra described in Heron's work is a

fine and accurate instrument, very much better than anything

Ptolemy had at his disposal. If Ptolemy had been aware of

its existence, it is highly unlikely that he would have taken

the trouble to make his separate and imperfect ' parallactic
'

instrument, since it could easily have been grafted on to

Heron's dioptra. Not only, therefore, must Heron have been

later than Ptolemy but, seeing that the technique of instru-

ment-making had made such strides in the interval, he must
have been considerably later. (3) In his work irepl poncov 2

Ptolemy, as we have seen, disputed the view of Aristotle that

air has weight even when surrounded by air. Aristotle

satisfied himself experimentally that a vessel full of air is

heavier than the same vessel empty ; Ptolemy, also by ex-

periment, convinced himself that the former is actually the

lighter. Ptolemy then extended his argument to water, and

held that water with water round it has no weight, and that

the diver, however deep he dives, does not feel the weight of

the water above him. Heron" asserts that water has no

appreciable weight and has no appreciable power of com-

pressing the air in a vessel inverted and forced down into

the water. In confirmation of this he cites the case of the

diver, who is not prevented from breathing when far below
— *

1 Heron, Dioptra, c. 35 (vol. iii, pp. 302-6).
2 Simplicius on De caelo, p. 710. 14, Heib. (Ptolemy, vol. ii, p. 263).
3 Heron, Pneumntica, i. Pref. (vol. i, p. 22. 14 sq.).

1523.2 X



306 HERON OF ALEXANDRIA

the surface. He then inquires what is the reason why the

diver fe not oppressed though he has an unlimited weight of

water on his back. He accepts, therefore, the view of Ptolemy

as to the fact, however strange this may seem. But he is not

satisfied with the explanation given :
' Some say ', he goes on,

1

it is because water in itself is uniformly heavy (/cro/Sape? avro

kccO' avro) '—this seems to be equivalent to Ptolemy's dictum

that water in water has no weight

—

' but they give no ex-

planation whatever why divers . .
.' He himself attempts an

explanation based on Archimedes. It is suggested, therefore,

that Heron's criticism is directed specifically against Ptolemy

and no one else. (4) It is suggested that the Dionysius to whom
Heron dedicated his Definitions is a certain Dionysius who
was praejectus urbi at Rome in a.d. 301. The grounds are

these (a) Heron addresses Dionysius as Aiovvaiz Xa/jLTrporare,

where Xa/jL7rp6raro? obviously corresponds to the Latin clarissi-

mus, a title which in the third century and under Diocletian

was not yet in common use. Further, this Dionysius was

curator aquarum and curator operum publicorum, so that he

was the sort of person who would have to do with the

engineers, architects and craftsmen for whom Heron wrote.

Lastly, he is mentioned in an inscription commemorating an

improvement of water supply and dedicated ' to Tiberinus,

father of all waters, and to the ancient inventors of marvel-

lous constructions ' (repertoribus admirabilium fabricarum

pritcis viris), an expression which is not found in any other

inscription, but which recalls the sort of tribute that Heron

frequently pays to his predecessors. This identification of the

two persons named Dionysius is an ingenious conjecture, but

the evidence is not such as to make it anything more. 1

The result of the whole investigation just summarized is to

place Heron in the third century A.D., and perhaps little, if

anything, earlier than Pappus. Heiberg accepts this conclu-

sion,2 which may therefore, I suppose, be said to hold the field

for the present.

1 Dionysius was of course a very common name. Diophantus dedicated

his Arithmetica to a person of this name (Tifxiwrare /jlol Atot/vaie), whom he
praised for his ambition to learn the solutions of arithmetical problems.

This Dionysius must have lived in the second half of the third century

A. D., and if Heron also belonged to this time, is it not possible that

Heron's Dionysius was the same person?
2 Heron, vol. v, p. ix.
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Heron was known as 6 'AXegavSpevs (e.g. by Pappus) or

6 . ix-q^avLKos (mechanicus), to distinguish him from other

persons of the same name ; Proclus and Damianus use the

latter title, while Pappus also speaks of ol nept tov "Hpcova

Character of works.

Heron was an almost encyclopaedic writer on mathematical

and physical subjects. Practical utility rather than theoreti-

cal completeness was the object aimed at; his environment in

Egypt no doubt accounts largely for this. His Metrica begins

with the old legend of the traditional origin of geometry in

Egypt, and in the Dioptra we find one of the very problems

which geometry was intended to solve, namely that of re-

establishing boundaries of lands when the flooding of the

Nile had destroyed the land-marks :
' When the boundaries

of an area have become obliterated to such an extent that

only two or three marks remain, in addition to a plan of the

area, to supply afresh the remaining marks.' 1 Heron makes
little or no claim to originality ; he often quotes authorities,

but, in accordance with Greek practice, he more frequently

omits to do so, evidently without any idea of misleading any
one ; only when he has made what is in his opinion any
slight improvement on the methods of his predecessors does

he trouble to mention the fact, a habit which clearly indi-

cates that, except in these cases, he is simply giving the best

traditional methods in the form which seemed to him easiest

of comprehension and application. The Metrica seems to be

richest in definite references to the discoveries of prede-

cessors; the names mentioned are Archimedes, Dionysodorus,

Eudoxus, Plato ; in the Dioptra Eratosthenes is quoted, and
in the introduction to the Gatoptrica Plato and Aristotle are

mentioned.

The practical utility of Heron's manuals being so great, it

was natural that they should have great vogue, and equally

natural that the most popular of them at any rate should be

re-edited, altered and added to by later writers ; this was
inevitable with books which, like the Elements of Euclid,

were in regular use in Greek, Byzantine, Roman, and Arabian
1 Heron, Dioptra, c. 25, p. 268. 17-19.

X <3



308 HERON OF ALEXANDRIA

education for centuries. The geometrical or mensurational

books in particular gave scope for expansion by multiplication

of examples, so that it is difficult to disentangle the genuine

Heron from the rest of the collections which have come down
to us under his name. Hultsch's considered criterion is as

follows :
' The Heron texts which have come down to our

time are authentic in so far as they bear the author's name
and have kept the original design and form of Heron's works,

but are unauthentic in so far as, being constantly in use for

practical purposes, they were repeatedly re-edited and, in the

course of re-editing, were rewritten with a view to the

particular needs of the time.'

List of Treatises.

Such of the works of Heron as have survived have reached

us in very different ways. Those which have come down in

the Greek are

:

I. The Metrica, first discovered in 1896 in a manuscript

of the eleventh (or twelfth) century at Constantinople by

R. Scheme and edited by his son, H. Schone (Heronis Opera, iii,

Teubner, 1903).

II. On the Dioptra, edited in an Italian version by Venturi

in 1814 ; the Greek text was first brought out by A. J. H.

Vincent 1 in 1858, and the critical edition of it byH. Schone is

included in the Teubner vol. iii just mentioned.

III. The Pneumatica, in two Books, which appeared first in

a Latin translation by Commandinus, published after his

death in 1575; the Greek text was first edited by TheVenot

in Vetevum mathematicorum opera Graece et Latine edita

(Paris, 1693), and is now available in Heronis Opera, i (Teub-

ner, 1899), by W. Schmidt.

IV. On the art of constructing automata (irepl avrofjLaro-

7tol7)tik7Js), or The automaton-theatre, first edited in an Italian

translation by B. Baldi in 1589 ; the Greek text was included

in TheVenot's Vet. math., and now forms part of Heronis

Opera, vol. i, by W. Schmidt.

V. Belopoe'ica (on the construction of engines of war), edited

1 Notices et extracts des manuscrits de la Bibliotheqiie impSriale, xix, pt. 2,

pp. 157-337.
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by B. Baldi (Augsburg, 1616), Thevenot (Vet. math.), Kochly

and Riistow (1853) and by Wescher (Poliorcetique dcs Grecs,

1867, the first critical edition).

VI. The Cheirobalistra ("Hpcovos x €iP ^a^^°'TPa9 KaraaKevrj

kol <rv/j./i€Tpia (?)), edited by V. Prou, Notices et extraits, xxvi. 2

(Paris, 1877).

VII. The geometrical works, Definitiones, Geometria, Geo-

daesia, Stereometrica I and II, Mensurae, Liber Geeponicus,

edited by Hultsch with Variae collectiones (Heronis Alexan-

drini geometrioorum et stereometricorum reliquiae, 1864).

This edition will now be replaced by that of Heiberg in the

Teubner collection (vols, iv, v), which contains much addi-

tional matter from the Constantinople manuscript referred to,

but omits the Liber Geeponicus (except a few extracts) and the

Geodaesia (which contains only a few extracts from the

Geometry of Heron).

Only fragments survive of the Greek text of the Mechanics

in three Books, which, however, is extant in the Arabic (now

edited, with German translation, in Heronis Opera, vol. ii,

by L. Nix and W. Schmidt, Teubner, 1901).

A smaller separate mechanical treatise, the BapovXKos, is

quoted by Pappus. 1 The object of it was ' to move a given

weight by means of a given force ', and the machine consisted

of an arrangement of interacting toothed wheels with different

diameters.

At the end of the Dioptra is a description of a hodometer for

measuring distances traversed by a wheeled vehicle, a kind of

taxameter, likewise made of a combination of toothed wheels.

A work on Water-clocks (irepl vSptcou oapocrKoirdodv) is men-

tioned in the Pneumatica as having contained four Books,

and is also alluded to by Pappus. 2 Fragments are preserved

in Proclus (Hypotyposis
y
chap. 4) and in Pappus's commentary

on Book V of Ptolemy's Syntaxis reproduced by Theon.

Of Heron's Commentary on Euclid's Elements only very

meagre fragments survive in Greek (Proclus), but a large

number of extracts are fortunately preserved in the Arabic

commentary of an-NaiiizI, edited (1) in the Latin version of

Gherard of Cremona by Curtze (Teubner, 1899), and (2) by

1 Pappus, viii, p. 1060. 5.
2

lb., p. 1026. 1.
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Besthorn and Heiberg (Codex Leidensis 399. 1, five parts of

which had appeared up to 1910). The commentary extended

as far as Elem. VIII. 27 at least.

The Catoptrica, as above remarked under Ptolemy, exists in

a Latin translation from the Greek, presumed to be by William

of Moerbeke, and is included in vol. ii of Heronis Opera,

edited, with introduction, by W. Schmidt.

Nothing is known of the Camarica (' on vaultings ') men-

tioned by Eutocius (on Archimedes, Sphere and Cylinder), the

Zygia (balancings) associated by Pappus with the Automata,1

or of a work on the use of the astrolabe mentioned in the

Fihrist.

We are in this work concerned with the treatises of mathe-

matical content, and therefore can leave out of account such

works as the Pneumatica, the Automata, and the Belopoe'ica.

The Pneumatica and Automata have, however, an interest to

the historian of physics in so far as they employ the force of

compressed air, water, or steam. In the Pneumatica the

reader will find such things as siphons, ' Heron's fountain ',

' penny-in-the-slot ' machines, a fire-engine, a water-organ, and

many arrangements employing the force of steam.

Geometry.

(a) Commentary on Euclid's Elements.

In giving an account of the geometry and mensuration

(or geodes}^) of Heron it will be well, I think, to begin

with what relates to the elements, and first the Commen-
tary on Euclid's Elements, of which we possess a number
of extracts in an-Nairizi and Proclus, enabling us to form

a general idea of the character of the work. Speaking

generally, Heron's comments do not appear to have contained

much that can be called important. They may be classified

as follows :

(1) A few general notes, e.g. that Heron would not admit

more than three axioms.

(2) Distinctions of a number of particular cases of Euclid's

propositions according as the figure is drawn in one way
or another.

1 Pappus, viii, p. 1024. 28.
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01' this class are the different cases of I. 35, 36, III. 7, 8

(where the chords to be compared are drawn on different sides

of the diameter instead of on the same side), III. 12 (which is

not Euclid's at all but Heron's own, adding the case of

external to that of internal contact in III. 11 \ VI. 19 (where

the triangle in which an additional line is drawn is taken to

be the smaller of the two), VII. 19 (where the particular case

is given of three numbers in continued proportion instead of

four proportionals).

(3) Alternative proofs.

It appears to be Heron who first introduced the easy but

uninstructive semi-algebraical method of proving the proposi-

tions II. 2-10 which is now so popular. On this method the

propositions are proved ' without figures ' as consequences of

II. 1 corresponding to the algebraical formula

a (b + c + d + . . .) — ab + ac + ad + . .

.

Heron explains that it is not possible to prove II. 1 without

drawing a number of lines (i. e. without actually drawing the

rectangles), but that the following propositions up to II. 10

can be proved by merely drawing one line. He distinguishes

two varieties of the method, one by dissolutio, the other by

compositio, by which he seems to mean splitting-wp of rect-

angles and squares and combination of them into others.

But in his proofs he sometimes combines the two varieties.

Alternative proofs are given (a) of some propositions of

Book III, namely III. 25 (placed after III. 30 and starting

from the arc instead of the chord), III. 10 (proved by means

of III. 9), III. 13 (a proof preceded by a lemma to the effect

that a straight line cannot meet a circle in more than two
points).

A class of alternative proof is (b) that which is intended to

meet a particular objection {tvo-racns) which had been or might

be raised to Euclid's constructions. Thus in certain cases

Heron avoids producing a certain straight line, where Euclid

produces it, the object being to meet the objection of one who
should deny our right to assume that there is any space

available. Of this class are his proofs of I. 11, 20 and his

note on I. 16. Similarly in I. 48 he supposes the right-angled
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triangle which is constructed to be constructed on the same
side of the common side as the given triangle is.

A third class (c) is that which avoids reductio ad abuurdum,

e.g. a direct proof of I. 19 (for which he requires and gives

a preliminary lemma) and of I. 25.

(4) Heron supplies certain converses of Euclid's propositions

e.g. of II. 12, 13 and VIII. 27.

(5) A few additions to, and extensions of, Euclid's propositions

are also found. Some are unimportant, e. g. the construction

of isosceles and scalene triangles in a note on I. 1 and the

construction of tivo tangents in III. 17. The most important

extension is that of III. 20 to the case where the angle at the

circumference is greater than a right angle, which gives an

easy way of proving the theorem of III. 22. Interesting also

are the notes on I. 37 (on I. 24 in Proclus), where Heron

proves that two triangles with two sides of the one equal

to two sides of the other and with the included angles supple-

mentary are equal in area, and compares the areas where the

sum of the included angles (one being supposed greater than

the other) is less or greater than two right angles, and on I. 47,

where there is a proof (depending on preliminary lemmas) of

the fact that, in the figure of Euclid's proposition (see next

page), the straight lines AL, BG, GE meet in a point. This

last proof is worth giving. First come the lemmas.

(1) If in a triangle ABG a straight line DE be drawn
parallel to the base BG cutting the sides AB, AC or those

sides produced in D, E, and if F be the

middle point of BG, then the straight line

AF (produced if necessary) Avill also bisect

BE. (HK is drawn through A parallel to

DE, and HDL, KEM through D, E parallel

to AF meeting the base in L, M respec-

tively. Then the triangles ABF, AFC
between the same parallels are equal. So are the triangles

DBF, EFG Therefore the differences, the triangles ADF,
AEF, are equal and so therefore are the parallelograms HF,
KF. Therefore LF = FM, or DG = GE.)

(2) is the converse of Eucl. I. 43. If a parallelogram is
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cut into four others ADGE, 1)F, FGGB, GE, so that DF, CE
are equal, the common vertex G will lie on the diagonal AB.
Heron produces AG to meet <GF in H, and then proves that

AHB is a straight line.

Since DF, GE are equal, so are

the triangles DGF, EGG. A elding

the triangle GGF, we have the

triangles ECF, DCF equal, and

DE, GF are parallel.

But (by I. 34, 29, 26) the tri-

angles ARE, GKD are congruent,

so that EK=KD; and by lemma (1) it follows that GH=HF.
Now, in the triangles FEB, CHG, two sides (BF, FH and

GG
}
GH) and the included angles are equal ; therefore the

triangles are congruent, and the angles BHF, GHG are equal.

Add to each the angle GHF, and

Z BHF+ Z FHG = Z GHG + Z GHF = two right angles.

To prove his substantive proposition Heron draws AKL
perpendicular to BG, and joins EG meeting AK in M. Then
we have only to prove that BMG is a straight line.

Complete the parallelogram FAHG, and draw the diagonals
OA, FH meeting in Y. Through M draw PQ, SR parallel

respectively to BA
}
AG.
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Now the triangles FAH, BAG are equal in all respects

;

therefore IHFA = I ABC

= L GAK (since AK is at right angles to BG).

But, the diagonals of the rectangle FH cutting one another

in Y, we have FY = YA and IHFA = I OAF;

therefore LOAF = /.GAK, and OA is in a straight line

with AKL.
Therefore, OM being the diagonal of SQ, SA = AQ. and, if

we add AM to each, FM = ME.
Also, since EG is the diagonal of FN, FM = MN.
Therefore the parallelograms ME, MN are equal ; and

hence, by the preceding lemma, BMG is a straight line. Q.E.D.

(fi) The Definitions.

The elaborate collection of Definitions is dedicated to one

Dionysius in a preface to the following effect

:

' In setting out for you a sketch, in the shortest possible

form, of the technical terms premised in the elements of

geometry, I shall take as my point of departure, and shall

base my whole arrangement upon, the teaching of Euclid, the

author of the elements of theoretical geometry ; for by this

means I think that I shall give you a good general under-

standing not only of Euclid's doctrine but of many other

works in the domain of geometiy. I shall begin then with
the point!

He then proceeds to the definitions of the point, the line,

the different sorts of lines, straight, circular, ' curved ' and
' spiral-shaped ' (the Archimedean spiral and the cylindrical

helix), Defs. 1-7 ; surfaces, plane and not plane, solid body,

Defs. 8-11; angles and their different kinds, plane, solid,

rectilinear and not rectilinear, right, acute and obtuse angles,

Defs. 12-22; figure, boundaries of figure, varieties of figure,

plane, solid, composite (of homogeneous or non-homogeneous

parts) and incomposite, Defs. 23-6. The incomposite plane

figure is the circle, and definitions follow of its parts, segments

(which are composite of non-homogeneous parts), the semi-

circle, the a\jri? (less than a semicircle), and the segment

greater than a semicircle, angles in segments, the sector,
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' concave ' and ' convex ', lune, garland (these last two are

composite of homogeneous parts) and axe (neXeKv?), bounded by
four circular arcs, two concave and two convex, Defs. 27-38.

Rectilineal figures follow, the various kinds of triangles and

of quadrilaterals, the gnomon in a parallelogram, and the

gnomon in the more general sense of the figure which added

to a given figure makes the whole into a similar figure,

polygons, the parts of figures (side, diagonal, height of a

triangle), perpendicular, parallels, the three figures which will

fill up the space round a point, Defs. 39-73. Solid figures are

next classified according to the surfaces bounding them, and

lines on surfaces are divided into (1) simple and circular,

(2) mixed, like the conic and spiric curves, Defs. 74, 75. The
sphere is then defined, with its parts, and stated to be

the figure which, of all figures having the same surface, is the

greatest in content, Defs. 76-82. Next the cone, its different

species and its parts are taken up, with the distinction

between the three conies, the section of the acute-angled cone

(' by some also called ellipse ') and the sections of the right-

angled and obtuse-angled cones (also called 'parabola and

hyperbola), Defs. 83-94; the cylinder, a section in general,

the spire or tore in its three varieties, open, continuous (or

just closed) and ' crossing-itself ', which respectively have

sections possessing special properties, ' square rings ' which

are cut out of cylinders (i. e. presumably rings the cross-section

of which through the centre is two squares), and various other

figures cut out of spheres or mixed surfaces, Defs. 95-7

;

rectilineal solid figures, pyramids, the five regular solids, the

semi-regular solids of Archimedes two of which (each with

fourteen faces) were known to Plato, Defs. 98-104; prisms

of different kinds, parallelepipeds, with the special varieties,

the cube, the beam, Sokos (length longer than breadth and
depth, which may be equal), the brick, ttXlvOls (length less

than breadth and depth), the o-cprjvforKos or Poo/jllo-kos with

length, breadth and depth unequal, Defs. 105-14.

Lastly come definitions of relations, equality of lines, sur-

faces, and solids respectively, similarity of figures, 'reciprocal

figures', Defs. 115-18; indefinite increase in magnitude,

parts (which must be homogeneous with the wholes, so that

e. g. the horn-like angle is not a part or submultiple of a right
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or any angle), multiples, Dels. 119-21
;
proportion in magni-

tudes, what magnitudes can have a ratio to one another,

magnitudes in the same ratio or magnitudes in proportion,

definition of greater ratio, Defs. 122-5; transformation of

ratios (componendo, separando, convertendo, altemando, in-

vertendo and ex aequali), Defs. 126-7
;
commensurable and

incommensurable magnitudes and straight lines, Defs. 128,

129. There follow two tables of measures, Defs. 130—2.

The Definitions are very valuable from the point of view of

the historian of mathematics, for they give the different alter-

native definitions of the fundamental conceptions; thus we
find . the Archimedean ' definition ' of a straight line, other

definitions which we know from Proclus to be due to Apol-

lonius, others from Posidonius, and so on. No doubt the

collection may have been recast by some editor or editors

after Heron's time, but it seems, at least in substance, to go

back to Heron or earlier still. So far as it contains original

definitions of Posidonius, it cannot have been compiled earlier

than the first century B.C. ; but its content seems to belong in

the main to the period before the Christian era. Heiberg

adds to his edition of the Definitions extracts from Heron's

Geometry, postulates and axioms from Euclid, extracts from

Geminus on the classification of mathematics, the principles

of geometry, &c, extracts from Proclus or some early collec-

tion of scholia on Euclid, and extracts from Anatolius and

Theon of Smyrna, which followed the actual definitions in the

manuscripts. These various additions were apparently collected

by some Byzantine editor, perhaps of the eleventh century.

Mensuration.

The Metrica, Geometrica, Stereometrica, Geodaesia,

Mensurae.

We now come to the mensuration of Heron. Of the

different works under this head the Metrica is the most

important from our point of view because it seems, more than

any of the others, to have preserved its original form. It is

also more fundamental in that it gives the theoretical basis of

the formulae used, and is not a mere application of rules to

particular examples. It is also more akin to theory in that it



MENSURATION 317

does not use concrete measures, but simple numbers or units

which may then in particular cases be taken to be feet, cubits,

or any other unit of measurement. Up to 1896, when a

manuscript of it was discovered by R. Schone at Constanti-

nople, it was only known by an allusion to it in Eutocius

(on Archimedes's Measurement of a Circle) , who states that

the way to obtain an approximation to the square root of

a non-square number is shown by Heron in his Metrica, as

well as by Pappus, Theon, and others who had commented on

the Syntaxis of Ptolemy.1 Tannery 2 had already in 1894

discovered a fragment of Heron's Metrica giving the particular

rule in a Paris manuscript of the thirteenth century contain-

ing Prolegomena to the Syntaxis compiled presumably from

the commentaries of Pappus and Theon. Another interesting

difference between the Metrica and the other works is that in

the former the Greek way of writing fractions (which is our

method) largely preponderates, the Egyptian form (which

expresses a fraction as the sum of diminishing submultiples)

being used comparatively rarely, whereas the reverse is the

case in the other works.

In view of the greater authority of the Metrica, we shall

take it as the basis of our account of the mensuration, while

keeping the other works in view. It is desirable at the

outset to compare broadly the contents of the various collec-

tions. Book I of the Metrica contains the mensuration of

squares, rectangles ana* triangles (chaps. 1-9), parallel-trapezia,

rhombi, rhomboids and quadrilaterals with one angle right

(10-16), regular polygons from the equilateral triangle to the

regular dodecagon (17-25), a ring between two concentric

circles (26), segments of circles (27-33), an ellipse (34), a para-

bolic segment (35), the surfaces of a cylinder (36), an isosceles

cone (37), a sphere (38) and a segment of a sphere (39).

Book II gives the mensuration of certain solids, the solid

content of a cone (chap. 1), a cylinder (2), rectilinear solid

figures, a parallelepiped, a prism, a pyramid, and a frustum,

&c. (3-8), a frustum of a cone (9, 10), a sphere and a segment

of a sphere (11, 12), a spire or tore (13), the section of a

cylinder measured in Archimedes's Method (14), and the solid

1 Archimedes, vol. iii, p. 232. 13-17.
2 Tannery, Memoires scientijiqites, ii, 1912, pp. 447-54.
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formed by the intersection of two cylinders with axes at right

angles inscribed in a cube, also measured in the Method (15),

the five regular solids (16-19). Book III deals with the divi-

sion of figures into parts having given ratios to one another,

first plane figures (1-19), then solids, a pyramid, a cone and a

frustum, a sphere (20-3).

The Geometria or Geometrumena is a collection based upon
Heron, but not his work in its present form. The addition of

a theorem due to Patricius 1 and a reference to him in the

Stereometrica (I. 22) suggest that Patricius edited both works,

but the date of Patricius is uncertain. Tannery identifies

him with a mathematical professor of the tenth century,

Nicephorus Patricius ; if this is correct, he would be contem-

porary with the Byzantine writer (erroneously called Heron)

who is known to have edited genuine works of Heron, and

indeed Patricius and the anonymous Byzantine might be one

and the same person. The mensuration in the Geometry has

reference almost entirely to the same figures as those

measured in Book I of the Metrica, the difference being that

in the Geometry (1) the rules are not explained but merely

applied to examples, (2) a large number of numerical illustra-

tions are given for- each figure, (3) the Egyptian way of

writing fractions as the sum of submultiples is followed,

(4) lengths and areas are given in terms of particular

measures, and the calculations are lengthened by a consider-

able amount of conversion from one measure into another.

The first chapters (1-4) are of the nature of a general intro-

duction, including certain definitions and ending with a table

of measures. Chaps. 5-99, Hultsch (
— 5-20, 14, Heib.), though

for the most part corresponding in content to Metrica I,

seem to have been based on a different collection, because

chaps. 100-3 and 105 (= 21, 1-25, 22, 3-24, Heib.) are clearly

modelled on the Metrica, and 101 is headed 'A definition

(really ' measurement ') of a circle in another book of Heron '.

Heiberg transfers to the Geometrica a considerable amount of

the content of the so-called Liber Geeponicus, a badly ordered

collection consisting to a large extent of extracts from the

other works. Thus it begins with 41 definitions identical

with the same number of the Definitiones. Some sections

1 Geometrica, 21 26 (vol. iv, p. 386. 23).
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Heiberg puts side by side with corresponding sections of the

Geometrica in parallel columns ; others he inserts in suitable

places ; sections 78. 79 contain two important problems in

indeterminate analysis (= Geom. 24, 1-2, Heib.). Heiberg

adds, from the Constantinople manuscript containing the

Metrica, eleven more sections (chap. 24, 3-13) containing

indeterminate problems, and other sections (chap. 24, 14-30 and

37-51) giving the mensuration, mainly, of figures inscribed in or

circumscribed to others, e.g. squares or circles in triangles,

circles in squares, circles about triangles, and lastly of circles

and segments of circles.

The Stereometrica I has at the beginning the title Ela-a-

ycoyal tcov o-repeo/ierpovfieucou "Hpcovo? but, like the Geometrica,

seems to have been edited by Patricius. Chaps. 1-40 give the

mensuration of the geometrical solid figures, the sphere, the

cone, the frustum of a cone, the obelisk with circular base,

the cylinder, the 'pillar', the cube, the or^rjvio-Ko? (also called

6Vf£), the fieiovpov Trpoeo-Kapufrevixevov. pyramids, and frusta.

Some portions of this section of the book go back to Heron

;

thus in the measurement of the sphere chap. 1 = Metrica

II. 11, and both here and elsewhere the ordinary form of

fractions appears. Chaps. 41-54 measure the contents of cer-

tain buildings or other constructions, e. g. a theatre, an amphi-

theatre, a swimming-bath, a well, a ship, a wine-butt, and

the like.

The second collection, Stereometrica II, appears to be of

Byzantine origin and contains similar matter to Stereometrica I,

parts of which are here repeated. Chap. 31 (27, Heib.) gives

the problem of Thales. to find the height of a pillar or a tree

by the measurement of shadows ; the last sections measure
various pyramids, a prism, a ficopio-Kos (little altar).

The Geodaesia is not an independent work, but only con-

tains extracts from the Geometry, thus chaps. 1—16 = Geom.
5-31, Hultsch ( = 5, 2-12, 32, Heib.); chaps. 17-19 give the

methods of finding, in any scalene triangle the sides of which
are given, the segments of the base made by the perpendicular

from the vertex, and of finding the area direct by the well-

known ' formula of Heron ' ; i.e. we have here the equivalent of

Metrica I. 5-8.

Lastly, the ixtTpfjo-tLs, or Menmrae, was attributed to Heron
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in an Archimedes manuscript of the ninth century, but can-

not in its present form be due to Heron, although portions of

it have points of contact with the genuine works. Sects. 2-2 7

measure all sorts of objects, e.g. stones of different shapes,

a pillar, a tower, a theatre, a ship, a vault, a hippodrome ; but

sects. 28-35 measure geometrical figures, a circle and segments

of a circle (cf. Metrica I), and sects. 36-48 on spheres, segments

of spheres, pyramids, cones and frusta are closely connected

with fStereom. I and Metrica II ; sects. 49-59, giving the men-

suration of receptacles and plane figures of various shapes,

seem to have a different origin. We can now take up the

Contents of the Metrica.

Book I. Measurement of Areas.

The preface records the tradition that the first geometry

arose out of the practical necessity of measuring and dis-

tributing land (whence the name 'geometry'), after which

extension to three dimensions became necessary in order to

measure solid bodies. Heron then mentions Eudoxus and

Archimedes as pioneers in the discovery of difficult measure-

ments, Eudoxus having been the first to prove that a cylinder

is three times the cone on the same base and of equal height,

and that circles are to one another as the squares on their

diameters, while Archimedes first proved that the surface of

a sphere is equal to four times the area of a great circle in it,

and the volume two-thirds of the cylinder circumscribing it.

(a) Area- of scalene triangle.

After the eas}^ cases of the rectangle, the right-angled

triangle and the isosceles triangle, Heron gives two methods

of finding the area of a scalene triangle (acute-angled or

obtuse-angled) when the lengths of the three sides are given.

The first method is based on Eucl. II. 12 and 13. If a, b, c

be the sides of the triangle opposite to the angles A, B, C
respectively, Heron observes (chap. 4) that any angle, e.g. C, is

acute, right or obtuse according as c
2 < = or > a2 + b 2

, and this

is the criterion determining which of the two propositions is

applicable. The method is directed to determining, first the

segments into which any side is divided by the perpendicular
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from the opposite vertex, and thence the length of the per-

pendicular itself. We have, in the cases of the triangle acute-

angled at C and the triangle obtuse-angled at C respectively,

c
2 = a2 + b2 +2a.CD,

or GD = {(a2 + b 2)~c2 }/2a,

whence AD2 (= b2 — CD2
) is found, so that we know the area

(=ia.AD).
In the cases given in Metrica I. 5, 6 the sides are (14, 15, 13)

and (11, 13, 20) respectively, and AD is found to be rational

(=12). But of course both CD (or BD) and AD may be surds,

in which case Heron gives approximate values. Cf. Geom.

53, 54, Hultsch (15, 1-4, Heib.), where we have a triangle

in which a = 8, 6=4, c — 6, so that a2 + b 2— c
2 — 44 and

CD = 44/16 = 2|i. Thus AD2 = l6-(2|i) 2 = 16-7| T̂
== 8J | ye, and AD— V(8% § y

1
^) = 2§ J approximately, whence

the area = 4 x 2§ ^ = 11§. Heron then observes that we get

a nearer result still if we multiply AD2 by (-§a>)
2 before

extracting the square root, for the area is then V(IQ x 8j § j
1
^)

or \/(135), which is very nearly 11| T\ -^ or ll|f

.

So in Metrica I. 9, where the triangle is 10, 8, 12 (10 being

the base), Heron finds the perpendicular to be \/63, but he

obtains the area as \/(-|AD2
. BG2

), or \/(1575), while observing

that we can, of course, take the approximation to ^63, or

7

1

± | y
1
^, and multiply it by half 10, obtaining 39j f ^ as

the area.

Proof of the formula A = V { s (s— a) (s — b)(s— c)}.

The second method is that known as the ' formula of

Heron ', namely, in our notation, A = V { 8 (s— a) (s — J)) (s — c) }

.

The proof of the formula is given in Metrica I. 8 and also in

1523.2 Y
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chap. 30 of the Dioptra ; but it is now known (from Arabian

sources) that the proposition is due to Archimedes.

Let the sides of the triangle ABC be given in length.

Inscribe the circle DEF, and let be the centre.

Join AO, B0
y
CO, DO, EO, FO.

Then BC.0D = 2 A BOO,

OA.0E= 2AC0A,

AB.0F=2AA0B;

whence, by addition,

p.0D = 2 A ABC,

where p is the perimeter.

Produce CB to H, so that BE = AF.

Then, since AE = AF, BF = BD, and CE = CD, we have-

CH=±p = s.

Therefore CH.0D = A ABC.

But CH.OD is the 'side' of the product CH2 .OD2
, i.e.

V(CH2
. OD2

),

so that {AABC) 2 = CH 2 .0D2
.



PROOF OF THE FORMULA OF HERON' 323

Draw OL at right angles to OG cutting BC in K, and BL at

right angles to BO meeting OL in L. Join OL.

Then
;
since each of the angles COL, CBL is right, COBL is

a quadrilateral in a circle.

Therefore Z COB + Z 0Z£ = 2 jR.

But ZC0£ + Z,40.F= 2 12, because AO, BO, CO bisect the

angles round 0, and the angles COB, AOF are together equal

to the angles AOC, BOF, while the sum of all four angles

is equal to 4 12.

Consequently lAOF = Z CZ£.

Therefore the right-angled triangles AOF, CLB are similar

;

therefore BC:BL = AF:FO

= BH-.OD,

and, alternately, CB:BH= BL: OD

= BK:KD;

whence, componendo, CH:HB = BD : DK.

It follows that

CH2
: CH. HB = BD.DC:CD. DK

= BD.DC: OD2
, since the angle COK is right.

Therefore (A ABC)2 = CH 2
. OD2 (from above)

= CH.HB.BD.DC
= s(s— a) (s- h) (s— c).

(ft) Method of approximating to the square root of

a non-square number.

It is a ftropos of the triangle 7, 8, 9 that Heron gives the

important statement of his method of approximating to the

value of a surd, which before the discovery of the passage

of the Metrica had been a subject of unlimited conjecture

as bearing on the question how Archimedes obtained his

approximations to V3.
In this case s — 12, s— a — 5, s— b = 4, s— c = 3, so that

A = >/(12 .5.4.3) = 7(720).

y2
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'Since', says Heron, 1
' 720 has not its side rational, we can

obtain its side within a very small difference as follows. Since

the next succeeding square number is 729, which has 27 for

its side, divide 720 by 27. This gives 26|. Add 27 to this,

making 53§, and take half of this or 26J i. The side of 720
will therefore be very nearly 26-§ -|. In fact, if we multiply

26-|-§ by itself, the product is 7203^, so that the difference (in

the square) is -^

.

' If we desire to make the difference still smaller than 3^, we
shall take 720-5

1
g instead of 729 [or rather we should take

26^§ instead of 27], and by proceeding in the same way we
shall find that the resulting difference is much less than ^.'

In other words, if we have a non-square number A
9
and a2

is the nearest square number to it, so that A = a 2 ± b, then we
have, as the first approximation to VA.

*> = !(«+-); d)

for a second approximation we take

A
oc

2 *(«,+ -> (2)

the first as 2+ tt—^, the second as 2| * ^, ,
and the third as

1

and so on.2

1 Metrica, i. 8, pp. 18. 22-20. 5.
2 The method indicated by Heron was known to Barlaam and Nicolas

Rhabdas in the fourteenth century. The equivalent of it was used by
Luca Paciuolo (fifteenth-sixteenth century), and it was known to the other
Italian algebraists of the sixteenth century. Thus Luca Paciuolo gave
2£, 2^ and 2I

8
9̂

1
IT

as successive approximations to */6. He obtained

(2j)'-6

2.2'
u" w ™ ~" " a 2.2h

tt-Wzr- The above rule *ives |(2 + f) = 2|, !(!+-*) = 2ft,

1 f49 1 J. SON _ O 8RJL
2 ^20 T 49/ ~ *1<>60-

The formula of Heron was again put forward, in modern times, by
Buzengeiger as a means of accounting for the Archimedean approxima-
tion to \/3, apparently without knowing its previous history. Bertrand
also stated it in a treatise on arithmetic (1853). The method, too, by
which Oppermann and AlexeiefF sought to account for Archimedes's
approximations is in reality the same. The latter method depends on
the formula

i(«+ /3) :</(«£)= v7^):^.
Alcxeieff separated A into two factors a , b , and pointed out that if, say.

^ , 7 n / . 2-4 2« />

then, l(a +b )> x/A> n
or ° °

,

a to a -t- o
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a
x
= a±

Substituting in (1) the value a2 ±b for A, we obtain

2a'

Heron does not seem to have used this formula with a ne^a-

tive sign, unless in Stereom. I. 33 (34, Hultsch), where v^(63)

and again, if ^ (a + b ) = a
x , 2 -4/1 « + & ) = b

x ,

and so on.

Now suppose that, in Heron's formulae, we put a = AT
,
A/a — xQ ,

(x
l
= Jl 15 ^./(Xj = a?!, and so on. We then have

X, - J f.+ -) = 1 (A, + *,), x, - - =^^ or^;
that is, Xj, a7j are, respectively, the arithmetic and harmonic means
between A* , # ; X2 , a?a are the arithmetic and harmonic means between
X

x , xx , and so on, exactly as in AlexeiefFs formulae.

Let us now try to apply the method to Archimedes's case, i/3, and we
shall see to what extent it serves to give what we want. Suppose
we begin with 3 >y/ 3 > 1. We then have

i(3 + l)>V/3>3/i(3 + l), or 2>v/
3>:|,

and from this we derive successively

}></*>¥, «>V8>W. iglii>v
/
3>fsMf.

But, if we start from #, obtained by the formula a+ ; <V (a2 + b).
2a + 1

we obtain the following approximations by excess,

1 (A + 2.) — as 1 (2.6 _. 45 \ _ 1351

The second process then gives one of Archimedes's results, V^1
"* but

neither of the two processes gives the other, f|-§, directly. The latter

a c
can, however, be obtained by using the formula that, if - < -, then

(J (X

a ma + nc c

b mb + nd d

For we can obtain -j4f from jj-£ and -^ thus : ——— = —- , or from
oo -+- y i 100

o 7 ,-., 11.97-7 1060 265 . ,„',

f\ and I thus :
=-=—

fi
_ . = ^77 = tto 5 and so on. Or again Yio~ can

be obtained from \UH and |{ thus:
igggj±g

= ggj =— •

The advantage of the method is that, as compared with that of con-

tinued fractions, it is a very rapid way of arriving at a close approxi-
mation. Gunther has shown that the (m+l)th approximation obtained
by Heron's formula is the 2"'th obtained by continued fractions. (' Die
quadratischen Irrationalitaten der Alten und deren Entwickelungs-
methoden ' in Abhandlungen zur Gesch. d. Math. iv. 1882, pp. 83-6.)
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is given as approximately 8 — T̂ . In Metrica I. 9, as we
have seen, \/(63) is given as 1\ \ \ y

1
^, which was doubtless

obtained from the formula (1) as

The above seems to be the only classical rule which has

been handed down for finding second and further approxi-

mations to the value of a surd. But, although Heron thus

shows how to obtain a second approximation, namely by
formula (2), he does not seem to make any direct use of

this method himself, and consequently the question how the

approximations closer than the first which are to be found in

his works were obtained still remains an open one.

(y) Quadrilaterals.

It is unnecessary to give in detail the methods of measuring

the areas of quadrilaterals (chaps. 11-16). Heron deals with

the following kinds, the parallel-trapezium (isosceles or non-

isosceles), the rhombus and rhomboid, and the quadrilateral

which has one angle right and in which the four sides have

given lengths. Heron points out that in the rhombus or

rhomboid, and in the general case of the quadrilateral, it is

necessary to know a diagonal as well as the four sides. The

mensuration in all the cases reduces to that of the rectangle

and triangle.

(8) The regular 'polygons with 3, 4, 5, 6, 7, 8, 9, 10, 11,

or 12 sides.

Beginning with the equilateral triangle (chap. 17), Heron
proves that, if a be the side and p the perpendicular from

a vertex on the opposite side, a2 \p2 = 4:3, whence

a*:p2a2 = 4:3 = 16: 12,

so that a4 :(AABC) 2 = 16:3,

and (A ABC)2 = T
3
e<x

4
. In the particular case taken a = 10

and A2 = 1875, whence A = 43J nearly.

Another method is to use an approximate value for V3 in

the formula Vs . <x
2 /4. This is what is done in the Geometrica

14 (10, Heib.), where we are told that the area is (? + jo)a
2

;
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now 3 + yo = if = i (ff)> so that the approximation used by

Heron for VS is here ff . For the side 10, the method gives

the same result as above, for §§ . 100 — 43-|.

The regular pentagon is next taken (chap. 18). Heron

premises the following lemma.

Let ABC be a right-angled triangle, with the angle A equal

to f£. Produce AC to so that CO = AG
If now J.0 is divided in extreme and

mean ratio, AB is equal to the greater

segment. (For produce AB to D so that

AD = AO, and join BO, DO. Then, since

ADO is isosceles and the angle at A — \ R,
I ADO = AA0D = ^R, and, from the

equality of the . triangles ABC, OBC,
LAOB = LBAO = |JB. It follows that

the triangle ADO is the isosceles triangle of Eucl. IV. 10, and

AD is divided in extreme and mean ratio in B.) Therefore,

says Heron, (BA+ACf = 5 AC 2
. [This is Eucl. XIII. 1.]

Now, since LBOC — %R, if BC be produced to E so that

CE — BC, BE subtends at an angle equal to f R, and there-

fore BE is the side of a regular pentagon inscribed in the

circle with as centre and OB as radius. (This circle also

passes through D, and BD is the side of a regular decagon in

the same circle.) If now BO — AB = r, OG = p, BE — a,

we have from above, (r +p)
2 — 5p2

, whence, since V5 is

approximately § , we obtain approximately r = %p, and

Jo. = ||9, so that p == fa. Hence Jjj>a = Jc6
2

, and the area

of the pentagon = fa 2
. Heron adds that, if we take a closer

approximation to \/5 than f , we shall obtain the area still

more exactly. In the Geometry 1 the formula is given as Sp-a2 .

The regular hexagon (chap. 19) is simply 6 times the

equilateral triangle with the same side. If A be the area

of the equilateral triangle with side a, Heron has proved

that A2 = y
3^4 (Metrica I. 17), hence (hexagon)2 = -2

4
7-a4

. If,

e.g. a = 10, (hexagon) 2 = 67500, and (hexagon) =259 nearly.

In the Geometry 2 the formula is given as ^-a~, while ' another

book'* is quoted as giving 6'(J + ^y)a2
; it is added that the

latter formula, obtained from the area of the triangle, (J + -jo ) a2 >

represents the more accurate procedure, and is fully set out by
1 Geom. 102 (21, 14, Heib.). lb. 102 (21, 16, 17, Heib.).
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Heron. As a matter of fact, however, 6 (•§ + ^q) = ^3
- exactly,

and only the Metrica gives the more accurate calculation.

The regular heptagon.

Heron assumes (chap. 20) that, if a be the side and r the

radius of the circumscribing circle, a = -Jr, being approxi-

mately equal to the perpendicular from the centre of the

circle to the side of the regular hexagon inscribed in it (for f
is the approximate value of -| \/3). This theorem is quoted by
Jordanus Nemorarius (d. 1237) as an 'Indian rule'; he pro-

bably obtained it from Abul Wafa (940-98). The Metrica

shows that it is of Greek origin, and, if Archimedes really

wrote a book on the heptagon in a circle, it may be due to

him. If then p is the perpendicular from the centre of the

circle on the side (a) of the inscribed heptagon, ?V(i^) = 8/3-|

or 16/7, whence 2
j2/(ia )

2 — ~W~5 and p/\& — (approxi-

mately) 14J/7 or 43/21. Consequently the area of the

heptagon = 7 . \pa = 7 . ffcr — ff^
2

-

The regular octagon, decagon and dodecagon.

In these cases (chaps. 21, 23, 25) Heron finds p by drawing

the perpendicular 00 from 0, the centre of the

circumscribed circle, on a side AB, and then making

the angle OAD equal to the angle AOD.

For the octagon,

A ADC = ±R, and p = %a(h+ ^2) = |a(l +H)
or \a . f§ approximately.

For the decagon,

/.ADC — §i£, and AD : DC =5:4 nearly (see preceding page)

;

hence AD : AC = 5:3, and p = \a (§ + § ) — \a.

For the dodecagon,

LADC = \R, and^j = \a (2 + VS) = Ja(2+|) = -\
5-a

approximately.

Accordingly A
8
= %9-a2

, A 10
— ^-a2

, A 12
— *£-a2

, where a is

the side in each case.

The regular enneagon and hendecagon.

In these cases (chaps. 22, 24) the Table of Chords (i.e.
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presumably Hipparchus's Table) is appealed to. If AB be the

side (a) of an enneagon or hendecagon inscribed in a circle, AC
the diameter through A, we are told that the Table of Chords

gives § and ^ as the respective approximate values of the

ratio AB/AG. The angles subtended at the centre by the

side AB are 40° and 32^° respec-

tively, and Ptolemy's Table gives,

as the chords subtended by angles of

40° and 33° respectively, 41P 2' 33"

and 34^ 4' 55" (expressed in 120th

parts of the diameter) ; Heron's

figures correspond to 40i' and 33^

36' respectively. For the enneagon

AG'1 = 9AB2
, whence BG2 = SAB 2

or approximately Z^-AB2
, and

BG — -y-a ; therefore (area of

enneagon) = § . AABC=-5j--a?. For

the hendecagon AC 2 = -%5-AB2 and BG 2 = -%
7£-AB2

, so that

BG = -2
T
4-a, and area of hendecagon = *£- . AABC = %6-<x2 .

An ancient formula for the ratio between the side of any

regular polygon and the diameter of the circumscribing circle

is preserved in Geepon. 147 sq. (= Pseudo-Dioph. 23-41),

namely dn — n—. Now the ratio nan/dn tends to it as the
o

number
( n) of sides increases, and the formula indicates a time

when it was generally taken as = 3.

(e) The Circle.

Coming to the circle (Metrica I. 26) Heron uses Archi-

medes's value for ir, namely -2
T
2
-, making the circumference of

a circle tyr and the area \\d2
, where r is the radius and d the

diameter. It is here that he gives the more exact limits

for it which he says that Archimedes found in his work On
Plinthides and Cylinders, but which are not convenient for

calculations. The limits, as we have seen, are given in the

text as ^iTttT~<ir < VAVt-
'
and with Tannery's alteration to

^eriwr ^ ^ < VA8Ar are 4uite satisfactory. 1

1 See vol. i, pp. 232-3.
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(C) Segment of a circle.

According to Heron (Metrica I. 30) the ancients measured

the area of a segment rather inaccurately, taking the area

to be -| (b + h) h, where b is the base and h the height. He
conjectures that it arose from taking w — 3, because, if we
apply the formula to the semicircle, the area becomes § . 3 r

2
,

where r is the radius. Those, he says (chap. 31), who have

investigated the area more accurately have added iV(-|^)
i

to the above formula, making it
-J (6 + h)h+ iV(i^)

2
> and this

seems to correspond to the value 3^ for tt, since, when applied

to the semicircle, the formula gives -| (3r2
-f ^r2

). He adds

that this formula should only be applied to segments of

a circle less than a semicircle, and not even to all of these, but

only in cases where b is not greater than 3h. Suppose e.g.

that b = 60, h = 1 ; in that case even ^(|&)
2= T\ . 900 = 64f

,

which is greater even than the parallelogram with 60, 1 as

sides, which again is greater than the segment. Where there-

fore 6 > 3 h, he adopts another procedure.

This is exactly modelled on Archimedes's quadrature of

a segment of a parabola. Heron proves (Metrica I. 27-29, 32)

that, if ADB be a segment of a circle, and D the middle point

of the arc, and if the arcs AD, DB be

similarly bisected at E, F,

A ADB < 4 (A AED + A DFB).

Similarly, if the same construction be

made for the segments AED, BFD, each

of them is less than 4 times the sum of the two small triangles

in the segments left over. It follows that

(area of segmt. ADB) > A ADB
{

1 -\ J + (£)
2 + /..}

> | AADB.
' If therefore we measure the triangle, and add one-third of

it, we shall obtain the area of the segment as nearly as

possible.' That is, for segments in which b > 3 A, Heron

takes the area to be equal to that of the parabolic segment

with the same base and height, or § bh.

In addition to these three formulae for S, the area of

a segment, there are yet others, namely

S = J (b + h) h(\+ T̂), Mensurae 29,

tf = 4(6 + ft)A(l+A), „ 31.
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The first of these formulae is applied to a segment greater

than a semicircle, the second to a segment less than a semi-

circle.

In the Metrica the area of a segment greater than a semi-

circle is obtained by subtracting the area of the complementary

segment from the area of the circle.

From the Geometrica 1 we find that the circumference of the

segment less than a semicircle was taken to be a/(62 + 4h2
) + \h

or alternatively V(b'2 + 4&2
) + { v/(A2 + 4A 2

) -b}

y

(77) Ellipse, 'parabolic segment, surface of cylinder, right

cone, sphere and segment of sphere.

After the area of an ellipse (Metrica I. 34) and of a parabolic

segment (chap. 35), Heron gives the surface of a cylinder

(chap. 36) and a right cone (chap. 37) ; in both cases he unrolls

the surface on a plane so that the surface becomes that of a

parallelogram in the one case and a sector of a circle in the

other. For the surface of a sphere (chap. 38) and a segment of

it (chap. 39) he simply uses Archimedes's results.

Book I ends with a hint how to measure irregular figures,

plane or not. If the figure is plane and bounded by an

irregular curve, neighbouring points are taken on the curve

such that, if they are joined in order, the contour of the

polygon so formed is not much different from the curve

itself, and the polygon is then measured by dividing it into

triangles. If the surface of an irregular solid figure is to be

found, you wrap round it pieces of very thin paper or cloth,

enough to cover it, and you then spread out the paper or

cloth and measure that.

Book II. Measurement of volumes.

The preface to Book II is interesting as showing how
vague the traditions about Archimedes had already become.

' After the measurement of surfaces, rectilinear or not, it is

proper to proceed to the solid bodies, the surfaces of which we
have already measured in the preceding book, surfaces plane

and spherical, conical and cylindrical, and irregular surfaces

as well. The methods of dealing with these solids are, in

1 Cf. Geom., 94, 95 (19. 2, 4, Heib.), 97. 4 (20. 7, Heib.).
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view of their surprising character, referred to Archimedes by
certain writers who give the traditional account of their

origin. But whether they belong to Archimedes or another,

it is necessary to give a sketch of these methods as well.'

The Book begins with generalities about figures all the

sections of which parallel to the base are equal to the base

and similarly situated, while the centres of the sections are on

a straight line through the centre of the base, which may be

either obliquely inclined or perpendicular to the base ; whether

the said straight line (' the axis ') is or is not perpendicular to

the base, the volume is equal to the product of the area of the

base and the perpendicular height of the top of the figure

from the base. The term ' height ' is thenceforward restricted

to the length of the perpendicular from the top of the figure

on the base.

(a) Cone, cylinder, parallelepiped (prism), pyramid, and
frustum.

II. 1-7 deal with a cone, a cylinder, a 'parallelepiped
5

(the

base of which is not restricted to the parallelogram but is in

the illustration given a regular -hexagon, so that the figure is

more properly a prism with polygonal bases), a triangular

prism, a pyramid with base of any form, a frustum of a

triangular pyramid ; the figures are in general oblique.
*

t

(/?) Wedge-shaped solid (Pgo/jlio-kos on o-ty-qvio-Kos).

II. 8 is a case which is perhaps worth giving. It is that of

a rectilineal solid, the base of which is a rectangle ABCD and

has opposite to it another rectangle EFGH, the sides of which

are respectively parallel but not necessarily proportional to

those of ABCD. Take AK equal to EF, and BL equal to FG.
Bisect BK, CL in V, W, and draw KRPU, VQOM parallel to

AD, and LQRN, WOPT parallel to AB. Join FK, GB, LG,
GU, HN.
Then the solid is divided into (1) the parallelepiped with

AR, EG as opposite faces, (2) the prism with KL as base and

FG as the opposite edge, (3) the prism with NU as base and

GH as opposite edge, and (4) the pyramid with RLCU as base

and G as vertex. Let h be the ' height ' of the figure. Now
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the parallelepiped (1) is on AR as base and has height h ;
the

prism (2) is equal to a parallelepiped on KQ as base and with

height h ; the prism (3) is equal to a parallelepiped with NP
as base and height h; and finally the pyramid (4) is equal to

a parallelepiped of height h and one-third of RC as base.

Therefore the whole solid is equal to one parallelepiped

with height h and base equal to (AR -fKQ+NP+RO+ JRO)
or AO + ^RO.
Now, if AB = a,BG = b, EF = c, FG = d,

AV = ±(a + c),AT=i(b + d),RQ = %(a-c), RP = i(b-d).

Therefore volume of solid

= {i(a + c)(b + d)+£z(a-c)(b-d)}h.

The solid in question is evidently the true ffcofiicrKos (

c

little

altar'), for the formula is used to calculate the content of

a Pcofiio-Kos in Stereom. II. 40 (68, Heib.) It is also, I think,

the <r<p7]vicrK09 (' little wedge '), a measurement of which is

given in Stereom. I. 26 (25, Heib.) It is true that the second

term of the first factor T̂ (a — c) (b— d) is there neglected,

perhaps because in the case taken (a — 7, b — 6, c = 5, d = 4)

this term (= -|) is small compared with the other (=30). A
particular o-cfyrjvLa-Ko?, in which either c = a or d = b, was
called ovvg ; the second term in the factor of the content

vanishes in this case, and, if e.g. c = a, the content is \ (b + d)ah.

Another ficofiio-Kos is measured in Stereom. I. 35 (34, Heib.),

where the solid is inaccurately called 'a pyramid oblong

(€T€pofxrJKr)$) and truncated (KoXovpos) or half-perfect'.
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The method is the same mutatis mutandis as that used in

II. 6 for the frustum of a pyramid with any triangle for base,

and it is applied in II. 9 to the case of a frustum of a pyramid

with a square base, the formula for which is

[{K«+«')}
2 +!{*(« -«'))¥.

where a, a' are the sides of the larger and smaller bases

respectively, and h the height ; the expression is of course

easily reduced to J h(a2 + aa' + a''
2
).

(y) Frustum of cone, sphere, and segment thereof.

A frustum of a cone is next measured in two ways, (1) by

comparison with the corresponding frustum of the circum-

scribing pyramid with square base, (2) directly as the

difference between two cones (chaps. 9, 10). The volume of

the frustum of the cone is to that of the frustum of the

circumscribing pyramid as the area of the base of the cone to

that of the base of the pyramid ; i. e. the volume of the frus-

tum of the cone is J n, or \\, times the above expression for

the frustum of the pyramid with a2
, a'2 as bases, and it

reduces to -^nh {a2 + aa f + a 2
),
where a, a' are the diameters

of the two bases. For the sphere (chap. 11) Heron uses

Archimedes's proposition that the circumscribing cylinder is

l-§ times the sphere, whence the volume of the sphere

= *.d.\^d2 or |y<:P; for a segment of a sphere (chap. 12) he

likewise uses Archimedes's result (On the Sphere and Cylinder,

II. 4).

(S) Anchor-ring or tore.

The anchor-ring or tore is next measured (chap. 13) by

means of a proposition which Heron quotes from Dionyso-

dorus, and which is to the effect that, if a be the radius of either

circular section of the tore through the axis of revolution, and

c the distance of its centre from that axis,

ita2
: ac = (volume of tore) :77c2 . 2a

[whence volume of tore = 27T
2 ca2

]. In the particular case

taken a, = 6, c — 14, and Heron obtains, from the proportion

113^:84 = 7:7392, T
r
=9956f. But he shows that he is

aware that the volume is the product of the area of the
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describing circle and the length of the path of its centre.

For, he says, since 14 is a radius (of the path of the centre),

28 is its diameter and 88 its circumference. : If then the tore

be straightened out and made into a cylinder, it will have 88

for its length, and the diameter of the base of the cylinder is

12: so that the solid content of the cylinder is, as we have

seen, 9956f (= 88 . \\ . 144).

(e) The two special solids of Archimedes 8 'Method'.

Chaps. 14, 15 give the measurement of the two remarkable

solids of Archimedes's Method, following Archimedes's results.

(£) The five regular solids.

In chaps. 16-18 Heron measures the content of the five

regular solids after the cube. He has of course in each case

to find the perpendicular from the centre of the circumscrib-

ing sphere on any face. Let p be this perpendicular, a the

edge of the solid, r the radius of the circle circumscribing any

face. Then (1) for the tetrahedron

a 2 = Zr2
,p

2 = a 2 -±a 2 = §a2
.

(2) In the case of the octahedron, which is the sum of two
equal pyramids on a square base, the content is one-third

of that base multiplied by the diagonal of the figure,

i.e.i.a2
. \/2« or §\/2.a3

;
in the case taken a = 7, and

Heron takes 10 as an approximation to V{2. 7 2
) or \/98, the

result being J. 10.49 or 163J. (3) In the case of the icosa-

hedron Heron merely says that

p : a — 93 : 127 (the real value of the ratio is \
7 + 3 s 5

\ .

(4) In the case of the dodecahedron, Heron says that

p:a = 9 :8 (the true value is i A /— , and. if Vb is2
-v i o

put equal to |, Heron's ratio is readily obtained).

Book II ends with an allusion to the method attributed to

Archimedes for measuring the contents of irregular bodies by
immersing them in water and measuring the amount of fluid

displaced.
*
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Book III. Divisions of figures.

This book has much in common with Euclid's book On divi-

sions (of figures), the problem being to divide various figures,

plane or solid, by a straight line or plane into parts having

a given ratio. In III. 1-3 a triangle is divided into two parts

in a given ratio by a straight line (1) passing through a vertex,

(2) parallel to a side, (3) through any point on a side.

III. 4 is worth description :

c Given a triangle ABC, to cut

out of it a triangle DEF (where D, E, F are points on the

sides respectively) given in magnitude and such that the

triangles AEF, BFD, GED may be equal in area.' Heron

assumes that, if D, E, F divide the sides so that

AF: FB = BD:DC = CE: EA,

the latter three triangles are equal in area.

He then has to find the value of

each of the three ratios which will

result in the triangle DEF having a

given area.

Join AD.

Since BD:CD = CE:EA,

BC:CD= CA:AE,

and AABC : AADC'= AADC: AABE:

Also AABCiAABD = AADC:AEDC.

But (since the area of the triangle DEF is given) AEDO is

given, as well as AABC. Therefore AABD x AADC is given.

Therefore, if AH be perpendicular to BC,

AH*.BD.DC is given;

therefore BD . DC is given, and, since BC is given, D is given

in position (we have to apply to BC a rectangle equal to

BD . DC and falling short by a square).

As an example Heron takes AB =13, BC =14, CA — 15,

ADEF= 24. -AABC in then 84, and AH = 12.

Thus AEDC = 20, and AH2
. BD . DC = 4 . 84 . 20 = 6720

;

therefore BD.DC = 6720/144 or 46| (the text omits the §).

Therefore, says Heron, BD = 8 approximately. For 8 we
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should apparently have 8 J, since DC is immediately stated to

be 5^ (not 6). That is, in solving the equation

which gives x= 7 ± V(2-|), Heron apparently substituted 2J or

| for 2§, thereby obtaining 1^ as an approximation to the

surd.

(The lemma assumed in this proposition is easily proved.

Let m : n be the ratio AF: FB = BD : DC = CE-.EA.

Then AF— mc/(m + u), FB = nc/(on + n), CE= mb/(m + ri),

EA = nb/{m + n), (vc.

Hence

AAFE/AABC = ,

mn
= A BQF/AABC= A CDE/AABG,

' (m + ny '

and the triangles AFE, BDF, CDE are equal.

Pappus l has the proposition that the triangles A BG, DEF
have the same centre of gravity.)

Heron next shows how to divide a parallel-trapezium into

two parts in a given ratio by a straight line (1) through the

point of intersection of the non-parallel sides, (2) through a

given point on one of the parallel sides, (3) parallel to the

parallel sides, (4) through a point on one of the non-parallel

sides (III. 5-8). III. 9 shows how to divide the area of a

circle into parts which have a given ratio by means of an

inner circle with the same centre. For the problems begin-

ning with III. 10 Heron says that numerical calculation alone

no longer suffices, but geometrical methods must be applied.

Three problems are reduced to problems solved by Apollonius

in his treatise On cutting off an area. The first of these is

III. 10, to cut off from the angle of a triangle a given

proportion of the triangle by a straight line through a point

on the opposite side produced. III. 11, 12, 13 show how
to cut any quadrilateral into parts in a given ratio by a

straight line through a point (1) on a side (a) dividing the

side in the given ratio, (6) not so dividing it, (2) not on any
side, (a) in the case where the quadrilateral is a trapezium,

i. e. has two sides parallel, (b) in the case where it is not ; the

last case (b) is reduced (like III. 10) to the ! cutting-off of an

1 Pappus, viii, pp. 1034-8. Cf. pp. 430-2 post

1528.2 2*
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area'. These propositions are ingenious and interesting.

III. 11 shall be given as a specimen.

Given any quadrilateral ABCD and a point E on the side

AD, to draw through E a straight line EF which shall cut

the quadrilateral into two parts in

the ratio of AE to, ED. (We omit

the analysis.) Draw CG parallel

to DA to meet AB produced in G.

Join BE, and draw GH parallel

to BE meeting BC in H.

Join CE, EH, EG.

Then AGBE= AHBE and, adding AABE to each, we have

AAGE= (quadrilateral ABHE).

Therefore (quadr. ABHE) : ACED = A GAE-.ACED

= AE:ED.

But (quadr. ABHE) and ACED are parts of the quadri-

lateral, and they leave over only the triangle EHC. We have

therefore only to divide AEHC in the same ratio AE-.ED by

the straight line EF. This is done by dividing HC at F in

the ratio AE: ED and joining EF.

The next proposition (III. 12) is easily reduced to this.

If AE : ED is not equal to the given ratio, let F divide AD
in the given ratio, and through F
draw FG dividing the quadri-

lateral in the given ratio (III. 11).

Join EG, and draw FH parallel

to EG. Let FH meet BC in H,

and join EH.
Then isEH the required straight

line through E dividing the quad-

rilateral in the given ratio.

For AFGE = AHGE. Add to each (quadr. GEDC).
Therefore (quadr. CGFD) = (quadr. CHED).
Therefore EH divides the quadrilateral in the given ratio,

just as FG does.

The case (III. 13) where E is not on a side of the quadri-

lateral [(2) above] takes two different forms according as the
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two opposite sides which the required straight line cuts are

(a) parallel or (b) not parallel. In the first case (a) the

problem reduces to drawing* a straight line through E inter-

secting the parallel sides in points F, G such that BF+AG

is equal to a given length. In the second case (b) where
BC, AD are not parallel Heron supposes them to meet in H.
The angle at H is then given, and the area ABB.. It is then

a question of cutting off from a triangle with vertex H a

triangle HFG of given area by a straight line drawn from E,

which is again a problem in Apollonius's Gutting-of of an

area. The auxiliary problem in case (a) is easily solved in

III. 16. Measure AH equal to the given length. Join BH
and bisect it at M. Then EM meets BG, AD in points such

that BF+ AG= the given length. For, by congruent triangles,

BF = GH.
The same problems are solved for the case of any polygon

in III. 14, 15. A sphere is then divided (III. 17) into segments

such that their surfaces are in a given ratio, by means of

Archimedes, On the Sjihere and Cylinder, II. 3, just as, in

III. 23, Prop. 4 of the same Book is used to divide a sphere

into segments having their volumes in a given ratio.

III. 18 is interesting because it recalls an ingenious pro-

position in Euclid's book On Divisions. Heron's problem is

' To divide a given circle into three equal parts by two straight

z 2
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lines ', and he observes that, ' as the problem is clearly not

rational, we shall, for practical convenience, make the division,

as exactly as possible, in the follow-

ing way.' AB is the side of an

equilateral triangle inscribed in the

circle. Let CD be the parallel

diameter, the centre of the circle,

and join A0, BO, AD, DB. Then
shall the segment ABD be very

nearly one-third of the circle. For,

since AB is the side of an equi-

lateral triangle in the circle, the

sector OAEB is one-third of the

circle. And the triangle AOB forming part of the sector

is equal to the triangle ABB] therefore the segment AEB
2jIus the triangle ABD is equal to one-third of the circle,

and the segment ABD only differs from this by the small

segment on BD as base, which may be neglected. Euclid's

proposition is to cut off one-third (or any fraction) of a circle

between two parallel chords (see vol. i, pp. 429-30).

III. 19 finds a point D within any triangle ABO such that

the triangles DBC, DCA, DAB are all equal ; and then Heron

passes to the division of solid figures.

The solid figures divided in a given ratio (besides the

sphere) are the pyramid with base of any form (III. 20),

the cone (III. 21) and the frustum of a cone (III. 22), the

cutting planes being parallel to the base in each case. These

problems involve the extraction of the cube root of a number
which is in general not an exact cube, and the point of

interest is Heron's method of approximating to the cube root

in such a case. Take the case of the cone, and suppose that

the portion to be cut off at the top is to the rest of the cone as

m to n. We have to find the ratio in which the height or the

edge is cut by the plane parallel to the base which cuts

the cone in the given ratio. The volume of a cone being

±Trc 2
h, where c is the radius of the base and h the height,

we have to find the height of the cone the volume of which

is . ?7rc2h, and, as the height k is to the radius c' ofm + n
its base as h is to c, we have simply to find li' where
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h'
3/h3 = m/(m + n). Or, if we take the edges e, e' instead

of the heights, e'
3 /e z = m/(m + n). In the case taken by

Heron m : n = 4 : 1, and e = 5. Consequently e'
3 = f . 5 3 — 100.

Therefore, says Heron, e''= 4T
9
5 approximately, and in III. 20

he shows how this is arrived at.

Approximation to the cube root of a non-cube number.

'Take the nearest cube numbers to 100 both above and
below; these are 125 and 64.

Then 125-100 = 25,

and 100- 64 = 36.

Multiply 5 into 36; this gives 180. Add 100, making 280.

(Divide 180 by 280); this gives T
9
? . Add this to the side of

the smaller cube : this gives 4T\. This is as nearly as possible

the cube root ("cubic side") of 100 units.'

We have to conjecture Heron's formula from this example.

Generally, if a3 < A < (a + If, suppose that A — a6 = dlt and

(a+1) 3 —A = d
2

. The best suggestion that has been made
is Wertheim's, 1 namely that Heron's formula for the approxi-

mate cube root was a + —-—r-—-

—

1—=-* The 5 multiplied
(a+ljci^ + aag

into the 36 might indeed have been the square root of 25 or

Vd
2 , and the 100 added to the 180 in the denominator of the

fraction might have been the original number 100 (A) and not

4 .25 or ad2i but Wertheim's conjecture is the more satisfactory

because it can be evolved out of quite elementary considera-

tions. This is shown by G. Enestrom as follows. 2 Using the

same notation, Enestrom further supposes that x is the exact

value of \/A
t
and that (x—a)'6 = Sv a+ l—xf = S

2
.

Thus

8
1
— x3— 3 x2a + 3 xa2— a6

, and 3 ax (x— a) = x3— ad — 8
1
= d

l
— 8

l
.

Similarly from #
2
= (a+1— x)

3 we derive

3(a+l)as(a+l-03) = (a+ l)
3 -x3 -S

2
= d

2
-8

2
.

Therefore

d
2
-8

2 _ 3(a+l)a?(a + l-a? ) _ (a + 1) { 1 - (x- a)

}

d
1
— 8

l
3 (ix (x — a) a (x— a)

a+1 a + 1

a (x— a) a '

1 Zeitschr.f. Math. u. Physik, xliv, 1899, hist.-litt. Abt., pp. 1-3.
2 Bibliotheca Mathematica, viii

3 , 1907-8, pp. 412-13.
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and, solving for x— a, we obtain

(a + 1) (d
x
- 5,) + a (d

2
— 8

2)

:x — a =

or y/A = a +
(a+l)^,-^)

(a+lJ^-^ + tt^-^)

Since #1? <5
2
are in any case the cubes of fractions, we may

neglect them for a first approximation, and we have

VA =a +
(a+ 1) dj

(a + I) decide.

i \

D /-
L. X

s$a/_k-*A

h

/ +
M "" ' A r

/ ^
*^S"*^**

- - ~^\ a

H K 2 a

III. 22, which shows how to cut a frustum of a cone in a given

ratio by a section parallel to the bases, shall end our account

of the Metrica. I shall give the general formulae on the left

and Heron's case on the right. Let ABED be the frustum,

let the diameters of the bases be a, a' , and the height h.

Complete the cone, and let the height of CDE be x.

Suppose that the frustum has to be cut by a plane FG in

such a way that

(frustum DG) : (frustum FB) = m : n.

In the case taken by Heron

a = 28, a'— 21, h = 12, m — 4, n — 1.

Draw DH perpendicular to AB.
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Since (DG) : (FB) = m : n,

(DB):(DG) = (m + n):m.

Now

(DB) = T\7rh (a 2 + aaf + a'2
),

and (DG) = ^- (2)5).

Let ?/ be the height (CM) of the

cone CFG.

Then DH:AH=CK:KA,

or & : | (a— a
f

) = (x + h) : J a,

whence # is known.

ConeCDE^Tra" #,

cone CFG=(CDE) +
m

(DB),m + n

cone CM5= ((72)^) + (2)5).

Now, says Heron,

(CAB) + (CPE) (x + h) s + xs

(CFG) '
~~

i/
a

[He might have said simply

(GIXE) : (OTO) = a3
: £/

3
.]

This gives 2/ or CM,

whence LM is known.

Now AD2 = AH2 + DH 2

= {*(a-a')} 2 + h\

so that AD is known.

Therefore DF = ^^ . AD is

known.

FIGURES 343

(DG):(FB) = 4:1,

(2)5) : {DG) = 5:4.

(2)5) = 5698,

(DG) = 4658$.

14 . 12
£ + & = —-3— = 48,

d 2

and a? = 48 — 12 = 36.

(cone (72)^) = 4158,

(cone CFG !

) = 4168+4558|'='8716§,

(cone CAB) =4158 + 5698 = 9856.

y
3 _ 8716f

(48
3 + 36 3

)9856 + 4158

= 8716| • -WoTV = 97805,

whence y = 46 approximately.

Therefore LM =y—x= 10.

AD2 = (3i) 2 + 12 2

= 156 1

and AD = 12*

Therefore DF = 10
12 . 1

91
^2

= 10- 5
12 .
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Quadratic equations solved in Heron.

We have already met with one such equation (in Metrica

III. 4), namely xl— 14x + 46§ = 0, the result only (x = 8-|)

being given. There are others in the Geometrica where the

process of solution is shown.

(1) Geometrica 24, 3 (Heib.). 'Given a square such that the

sum of its area and perimeter is 896 feet: to separate the area

from the perimeter ': i.e. x1 + ix = 896. Heron takes half of

4 and adds its square, completing the square on the left side.

(2) Geometrica 21, 9 and 24, 46 (Heib.) give one and the same

equation, Geom. 24, 47 another like it. 'Given the sum of

the diameter, perimeter and area of a circle, to find each

of them.
5

The two equations are

\^d- +^d = 212,

and ii^ + _29^ = 67 i
#

Our usual method is to begin by dividing by yj throughout,

so as to leave d'
z as the first term. Heron's is to multiply by

such a number as will leave a square as the first term. In this

case he multiplies by 154, giving 1 l
2
cZ

2 + 58 . lie? = 212 . 154

or 67-|.154 as the case may be. Completing the square,

he obtains (11 d+ 29)
2 = 32648 + 841 or 10395 + 841. Thus

lld + 29 = V(33489) or \/(11236), that is, 183 or 106.

Thus lid = 154 or 77, and d = 14 or 7, as the case may be.

Indeterminate problems in the Geometrica.

Some very interesting indeterminate problems are now
included by Heiberg in the Geometrica} Two of them (chap.

24, 1-2) were included in the Geeponicus in Hultsch's edition

(sections 78, 79; ; the rest are new, having been found in the

Constantinople manuscript from which Schone edited the

Metrica. As, however, these problems, to whatever period

the}r belong, are more akin to algebra than to mensuration,
t

they will be more properly described in a later chapter on

Algebra.

* Heronia Alexandrim opera, vol. iv, p. 414. 28 sq.
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The Dioptra (wepi SionTpas).

This treatise begins with a careful description of the

dioptra, an instrument which served with the ancients for

the same purpose as a theodolite with us (chaps. 1-5). The

problems with which the treatise goes on to deal are

(a) problems of ' heights and distances ', {b) engineering pro-

blems, (c) problems of mensuration, to which is added

(chap. 34) a description of a 'hodometer', or taxameter, con-

sisting of an arrangement of toothed wheels and endless

screws on the same axes working on the teeth of the next

wheels respectively. The book ends with the problem

(chap. 37), 'With a given force to move a given weight by

means of interacting toothed wheels', which really belongs

to mechanics, and was apparently added, like some other

problems (e.g. 31, 'to measure the outflow of, i.e. the volume

of water issuing from, a spring '), in order to make the book

more comprehensive. The essential problems dealt with are

such as the following. To determine the difference of level

between two given points (6), to draw a straight line connect-

ing two points the one of which is not visible from the other

(7), to measure the least breadth of a river (9), the distance of

two inaccessible points (10), the height of an inaccessible point

(12), to determine the difference between the heights of two
inaccessible points and the position of the straight line joining

them (13), the depth of a ditch (14) ; to bore a tunnel through

a mountain going straight from one mouth to the other (15), to

sink a shaft through a mountain perpendicularly to a canal

flowing underneath (16) ;
given a subterranean canal of any

form, to find on the ground above a point from which a

vertical shaft must be sunk in order to reach a given point

on the canal (for the purpose e.g. of removing an obstruction)

(20) ; to construct a harbour on the model of a given segment

of a circle, given the ends (17), to construct a vault so that it

may have a spherical surface modelled on a given segment

(18). The mensuration problems include the following: to

measure an irregular area, which is done by inscribing a

rectilineal figure and then drawing perpendiculars to the

sides at intervals to meet the contour (23), or by drawing one

straight line across the area and erecting perpendiculars from
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that to meet the contour on both sides (24) ;
given that all

the boundary stones of a certain area_ have disappeared except

two or three, but that the plan of the area is forthcoming,

to determine the position of the lost boundary stones (25).

Chaps. 26-8 remind us of the Metrical to divide a given

area into given parts by straight lines drawn from one point

(26) ; to measure a given area without entering it, whether

because it is thickly covered with trees, obstructed by houses,

or entry is forbidden! (27); chaps. 28-30 = Metrica III. 7,

III. 1, and I. 7, the last of these three propositions being the

proof of the ' formula of Heron ' for the area of a triangle in

terms of the sides. Chap. 35 shows how to find the distance

between Rome and Alexandria along a great circle of the

earth by means of the observation of the same eclipse at

the two places, the analemma for Rome, and a concave hemi-

sphere constructed for Alexandria to show the position of the

sun at the time of the said eclipse. It is here mentioned that

the estimate by Eratosthenes of the earth's circumference in

his book On the Measurement of the Earth was the most

accurate that had been made up to date. 1 Some hold that

the chapter, like some others which have no particular con-

nexion with the real subject of the Dioptra (e.g. chaps. 31, 34,

37-8) were probably inserted by a later editor, ' in order to

make the treatise as complete as possible \
2

The Mechanics.

It is evident that the Mechanics, as preserved in the Arabic,

is far from having kept its original form, especially in

Book I. It begins with an account of the arrangement of

toothed wheels designed to solve the problem of moving a

given weight by a given force ; this account is the same as

that given at the end of the Greek text of the Dioptra, and it

is clearly the same description as that which Pappus 3 found in

the work of Heron entitled BapovXKO? ('weight-lifter') and

himself reproduced with a ratio of force to weight altered

from 5:1000 to 4:160 and with a ratio of 2 : 1 substituted for

5 : 1 in the diameters of successive wheels. It would appear

that the chapter from the BapovXKos was inserted in place of

1 Heron, vol. iii, p. 302. 13-17. 2 lb
, p. 302. 9.

3 Pappus, viii, p. 1060 sq.
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the first chapter or chapters of the real Mechanics which had

been lost. The treatise would doubtless begin with generalities

introductory -to mechanics such as we find in the (much

interpolated) beginning of Pappus, Book VIII. It must then

apparently have dealt with the properties of circles, cylinders,

and spheres with reference to their importance in mechanics
;

for in Book II. 21 Heron says that the circle is of all figures

the most movable and most easily moved, the same thing

applying also to the cylinder and sphere, and he adds in

support of this a reference to a proof ' in the preceding Book \

This reference may be to I. 21, but at the end of that chapter

he says that 'cylinders, even when heavy, if placed on the

ground so that they touch it in one line only, are easily

moved, and the same is true of spheres also, a matter which

we have already discussed '
; the discussion may have come

earlier in the Book, in a chapter now lost.

The treatise, beginning with chap. 2 after the passage

interpolated from the BapovXKos, is curiously disconnected.

Chaps. 2-7 discuss the motion of circles or wheels, equal or

unequal, moving on different axes (e.g. interacting toothed

wheels), or fixed on the same axis, much after the fashion of

the Aristotelian Mechanical problems.

Aristotle's Wheel.

In particular (chap. 7) Heron attempts to explain the puzzle

of the ' Wheel of Aristotle ', which remained a puzzle up to quite

modern times, and gave rise to the proverb, ' rotam Aristotelis

magis torquere, quo magis torqueretur \
1 'The question is ', says

the Aristotelian problem 24, ' why does the greater circle roll an

equal distance with the lesser circle when they are placed about

the same centre, whereas, when they roll separately, as the

size of one is to the size of the other, so are the straight lines

traversed by them to one another ?

'

2 Let AC, BD be quadrants

of circles with centre bounded by the same radii, and draw
tangents AE, BF at A and B. In the first case suppose the

circle BD to roll along BF till D takes the position //; then

the radius ODC will be at right angles to AE, and C will be

at G, a point such that AG is equal to BH. In the second

1 See Van Capelle, Aristotelis quaestiones mechanicae, 1812, p. 263 sq.
2
Avist. Mechanica, 855 a 28. *
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case suppose the circle AC to roll along AE till ODC takes

the position 0'FE\ then D will be at F where AE = BF.
And similarly if a whole revolution is performed and DBA is

again perpendicular to AE. Contrary, therefore, to the prin-

ciple that the greater circle moves quicker than the smaller on
the same axis, it would appear that the movement of the

smaller in this case is as quick as that of the greater, since

BH = AG, and BF = AE. Heron's explanation is that, e.g.

in the case where the larger circle rolls on AE, the lesser

circle maintains the same speed as the greater because it has

huo motions ; for if we regard the smaller circle as merely

fastened to the larger, and not rolling at all, its centre will

move to 0' traversing a distance 00' equal to AE and BF)
hence the greater circle will take the lesser with it over an

equal distance, the rolling of the lesser circle having no effect

upon this.

The parallelogram of velocities.

Heron next proves the parallelogram of velocities (chap. 8);

he takes the case of a rectangle, but the proof is applicable

generally.

The way it is put is this. A
point moves with uniform velocity

along a straight line AB, from A
to B, while at the same time AB
moves with uniform velocity always

parallel to itself with its extremity

A describing the straight line AC.

Suppose that, when the point arrives at B, the straight line
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reaches the position CD. Let EF be any intermediate

position of AB, and G the position at the same instant

of the moving point on it. Then clearly AE :AC=EG: EF]
therefore AE:EG = AG:EF = AC: CD, and it follows that

G lies on the diagonal AD, which is therefore the actual path

of the moving point.

Chaps. 9-19 contain a digression on the construction of

plane and solid figures similar to given figures but greater or

less in a given ratio. Heron observes that the case of plane

figures involves the finding of a mean proportional between

two straight lines, and the case of solid figures the finding of

two mean proportionals ; in chap. 1 1 he gives his solution of

the latter problem, which is preserved in Pappus and Eutocius

as well, and has already been given above (vol. i, pp. 262-3).

The end of chap. 19 contains, quite inconsequently, the con-

struction of a toothed wheel to move on an endless screw,

after which chap. 20 makes a fresh start with some observa-

tions on weights in equilibrium on a horizontal plane but

tending to fall when the plane is inclined, and on the ready

mobility of objects of cylindrical form which touch the plane

in one line only.

Motion on an inclined plane.

When a weight is hanging freely by a rope over a pulley,

no force applied to the other end of the rope less than the

weight itself will keep it up, but, if the weight is placed on an

inclined plane, and both the plane and the portion of the

weight in contact with it are smooth, the case is different.

Suppose, e.g., that a weight in the form of a cylinder is placed

on an inclined plane so that the line in which they touch is

horizontal ; then the force required to be applied to a rope

parallel to the line of greatest slope in the plane in order to

keep the weight in equilibrium is less than the weight. For

the vertical plane passing through the line of contact between

the cylinder and the plane divides the cylinder into two
unequal parts, that on the downward side of the plane being

the greater, so that the cylinder will tend to roll down ; but

the force required to support the cylinder is the ' equivalent ',

not of the weight of the whole cylinder, but of the difference
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between the two portions into which the vertical plane cuts it

(chap. 23).

On the centre of gravity.

This brings Heron to the centre of gravity (chap. 24). Here
a definition by Posidonius, a Stoic, of the ' centre of gravity

'

or ' centre of inclination ' is given, namely ' a point such that,

if the body is hung up at it, the body is divided into two
equal parts' (he should obviously have said 'divided by any
vertical plane through the point of suspension into two equal

parts '). But, Heron says, Archimedes distinguished between
the ' centre of gravity ' and the ' point of suspension ', defining

the latter as a point on the body such that, if the body is

hung up at it, all the parts of the body remain in equilibrium

and do not oscillate or incline in any direction. * " Bodies", said

Archimedes, " may rest (without inclining one way or another)

with either a line, or only one point, in the body fixed ".' The
' centre of inclination ', says Heron, ' is one single point in any
particular body to which all the vertical lines through the

points of suspension converge.' Comparing Simplicius's quo-

tation of a definition by Archimedes in his KevTpofiapiKa, to

the effect that the centre of gravity is a certain point in the

body such that, if the body is hung up by a string attached to

that point, it will remain in its position without inclining in

any direction,1 we see that Heron directly used a certain

treatise of Archimedes. So evidently did Pappus, who has

a similar definition. Pappus also speaks of a body supported

at a point by a vertical stick : if, he says, the body is in

equilibrium, the line of the stick produced upwards must pass

through the centre of gravity.2 Similarly Heron says that

the same principles apply when the body is supported as when
it is suspended. Taking up next (chaps. 25-31) the question

of ' supports ', he considers cases of a heavy beam or a wall

supported on a number of pillars, equidistant or not, even

or not even in number, and projecting or not projecting

beyond one or both of the extreme pillars, and finds how
much of the weight is supported on each pillar. He 'says

that Archimedes laid down the principles in his ' Book on

1 Simplicius on Be caelo, p. 543. 31-4, Heib.
2 Pappus, viii, p. 1032. 5-24.
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Supports '. As, however, the principles are the same whether

the body is supported or hung up, it does not follow that

this was a different work from that known as nepl {vycov.

Chaps. 32-3, which are on the principles of the lever or of

weighing, end with an explanation amounting to the fact

that 'greater circles overpower smaller when their movement

is about the same centre', a proposition which Pappus says

that Archimedes proved in his work nepl £vy£>v} In chap. 32,

too, Heron gives as his authority a proof given by Archimedes

in the same work. With I. 33 may be compared II. 7,

where Heron returns to the same subject of the greater and

lesser circles moving about the same centre and states the

fact that weights reciprocally proportional to their radii are

in equilibrium when suspended from opposite ends of the

horizontal diameters, observing that Archimedes proved the

proposition in his work ' On the equalization of inclination

'

(presumably IcroppoTriai).

Book II. The five mechanical powers.

Heron deals with the wheel and axle, the lever, the pulley,

the wedge and the screw, and with combinations of these

powers. The description of the powers comes first, chaps. 1-6,

and then, after II. 7, the proposition above referred to, and the

theory of the several powers based upon it (chaps. 8-20).

Applications to specific cases follow. Thus it is shown how
to move a weight of 1000 talents by means of a force of

5 talents, first by the system of wheels described in the

BapovXKo?, next by a system of pulleys, and thirdly by a

combination of levers (chaps. 21-5). It is possible to combine
the different powers (other than the wedge) to produce the

same result (chap. 29). The wedge and screw are discussed

with reference to their angles (chaps. 30-1), and chap. 32 refers

to the effect of friction.

Mechanics in daily life; queries and answers.

After a prefatory chapter (33), a number of queries resem-

bling the Aristotelian problems are stated and answered

(chap. 34), e.g. 'Why do waggons with two wheels carry

a weight more easily than those with four wheels?', 'Why
1 Pappus, viii, p. 1068. 20-3.
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do great weights fall to the ground in a shorter time than

lighter ones V, ' Why does a stick break sooner when one

puts one's knee against it in the middle ?
',

' Why do people

use pincers rather than the hand to draw a tooth 1
',

' Why
is it easy to move weights which are suspended ?

', and
' Why is it the more difficult to move such weights the farther

the hand is away from them, right up to the point of suspension

or a point near it 1 ', ' Why are great ships turned by a rudder

although it is so small ?
',

' Why do arrows penetrate armour

or metal plates but fail to penetrate cloth spread out ?

'

Problems on the centre of gravity, &c.

II. 35, 36, 37 show how to find the centre of gravity of

a triangle, a quadrilateral and a pentagon respectively. Then,

assuming that a triangle of uniform thickness is supported by

a prop at each angle, Heron finds what weight is supported

by each prop, (a) when the props support the triangle only,

(b) when they support the triangle plus a given weight placed

at any point on it (chaps. 38, 39). Lastly, if known weights

are put on the triangle at each angle, he finds the centre of

gravity of the system (chap. 40) ; the problem is then extended

to the case of any polygon (chap. 41).

Book III deals with the practical construction of engines

for all sorts of purposes, machines employing pulleys with

one, two, or more supports for lifting weights, oil-presses, &c.

The Catoptrica.

This work need not detain us long. Several of the theoretical

propositions which it contains are the same as propositions

in the so-called Catoptrica of Euclid, which, as we have

seen, was in all probability the work of Theon of Alexandria

and therefore much later in date. In addition to theoretical

propositions, it contains problems the purpose of which is to

construct mirrors or combinations of mirrors of such shape

as will reflect objects in a particular way, e.g. to make the

right side appear as the right in the picture (instead of the

reverse), to enable a person to see his back or to appear in

the mirror head downwards, with face distorted, with three

eyes or two noses, and so forth. Concave and convex
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cylindrical mirrors play a part in these arrangements. The
whole theory of course ultimately depends on the main pro-

positions 4 and 5 that the angles of incidence and reflection

are equal whether the mirror is plane or circular.

Herons proof of equality of angles of incidence and reflection.

Let i5 be a plane mirror, C the eye, D the object seen.

The argument rests on the fact that nature ' does nothing in

vain '. Thus light travels in a straight line, that is, by the

quickest road. Therefore, even

when the ray is a line broken

at a point by reflection, it must

mark the shortest broken line

of the kind connecting the eye

and the object. Now, says

Heron, I maintain that the

shortest of the broken lines

(broken at the mirror) which

connect G and D is the line, as

CAD, the parts of which make equal angles with the mirror.

Join DA and produce it to meet in F the perpendicular from

G to AB. Let B be any point on the mirror other than A,

and join FB, BD.

Now LEAF = Z BAD

= IGAE, by' hypothesis.

Therefore the triangles AEF, AEG, having two angles equal

and AE common, are equal in all respects.

Therefore CA = AF, and GA + AD = DF.

Since FE = EG, and BE is perpendicular to FC, BF = BG
Therefore GB + BD = FB + BD '

> FD,

i.e. > GA+AD.

The proposition was of course known to Archimedes. We
gather from a scholium to the Pseudo-Euclidean Cchoptrica

that he proved it in a different way, namely by reductio ad
absurdum, thus : Denote the angles GAE, DAB by a, /? re-

spectively. Then, a is > = or < f3. Suppose a > f3. Then,

1623.2 a a
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reversing the ray so that the eye is at D instead of 0, and the

object at G instead of D, we must have /? > ex. But fi was
less than a, which is impossible. (Similarly it can be proved

that oc is not less than f3.) Therefore a = (3.

In the Pseudo-Euclidean Catoptrica the proposition is

practically assumed ; for the third assumption or postulate

at the beginning states in effect that, in the above figure, if A
be the point of incidence, GE : EA — DH : HA (where DH is

perpendicular to AB). It follows instantaneously (Prop. 1)

that lGAE= ADAH.
If the mirror is the convex side of a circle, the same result

follows a fortiori. Let GA, AD meet

the arc at equal angles, and CB, BD at

unequal angles. Let AE be the tan-

gent at A, and complete the figure.

Then, says Heron, (the angles GAC,
BAD being by hypothesis equal), if we
subtract the equal angles GAE, BAF
from the equal angles GAG, BAD (both

pairs of angles being ' mixed ', be it

observed), we have IEAG = I FAD. Therefore GA+AD
<CF+FD and a fortiori < GB + BD.
The problems solved (though the text is so corrupt in places

that little can be made of it) were such as the following:

11, To construct a right-handed mirror (i.e. a mirror which

makes the right side right and the left side left instead of

the opposite); 12, to construct the mirror called polytheoron

('with many images'); 16, to construct a mirror inside the

window of a house, so that you can see in it (while inside

the room) everything that passes in the street ; 1 8 , to arrange

mirrors in a given place so that a person who approaches

cannot actually see either himself or any one else but can see

any image desired (a 'ghost-seer').



XIX

PAPPUS OF ALEXANDRIA

We have seen that the Golden Age of Greek geometry

ended with the time of Apollonius of Perga. But the influence

of Euclid, Archimedes and Apollonius continued, and for some

time there was a succession of quite competent mathematicians

who, although not originating anything of capital importance,

kept up the tradition. Besides those who were known for

particular investigations, e. g. of new curves or surfaces, there

were such men as Geminus who, it cannot be doubted, were

thoroughly familiar with the great classics. Geminus, as we
have seen, wrote a comprehensive work of almost encyclopaedic

character on the classification and content of mathematics,

including the history of the development of each subject.

But the beginning of the Christian era sees quite a different

state of things. Except in sphaeric and astronomy (Menelaus

and Ptolemy), production was limited to elementary text-

books of decidedly feeble quality. In the meantime it would
seem that the study of higher geometry languished or was
completely in abeyance, until Pappus arose to revive interest

in the subject. From the way in which he thinks it necessary

to describe the contents of the classical works belonging to

the Treasury of Analysis, for example, one would suppose

that by his time many of them were, if not lost, completely

forgotten, and that the great task which he set himself was
the re-establishment of geometry on its former high plane of

achievement. Presumably such interest as he was able to

arouse soon flickered out, but for us his work has an in-

estimable value as constituting, after the works of the great

mathematicians which have actually survived, the most im-

portant of all our sources.

A a 2
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Date of Pappus.

Pappus lived at the end of the third century A.D. The
authority for this date is a marginal note in a Leyden manu-
script of chronological tables by Theon of Alexandria, where,

opposite to the name of Diocletian, a scholium says, ' In his

time Pappus wrote'. Diocletian reigned from 284 to 305,

and this must therefore be the period of Pappus's literary

activity. It is true that Suidas makes him a contemporary

of Theon of Alexandria, adding that they both lived under

Theodosius I (379-395). But Suidas was evidently not well

acquainted with the works of Pappus; though he mentions

a description of the earth by him and a commentary on four

Books of Ptolemy's Syntaxis, he has no word about his greatest

work, the Synogoge. As Theon also wrote a commentary on

Ptolemy and incorporated a great deal of the commentary of

Pappus, it is probable that Suidas had Theon's commentary

before him and from the association of the two names wrongly

inferred that they were contemporaries.

Works (commentaries) other than the Collection.

Besides the Synagoge, which is the main subject of this

chapter, Pappus wrote several commentaries, now lost except for

fragments which have survived in Greek or Arabic. One was

a commentary on the Elements of Euclid. This must presum-

abfy have been pretty complete, for, while Proclus (on Eucl. I)

quotes certain things from Pappus which may be assumed to

have come in the notes on Book I, fragments of his commen-

tary on Book X actually survive in the Arabic (see above,

vol. i, pp. 154-5, 209), and again Eutocius in his note on Archi-

medes, On the Sphere and Cylinder, I. 13, says that Pappus

explained in his commentary on the Elements how to inscribe

in a circle a polygon similar to a polygon inscribed in another

circle, which problem would no doubt be solved by Pappus, as

it is by a scholiast, in a note on XII. 1. Some of the references

by Proclus deserve passing mention. (1) Pappus said that

the converse of Post. 4 (equality of all right angles) is not

true, i.e. it is not true that all angles equal to a right angle are

themselves right, since the ' angle ' between the conterminous

arcs of two semicircles which are equal and have their
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diameters at right angles and terminating at one point is

equal to, but is not, a right angle.1
(2) Pappus said that,

in addition to the genuine axioms of Euclid, there were others

on record about unequals added to

equals and equals added to unequals. /^
Others given by Pappus are (says /
Proclus) involved by the definitions, I

e.g. that ' all parts of the plane and of \

the straight line coincide with one >^
another ', that ' a point divides a line,

a line a surface, and a surface a solid ', and that ' the infinite

is (obtained) in magnitudes botj,i by addition and diminution'. 2

(3) Pappus gave a pretty proof of Eucl. I. 5, which modern

editors have spoiled when introducing it into text-books. If

AB, AC are the equal sides in an isosceles triangle, Pappus

compares the triangles ABC and ACB (i.e. as if he were com-

paring the triangle ABC seen from the front with the same

triangle seen from the back), and shows that they satisfy the

conditions of I. 4, so that they are equal in all respects, whence

the result follows.3

Marinus at the end of his commentary on Euclid's Data
refers to a commentary by Pappus on that book.

Pappus's commentary on Ptolemy's Syutaxis has* already

been mentioned (p. 274); it seems to have extended to six

Books, if not to the whole of Ptolemy's Work. The Fihrld

says that he also wrote a commentary on Ptolemy's Plani-

sphaervu/m, which was translated into Arabic by Thabit b.

Qurra. Pappus himself alludes to his own commentary on

the Analemma of Diodorus, in the course of which he used the

conchoid of Nicomedes for the purpose of trisecting an angle.

We come now to Pappus's great work.

The Synagoge or Collection.

(a) Character of the work; ivicle range.

Obviously written with the object of reviving the classical

Greek geometry, it covers practically the whole field. It is,

1 Proclus on Eucl. I, pp. 189-90. 2
lb., pp. 197. 6-198. 15.

3
lb., pp. 249.20-250. 12.
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however, a handbook or guide to Greek geometry rather than

an encyclopaedia ; it was intended, that is, to be read with the

original works (where still extant) rather than to enable them
to be dispensed with. Thus in the case of the treatises

included in the Treasury of Analysis there is a general intro-

duction, followed by a general account of the contents, with

lemmas, &c, designed to facilitate the reading of the treatises

themselves. On the other hand, where the history of a subject

is given, e.g. that of the problem of the duplication of the

cube or the finding of the two mean proportionals, the various

solutions themselves are reproduced, presumably because they

were not easily accessible, but had to be collected from various

sources. Even when it is some accessible classic which is

being described, the opportunity is taken to,, give alternative

methods, or to make improvements in proofs, extensions, and

so on. Without pretending to great originality, the whole

work shows, on the part of the author, a thorough grasp of

all the subjects treated, independence of judgement, mastery

of technique ; the style is terse and clear ; in short, Pappus

stands out as an accomplished and versatile mathematician,

a worthy representative of the classical Greek geometry.

(/5) List of authors mentioned.

The immense range of the Collection can be gathered from

a mere enumeration of the names of the various mathematicians

quoted or referred to in the course of it. The greatest of

them, Euclid, Archimedes and Apollonius, are of course con-

tinually cited, others are mentioned for some particular

achievement, and in a few cases the mention of a name by

Pappus is the whole of the information we possess about the

person mentioned. In giving the list of the names occurring

in the book, it will, I think, be convenient and may economize

future references if I note in brackets the particular occasion

of the reference to the writers who are mentioned for one

achievement or as the authors of a particular book or investi-

gation. The list in alphabetical order is : Apollonius of Perga,

Archimedes, Aristaeus the elder (author of a treatise in five

Books on the Elements of Conies or of ' five Books on Solid

Loci connected with the conies '), Aristarchus of Samos (On the
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sizes and distances of the sun and moon), Autolycus (Otu the

moving sphere), Carpus of Antioch (who is quoted as having

said that Archimedes wrote only one mechanical book, that

on sphere-making, since he held the mechanical appliances

which made him famous to be nevertheless unworthy of

written description : Carpus himself, who was known as

mechanicus, applied geometry to other arts of this practical

kind), Charmandrus (who added three simple and obvious loci

to those which formed the beginning of the Plane Loci of

Apollonius), Conon of Samos, the friend of Archimedes (cited

as the propounder of a theorem about the spiral in a plane

which Archimedes proved : this would, however, seem to be

a mistake, as Archimedes says at the beginning of his treatise

that he sent certain theorems, without proofs, to Conon, who
would certainly have proved them had he lived), Demetrius of

Alexandria (mentioned as the author of a work called ' Linear

considerations', ypa/ifiu<ai emo-rdo-ei?, i.e. considerations on

curves, as to which nothing more is known), Dinostratus,

the brother of Menaechmus (cited, with Nicomedes, as having

used the curve of Hippias, to which they gave the name of

quadratrix, Terpaycovi^ovcra, for the squaring of the circle),

Diodorus (mentioned as the author of an Analemma), Erato-

sthenes (whose mean-finder, an appliance for finding two or

any number of geometric means, is described, and who is

further mentioned as the author of two Books ' On means

'

and of a work entitled 'Loci with reference to means'),

Erycinus (from whose Paradoxa are quoted various problems

seeming at first sight to be inconsistent with Eucl. I. 21, it

being shown that straight lines can be drawn from two points

on the base of a triangle to a point within the triangle which
are together greater than the other two sides, provided that the

points in the base may be points other than the extremities),

Euclid, Geminus the mathematician (from whom is cited a

remark on Archimedes contained in his book ' On the classifica-

tion of the mathematical sciences ', see above, p. 223), Heraclitus

(from whom Pappus quotes an elegant solution of a vevens

with reference to a square), Hermodorus (Pappus's son, to

whom he dedicated Books VII, VIII of his Collection), Heron
of Alexandria (whose mechanical works are extensively quoted

from), Hierius the philosopher (a contemporary of Pappus,
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who is mentioned as having asked Pappus's opinion on the

attempted solution by ' plane ' methods of the problem of the two

means, which actually gives a method of approximating to

a solution 1

), Hipparchus (quoted as practically adopting three

of the hypotheses of Aristarchus of Samos), Megethion (to

whom Pappus dedicated Book V of his Collection), Menelaus

of Alexandria (quoted as the author of Sphaerica and as having

applied the name irapd8o£o$ to a certain curve), Nicomachus

(on three means additional to the first three), Nicomedes,

Pandrosion (to whom Book III of the Collection is dedicated),

Pericles (editor of Euclid's Data), Philon of Byzantium (men-

tioned along with Heron), Philon of Tyana (mentioned as the

discoverer of certain complicated curves derived from the inter-

weaving of plectoid and other surfaces), Plato (with reference

to the five regular solids), Ptolemy, Theodosius (author of the

Sphaerica and On Days and Nights).

(y) Translations and editions.

The first published edition of the Collection was the Latin

translation by Coinmandinus (Venice 1589, but dated at the

end 'Pisauri apud Hieronymum Concordiam 1588'; reissued

with only the title-page changed ' Pisauri ... 1602 '). Up to

1876 portions only of the Greek text had appeared, namely

Books VII, VIII in Greek and German, by C. J. Gerhardt, 1871,

chaps. 33-105 of Book V, by Eisenmann, Paris 1824, chaps.

45-52 of Book IV in Iosephi Torelli Veronensis Geometrica,

1769, the remains of Book II, by John Wallis (in Opera

mathematica, III, Oxford 1699); in addition, the restorers

of works of Euclid and Apollonius from the indications

furnished by Pappus give extracts from the Greek text

relating to the particular works. Breton le Champ on Euclid's

Forisms, Halley in his edition of the Conies of Apollonius

(1710) and in his translation from the Arabic and restoration

respectively of the De sectione rationis and Be sectione spatii

of Apollonius (1706), Camerer on Apollonius's Tactiones (1795),

Simson and Horsley in their restorations of Apollonius's Plane

Loci and IncUnationes published in the years 1749 and 1770

respectively. In the years 1876-8 appeared the only com-

1 See vol. i, pp. 268-70.
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plete Greek text, with apparatus, Latin translation, com-

mentary, appendices and indices, by Friedrich Hultsch ; this

great edition is one of the first monuments of the revived

study of the history of Greek mathematics in the last half

of the nineteenth century, and has properly formed the model

for other definitive editions of the Greek text of the other

classical Greek mathematicians, e.g. the editions of Euclid,

Archimedes, Apollonius, &c, by Heiberg and others. The

Greek index in this edition of Pappus deserves special mention

because it largely serves as a dictionary of mathematical

terms used not only in Pappus but by the Greek mathe-

maticians generally.

(S) Summary of co ate ids.

At the beginning of the work, Book I and the first 13 pro-

positions (out of 26) of Book II are missing. The first 13

propositions of Book II evidently, like the rest of the Book,

dealt with Apollonius's method of working with very large

numbers expressed in successive powers of the myriad, 10000.

This system has already been described (vol. i, pp. 40, 54-7).

The work of Apollonius seems to have contained 26 proposi-

tions (25 leading up to, and the 26th containing, the final

continued multiplication).

Book III consists of four sections. Section (1) is a sort of

history of the problem offinding two mean proportionals, in

continued proportion, betiveen tuv given straight lines.

It begins with some general remarks about the distinction

between theorems and problems. Pappus observes that,

whereas the ancients called them all alike by one name, some

regarding them all as problems and others as theorems, a clear

distinction was drawn by those who favoured more exact

terminology. According to the latter a problem is that in

which it is proposed to do or construct something, a theorem

that in which, given certain hypotheses, we investigate that

which follows from and is necessarily implied by them.

Therefore he who propounds a theorem, no matter how he has

become aware of the fact which is a necessary consequence of

the premisses, must state, as the object of inquiry, the right

result and no other. On the other hand, he who propounds
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a problem may bid us do something which is in fact im-

possible, and that without necessarily laying himself open
to blame or criticism. For it is part of the solver's duty
to determine the conditions under which the problem is

possible or impossible, and, ' if possible, when, how, and in

how many ways it is possible '. When, however, a man pro-

fesses to know mathematics and yet commits some elementary

blunder, he cannot escape censure. Pappus gives, as an

example, the case of an unnamed person ' who was thought to

be a great geometer' but who showed ignorance in that he

claimed to know how to solve the problem of the two mean
proportionals by 'plane' methods (i.e. by using the straight

line and circle only). He then reproduces the argument of

the anonymous person, for the purpose of showing that it

does not solve the problem as its author claims. We have

seen (vol. i, pp. 269-70) how the method, though not actually

solving the problem, does furnish a series of successive approxi-

mations to the real solution. Pappus adds a few simple

lemmas assumed in the exposition.

Next comes the passage 1
, already referred to, on the dis-

tinction drawn by the ancients between (1) plane problems or

problems which can be solved by means of the straight line

and circle, (2) solid problems, or those which require for their

solution one or more conic sections, (3) linear problems, or

those which necessitate recourse to higher curves still, curves

with a more complicated and indeed a forced or unnatural

origin (/3e/3iacrfMepr]i/) such as spirals, quadratrices, cochloids

and cissoids, which have many surprising properties of their

own. The problem of the two mean proportionals, being

a solid problem, required for its solution either conies or some

equivalent, and, as conies could not be constructed by purely

ireometrical means, various mechanical devices were invented

such as that of Eratosthenes (the mean-finder), those described

in the Mechanics of Philon and Heron, and that of Nicomedes

(who used the ' cochloidal ' curve). Pappus proceeds to give the

solutions of Eratosthenes, Nicomedes and Heron, and then adds

a fourth which he claims as his own, but which is practically

the same as that attributed by Eutocius to Sporus. All these

solutions have been given above (vol. i, pp. 258-64, 266-8).

1 Pappus, iii, p. 54. 7-22.
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Section (2). The theory of means.

Next follows a section (pp. 69-105) on the theory of the

different kinds of means. The discussion takes its origin

from the statement of the ' second problem ', which was that

of 'exhibiting the three means' (i.e. the arithmetic, geometric

and harmonic) ' in a semicircle '. Pappus first gives a con-

struction by which another geometer (aAAoy tis) claimed to

have solved this problem, but he does not seem to have under-

stood it, and returns to the same problem later (pp. 80-2).

In the meantime he begins with the definitions of the

three means and then shows how, given any two of three

terms a, b, c in arithmetical, geometrical or harmonical pro-

gression, the third can be found. The definition of the mean
(b) of three terms a, b, c in harmonic progression being that it

satisfies the relation a :c= a— b :b — c, Pappus gives alternative

definitions for the arithmetic and geometric means in corre-

sponding form, namely for the arithmetic mean a:a=a — b:b— c

and for the geometric a:b= a— b:b— e.

The construction for the harmonic mean is perhaps worth

giving. Let AB, BG be two given straight lines. At A draw

DAE perpendicular to AB, and make DA, AE equal. Join

DB, BE. From G draw GF&t right

angles to AB meeting DB in F. Di

Join EF meeting AB in C. Then

BC is the required harmonic mean.

For

AB:BG = DA:FG
= EA : FG
= AC:CG
= (AB-BC)-.(BC-BG).

Similarly, by means of a like figure, we can find BG when
AB, BC are given, and AB when BC, BG are given (in

the latter case the perpendicular DE is drawn through G
instead of A).

Then follows a proposition that, if the three means and the

several extremes are represented in one set of lines, there must

be five of them at least, and, after a set of five such lines have

been found in the smallest possible integers, Pappus passes to
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the problem of representing the three means with the respective

extremes by nix lines drawn in a semicircle.

Given a semicircle on the diameter AC, and B any point on

the diameter, draw BD at right angles to A C. Let the tangent

at D meet AG produced in G, and measure DH along the

tangent equal to DG. Join HB meeting the radius OD in K.

Let BF be perpendicular to OD.

Then, exactly as above, it is shown that OK is a harmonic

mean between OF and OD. Also BD is the geometric mean
between AB, BC, while OC (= OD) is the arithmetic mean
between AB, BC.

Therefore the six lines DO (= OC), OK, OF, AB, BC, BD
supply the three means with the respective extremes.

But Pappus seems to have failed to observe that the ' certain

other geometer ', who has the same figure excluding the dotted

lines, supplied the same in five lines. For he said that DF
is ' a harmonic mean \ It is in fact the harmonic mean
between AB, BC, as is easily seen thus.

Since ODB is a right-angled triangle, and BF perpendicular

to OD,

DF:BD = BD:DO,

DF. DO = BD* = AB . BC.or

But

therefore

Therefore

that is,

DO = ±(AB + BC);

DF.(AB + BC) = 2AB.BC

AB. (DF-BC) = BC.(AB-DF),

AB:BC= (AB- DF) : (DF- BC),

and DF is the harmonic mean between AB, BC
Consequently the five lines DO (= OC), DF, AB, BC, BD

exhibit all the three means with the extremes.
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Pappus does not seem to have seen this, for he observes

that the geometer in question, though saying that DF is

a harmonic mean, does not say how it is a harmonic mean
or between what straight lines.

In the next chapters (pp. 84-104) Pappus, following Nico-

machus and others, defines seven more means, three of which

were ancient and the last four more modern, and shows how
we can form all ten means as linear functions of oc, ft, y, where

a, ft, y are in geometrical progression. The exposition has

already been described (vol. i, pp. 86-9).

Section (3). The 'Paradoxes' of Erycinus.

The third section of Book III (pp. 104-30) contains a series

of propositions, all of the same sort, which are curious rather

than geometrically important. They appear to have been

taken direct from a collection of Paradoxes by one Erycinus. 1

The first set of these propositions (Props. 28-34) are connected

with Eucl. I. 21, which says that, if from the extremities

of the base of any triangle two straight lines be drawn meeting

at any point within the triangle, the straight lines are together

less than the two sides of the triangle other than the base,

but contain a greater angle. It is pointed out that, if the

straight lines are allowed to be drawn from points in the base

other than the extremities, their sum may be greater than the

other two sides of the triangle.

The first case taken is that of a right-angled triangle ABC
right-angled at B. Draw AD to any point D on BC. Measure

on it BE equal to A B, bisect AE
in F, and join FG. Then shall

DF+FC be > BA + AC
For EF+FC=AF+ FC>AC
Add BE and AB respectively,

and we have

DF+FC > BA + AC.

More elaborate propositions are next proved, such as the

following.

1. In any triangle, except an equilateral triangle or an isosceles

1 Pappus, iii, p. 106, 5-9.
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triangle with base less than one of the other sides, it is possible

to construct on the base and within the triangle two straight

lines meeting at a point, the sum of which is equal to the sum
of the other two sides of the triangle (Props. 29, 30).

2. In any triangle in which it is possible to construct two

straight lines from the base to one internal point the sum
of which is equal to the sum of the two sides of the triangle,

it is also possible to construct two other such straight lines the

sum of which is greater than that sum (Prop. 31).

3. Under the same conditions, if the base is greater than either

of the other two sides, two straight lines can be so constructed

from the base to an internal point which are respectively

greater than the other two sides of the triangle ; and the lines

may be constructed so as to be respectively equal to the two
sides, if one of those two sides is less than the other and each

of them is less than the base (Props. 32, 33).

4. The lines may be so constructed that their sum will bear to

the sum of the two sides of the triangle any ratio less than

2 : 1 (Prop. 34).

As examples of the proofs, we will take the case of the

scalene triangle, and prove the first and Part 1 of the third of

the above propositions for such a triangle.

In the triangle ABC with base BG let AB be greater

than AC.

Take D on BA such that BD = \ (BA+AC).

B h

On DA between D and A take any point E, and draw EF
parallel to BG. Let G be any point on EF; draw GH parallel

to AB and join GC.
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Now EA +AC>EF+ FC

> EG + GC and > GC, a fortiori.

Produce GC to K so that GK = EA+AC, and with G as

centre and GK as radius describe a circle. This circle wTill

meet HC and HG, because GH = EB > BD or DA+AC and

> GK, a fortiori.

Then HG + GL = BE+EA+AC = BA + AC.

To obtain two straight lines HG', G'L such that HG'+G'L
> BA-\-AC, we have only to choose G' so that HG', G'Ij

enclose the straight lines HG, GL completely.

Next suppose that, given a triangle ABC in which BC > BA

> AC, we are required to draw from twro points on BC to

an internal point two straight lines greater respectively than

BA, AC.

With B as centre and BA as radius describe the arc AEF.
Take any point E on it, and any point D on BE produced

but within the triangle. Join DC, and produce it to G so

that DG = AC. Then with D as centre and DG as radius

describe a circle. This will meet both BC and BD because

BA > AC, and a fortiori DB > DG.
Then, if L be any point on BH, it is clear that BD, DL

are two straight lines satisfying the conditions.

A point 1/ on BH can be found such that DL' is equal

to AB by marking off DN on DB equal to AB and drawing

with D as centre and DN as radius a circle meeting BH
in //. Also, if DH be joined, DH = AC

Propositions follow (35-9) having a similar relation to the

Postulate in Archimedes, On the Sphere and Cylinder, I,

about conterminous broken lines one of which wholly encloses
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the other, i.e. it is shown that broken lines, consisting- of

several straight lines, can be drawn with two points on the

base of a triangle or parallelogram as extremities, and of

greater total length than the remaining two sides of the

triangle or three sides of the parallelogram.

Props. 40-2 show that triangles or parallelograms can be

constructed with sides respectively greater than those of a given

triangle or parallelogram but having a less area.

Section (4). The inscribing of the five regular solids

in a sphere.

The fourth section of Book III (pp. 132-62) solves the

problems of inscribing each of the five regular solids in a

given sphere. After some preliminary lemmas (Props. 43-53),

Pappus attacks the substantive problems (Props. 54-8), using

the method of analysis followed by synthesis in the case of

each solid.

(a) In order to inscribe a regular pyramid or tetrahedron in

the sphere, he finds two circular sections equal and parallel

to one another, each of which contains one of two opposite

edges as its diameter. If d be the diameter of the sphere, the

parallel circular sections have d' as diameter, where d2 — § cT2
.

(b) In the case of the cube Pappus again finds two parallel

circular sections with diameter d' such that d2= ^d'2
; a square

inscribed in one of these circles is one face of the cube and

the square with sides parallel to those of the first square

inscribed in the second circle is the opposite face.

(c) In the case of the octahedron the same two parallel circular

sections with diameter df such that d2 = ^d'2 are used; an

equilateral triangle inscribed in one circle is one face, and the

opposite face is an equilateral triangle inscribed in the other

circle but placed in exactly the opposite way.

(d) In the case of the icosahedron Pappus finds four parallel

circular sections each passing through three of the vertices of

the icosahedron,; two of these are small circles circumscribing

two opposite triangular faces respectively, and the other two

circles are between these two circles, parallel to them, and

equal to one another. The pairs of circles are determined in
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this way. If d be the diameter of the sphere, set out two

straight lines x, y such that d, x, y are in the ratio of the sides

of the regular pentagon, hexagon and decagon respectively

described in one and the same circle. The smaller pair of

circles have r as radius where r2 = ^y
2

, and the larger pair

have r' as radius where r'
2 = -|#2 .

(e) In the case of the dodecahedron the same four parallel

circular sections are drawn as in the case of the icosahedron.

Inscribed pentagons set the opposite way are inscribed in the

two smaller circles ; these pentagons form opposite faces.

Regular pentagons inscribed in the larger circles with vertices

at the proper points (and again set the opposite way) determine

ten more vertices of the inscribed dodecahedron.

The constructions are quite different from those in Euclid

XIII. 13, 15, 14, 16, 17 respectively, where the problem is first

to construct the particular regular solid and then to ' com-

prehend it in a sphere ', i. e. to determine the circumscribing

sphere in each case. I have set out Pappus's propositions in

detail elsewhere. 1

Book IV.

At the beginning of Book IV the title and preface are

missing, and the first section of the Book begins immediately

with an enunciation. The first section (pp. 176-208) contains

Propositions 1-12 which, with the exception of Props. 8-10,

seem to be isolated propositions given for their own sakes and
not connected by any general plan.

Section (1). Extension of the theorem of Pythagoras.

The first proposition is of great interest, being the generaliza-

tion of Eucl. I. 47, as Pappus himself calls it, which is by this

time pretty widely known to mathematicians. The enunciation

is as follows.

'If ABC be a triangle and on AB, AC any parallelograms
whatever be described, as ABBE, ACFG, and if BE, FG
produced meet in H and HA be joined, then the parallelo-

grams ABBE, ACFG are together equal to the parallelogram

1 Vide notes to Euclid's propositions in The Thirteen Books of Euclid's

Elements, pp. 473, 480, 477, 489-91, 501-3.

15232 B b
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contained by BC, HA in an angle which is equal to the sum of

the angles ABC, BHA!

Produce HA to meet BC in K, draw BL, CM parallel to KH
meeting BE in L and FG in M, and join LNM.
Then BLHA is a parallelogram, and HA is equal and

parallel to BL.

Similarly HA, CM are equal and parallel ; therefore BL, CM
are equal and parallel.

Therefore BLMC is a parallelogram ; and its angle LBK is

equal to the sum of the angles ABC, DHA.

Now D ABBE = BLHA, in the same parallels,

= a BLNK, for the same reason.

Similarly CD ACFG = O ACMH = a NKCM.

Therefore, by addition, O ABBE+ CJ ACFG = BLMC.

It has been observed (by Professor Cook Wilson x
) that the

parallelograms on AB, AC need not necessarily be erected

outwards from AB, AC. If one of them, e.g. that on AC, be

drawn inwards, as in the second figure above, and Pappus's

construction be made, we have a similar result with a negative

sign, namely,

BLMC = O BLNK ~ a CMNK
= ABBE'-a ACFG.

Again, if both ABBE and ACFG were drawn inwards, their

sum would be equal to BLMC drawn outwards. Generally, if

the areas of the parallelograms described outwards are regarded

as of opposite sign to those of parallelograms drawn inwards,

1 Mathematical Gazette, vii, p. 107 (May 1913).
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we may say that the algebraic sum of the three parallelograms

is equal to zero.

Though Pappus only takes one case, as was the Greek habit,

I see no reason to doubt that he was aware of the results

in the other possible cases.

Props. 2, 3 are noteworthy in that they use the method and

phraseology of Eucl. X, proving that a certain line in one

figure is the irrational called minor (see Eucl. X. 76), and

a certain line in another figure is ' the excess by which the

binomial exceeds the straight line which produces with a

rational area a medial whole ' (Eucl. X. 77). The propositions

4-7 and 11-12 are quite interesting as geometrical exercises,

but their bearing is not obvious : Props. 4 and 1 2 are remark-

able in that they are cases of analysis followed by synthesis

applied to the proof of theorems. Props. 8-10 belong to the

subject of tangencies, being the sort of propositions that would

come as particular cases in a book such as that of Apollonius

On Contacts ; Prop. 8 shows that, if there are two equal

circles and a given point outside both, the diameter of the

circle passing through the point and touching both circles

is ' given
'

; the proof is in many places obscure and assumes

lemmas of the same kind as those given later a propos of

Apollonius's treatise; Prop. 10 purports to show how, given

three unequal circles touching one another two and two, to

find the diameter of the circle including them and touching

all three.

Section (2). On circles inscribed in the ap/3rj\o$

(' shoemakers knife ').

The next section (pp. 208-32), directed towards the demon-
stration of a theorem about the relative sizes of successive

circles inscribed in the apftrjXos (shoemaker's knife), is ex-

tremely interesting and clever, and I wish that I had space

to reproduce it completely. The dpprjXos, which we have
already met with in Archimedes's ' Book of Lemmas ', is

formed thus. BC is the diameter of a semicircle BGC and
BC is divided into two parts (in general unequal) at D;
semicircles are described on BD, DC as diameters on the same
side of BC as BGC is ; the figure included between the three

semicircles is the dp/3r]Xos.

Bb 2
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There is, says Pappus, on record an ancient proposition to

the following effect. Let successive circles be inscribed in the

dppr]\o9 touching the semicircles and one another as shown
in the figure on p. 376, their centres being A, P, ... . Then, if

Pi> Vv Vz "• ^e tne perpendiculars from the centres A, P, G ...

on BG and d1} d2 , d3
... the diameters of the corresponding

circles,

%)1
= d

1 , p2
=2d

2 , p3
= 3d

3
....

He begins by some lemmas, the course of which I shall

reproduce as shortly as I can.

I. If (Fig. 1) two circles with centres A, G of which the

former is the greater touch externally at B, and another circle

with centre G touches the two circles at K, L respectively,

then KL produced cuts the circle BL again in D and meets

AG produced in a point E such that AB-.BG — AE'.EG.

This is easily proved, because the circular segments DL, LK
are similar, and CD is parallel to AG. Therefore

* AB:BC = AK:GD = AE:EC.

Also KE.EL = EB*.

For AE-.EG = AB : BG = AB-.GF = (AE-AB) : (EG-CF)

= BE:EF.

Fig 1.

But AE:EG= KE : ED ; therefore KE:ED = BE: EF.

Therefore KE .EL: EL. ED = BE2
: BE . EF.

And EL.ED = BE.EF; therefore KE . EL = EB2
.
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II. Let (Fig. 2) BC, BD, being in one straight line, be the

diameters of two semicircles BGC, BED, and let any circle as

FGH touch both semicircles, A being the centre of the circle.

Let M be the foot of the perpendicular from A on BC, r the

radius of the circle FGH. There are two cases according

as BD lies along BC or B lies between D and C; i.e. in the

first case the two semicircles are the outer and one of the inner

semicircles of the apfirjXos, while in the second case they are

the two inner semicircles; in the latter case the circle FGH
may either include the two semicircles or be entirely external

to them. Now, says Pappus, it is to be proved that

in case (1) BM : r = (BC+BD) : (BC-BD),

and in case (2) BM : r = (BC- BD) : (BC+BD).

We will confine ourselves to the first case, represented in

the figure (Fig. 2).

Draw through A the diameter HF parallel to BC. Then,

since the circles BGC, HGF touch at G, and BC, HF are

parallel diameters, GHB, GFC are both straight lines.

Let E be the point of contact of the circles FGH and BED;
then, similarly, BEF, HED are straight lines.

Let HK, FL be drawn perpendicular to BC.

By the similar triangles BGC, BKH we have

BC:BG = BH: BK, or CB . BK = GB.BH;

and by the similar triangles BLF, BED

BF:BL = BD:BE, or DB.BL= FB .BE.
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But GB.BH=FB.BE;

therefore GB . BK = LB . BL,

or BG:BD = BL.BK.

Therefore (BG + BD) : (BG-BD) = (BL + BK) : (BL-BK)

= 2BM:KL.

And KL = HF=2r;

therefore BM:r= (BC + BD) : (BG- BD). (a)

It is next proved that BK . LG = AM 2
.

For, by similar triangles BKH, FLC,

BK:KH=FL:LG, or BK.LG = KH.FL

= AM 2
, (b)

Lastty, since BG : BD — BL : BK, from above,

BG:GD= BL: KL, or BL.GD = BG . KL

= BG.2r. (c)

Also BD:GD = BK: KL, or BK.GD= BD. KL

= BD.2r. (d)

III. We now (Fig. 3) take any two circles touching the

semicircles BGC, BED and one another. Let their centres be

A and P, H their point of contact, d, d/
their diameters respec-

tively. Then, if AM, PN are drawn perpendicular to BG,

Pappus proves that

(AM + d):d = PN:d'.

Draw BF perpendicular to BC and therefore touching the

semicircles BGG, BED at B. Join AP, and produce it to

meet BF in F.

Now, by II. (a) above,

(BG+ BD) : (BC- BD) = BM-.AH,

and for the same reason = BN : PH
;

it follows that AH:PH=:BM: BN
= FA : FP.
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Therefore (Lemma I), if the two circles touch the semi-

circle BED in R, E respectively, FRE is a straight line and

EF.FR = FH\

But EF . FR = FBZ
; therefore FH = FB.

If now BH meets PN in and MA produced in S, we have,

by similar triangles, FH:FB = PH:PO = AH: AS, whence

PH = PO and SA = AH, so that 0, S are the intersections

of PN, AM with the respective circles.

Join BP, and produce it to meet MA in K.

Now BM:BN= FA:FP

= AH: PH, from above,

= AS:P0.

And BM : BN =BK:BP
= KS : PO.

Therefore KS = AS, and KA = d, the diameter of the

circle EHG.

Lastly,

that is,

or

MK:KS = PN:PO,

{AM+d):±d = PN:%d',

(AM+d):d = PN:d'.
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IV. We now come to the substantive theorem.

Let FGH be the circle touching all three semicircles (Fig. 4).

We have then, as in Lemma II,

BG.BK = BD.BL,
«

and for the same reason (regarding FGH as touching the

semicircles BGG, DUG)

BG . GL = GD . GK.

From the first relation we have

BG:BD = BL:BK,

o N
3

A
I

H

\e

i_ . 1

-~7^u

B S NKDM L C
Fig. 4.

whence DG : BD = KL: BK, and inversely BD : DC=BK : KL,

while, from the second relation, BG : GD = GK : GL,

whence BD : DG = KL : GL.

Consequently BK:KL = KL: GL,

or BK.LG= KL2
.

But we saw in Lemma II (b) that BK . LG = AM2
.

Therefore KL = AM, or fa = d
1

.

For the second circle Lemma III gives us

(p1
-¥d

1
):d

1
= p2 :d2 ,

whence, since fa = d
1 , p2

— 2d
2

.

For the third circle

(^2 + d2):d2 =p3 :d3 ,

whence ^3
= 3c£

3
.

And so on acZ infinitum.
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The same proposition holds when the successive circles,

instead of being placed between the large and one of the small

semicircles, come down between the two small semicircles.

Pappus next deals with special cases (1) where the two

smaller semicircles become straight lines perpendicular to the

diameter of the other semicircle at its extremities, (2) where

we replace one of the smaller semicircles by a straight line

through D at right angles to BC, and lastly (3) where instead

of the semicircle DUC we simply have the straight line DC
and make the first circle touch it and the two other semi-

circles.

Pappus's propositions of course include as particular cases

the partial propositions of the same kind included in the ' Book

of Lemmas' attributed to Archimedes (Props. 5, 6) ; cf. p. 102.

Sections (3) and (4). Methods of squaring the circle, and of

trisecting (or dividing in any ratio) any given angle.

The last sections of Book IV (pp. 234-302) are mainly

devoted to the solutions of the problems (1) of squaring or

rectifying the circle and (2) of trisecting any given angle

or dividing it into two parts in any ratio. To this end Pappus

gives a short account of certain curves which were used for

the purpose.

(a) The Archimedean spiral.

He begins with the spiral of Archimedes, proving some

of the fundamental properties. His method of finding the

area included (1) between the first turn and the initial line,

(2) between any radius vector on the first turn and the curve,

is worth giving because it differs from the method of Archi-

medes. It is the area of the whole first turn which Pappus
works out in detail. We will take the area up to the radius

vector OB, say.

With centre and radius OB draw the circle A'BCD.
Let BC be a certain fraction, say 1 /nth., of the arc BCDA'

',

and CD the same fraction, OC, OD meeting the spiral in F, E
respectively. Let KS, SV be the same fraction of a straight

line KR, the side of a square KNLR. Draw ST, VW parallel

to KN meeting the diagonal KL of the square in U, Q respec-

tively, and draw MU, PQ parallel to KR.
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With as centre and OF. OF as radii draw ares of circles

meeting OF. OB in i/. G respectively.

For brevity we will now denote a cylinder in which r is the

radius of the base and h the height by(cyL r, k) and the cone

with the same base and height by (cone r.
'

N J vv

By the property of the spiral.

OB : BG = (arc A'DGB) : (arc CB)

= RK : KS

= XK : KM,

whence OB: OG = A7v : A'J7.

Now

(sector 0£C):(aector OGf^J = 05s
: 0G1 = A'A' - : MN*

= (cyl. AW. AT» : ,cyl. MX. XT).

Similarly

(sector OGD) : (sector OEH) = icyl. >T. TW) : (cyl. P7. ZV),

and so on.

The sectors OBC. OCB ... form the sector OA'L'B. and the

sectors O/'G. UEH ... form a figure inscribed to the spiral.

In like manner the cylinders \KX. TX). i>T. TW) ... form the

cylinder ,KX. XL . while the cylinders (MN. XT), \PT. TW) ...

form a figure inscribed to the cone (JOT, XL .

Consequently

(sector OA'DB) : [fig. inscr. in spiral)

= (cvl. KX. NL) : (fie. inscr. in cone KX. XL).
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We have a similar proportion connecting a figure circum-

scribed to the spiral and a figure circumscribed to the cone.

By increasing a the inscribed and circumscribed figures can

be compressed together, an^bv the usual method of exhaustion

we have ultimately

(sector OA 'LB\ :
|
area of spiral = cyl KNS

NL : cone AW. KL
= 3: 1.

or (area of spiral cut offby OB) — J (sector OA'DB

The ratio of the sector OA'DB to the complete circle is that

of the angle which the radius vector describee in passing from

the position OA to the position OB to four right angles, that

is. by the property of the spiral, r : <a. where r = 0B
t

.: = '. -
1
-

Therefore (area of spiral cut off by OB} ==§-- w '

Similarly the area of the spiral cut off by any other radius

vector / = 4 — • - -
-'

Therefore (as Pappus pr vea in his next proposition ~.

first area is to the second ..- : **.

Considering the su - sot off bv the radii vecl - - at the

points where the revolving line has passed through _ s

of ^:r. 77. I77 and 2 rr respectively - :hat the a: - re in

the ratio of (\ \ . 4 . 1 or 1, 8 87 64 so that the an a ::

the spiral included in the four quadrants are in the ratio

of l. 7. 19. 37 (Pro] ::

p) T) '•-'•/ y
' The conchoid of Nicomedes us next lescrabed ps 86-7),

and it is shown - . - 29 it can be used to find I

geometric means between tw; straight lines, and conseque:

: find a cube having a given rati g d cube set L i,

pp. 260-2 and pp. 238-40, where I have also mentioned

pus's remark that the conchoid which he flbes ta the

fi
v conchoid while there also exist a aacond^ a third and a

' rth which are of use for other theorem- .

The quadratrix.

The quadratrix is taken next \ chaps. 50-J Sj rus -

criticism questioning the construction as involving a petitio
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princvpii. Its use for squaring the circle is attributed to

Dinostratus and Nicomedes. The whole substance of this

subsection is given above (vol. i, pp. 226-3$).

Tivo constructions for the quadratrix by means of

' surface-loci '.

In the next chapters (chaps. 33, 34, Props. 28, 29) Pappus

gives two alternative ways of producing the quadratrix ' by

means of surface-loci', for which he claims the merit that

they are geometrical rather than ' too mechanical ' as the

traditional method (of Hippias) was.

(1) The first method uses a cylindrical helix thus.

Let ABC be a quadrant of a circle with centre B, and

let BD be any radius. Suppose

•that EF, drawn from a point E
on the radius BD perpendicular

to BG, is (for all such radii) in

a given ratio to the arc DC.
' I say ', says Pappus, ' that the

locus of E is a certain curve.'

Suppose a right cylinder

erected from the quadrant and

a cylindrical helix CGH drawn

upon its surface. Let DH be

the generator of this cylinder through D, meeting the helix

in H. Draw BL, EI at right angles to the plane of the

quadrant, and draw HIL parallel to BD.
Now, by the property of the helix, EI(= DH) is to the

arc CD in a given ratio. Also EF : (arc CD) — a given ratio.

Therefore the ratio EF : EI is given. And since EF, EI are

given in position, FI is given in position. But FI is perpen-

dicular to BC. Therefore FI is in a plane given in position,

and so therefore is 7.

But / is also on a certain surface described by the line LH,
which moves always parallel to the plane ABC, with one

extremity L on BI and the other extremity H on the helix.

Therefore I lies on the intersection of this surface with the

plane through FI.
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Hence I lies on a certain curve. Therefore E, its projection

on the plane ABC, also lies on a curve.

In the particular case where the given ratio of EF to the

arc CD is equal to the ratio of BA to the arc CA, the locus of

E is a quadratrix.

[The surface described by the straight line LH is a plectoid.

The shape of it is perhaps best realized as a continuous spiral

staircase, i.e. a spiral staircase with infinitely small steps.

The quadratrix is thus produced as the orthogonal projection

of the curve in which the plectoid is intersected by a plane

through BC inclined at a given angle to the plane ABC. It is

not difficult to verify the result analytically.]

(2) The second method uses a right cylinder the base of which
is an Archimedean spiral.

Let ABC be a quadrant of a circle, as before, and EF, per-

pendicular at F to BC, a straight

line of such length that EF is

to the arc DC as AB is to the

arc ADC.
Let a point on AB move uni-

formly from A to B while, in the

same time, AB itself revolves

uniformly about B from the position BA to the position BC.
The point thus describes the spiral AGB. If the spiral cuts

BD in G,

BA:BG = (arc ADC) : (arc DC),

or BG : (arc DC) = BA : (arc ADC).

Therefore BG = EF.
Draw GK at right angles to the plane ABC and equal to BG.

Then GK, and therefore K, lies on a right cylinder with the

spiral as base.

But BK also lies on a conical surface with vertex B such that

its generators all make an angle of \ir with the plane ABC.
Consequently K lies on the intersection of two surfaces,

and therefore on a curve.

Through K draw LKI parallel to BD, and let BL, El be at

right angles to the plane ABC.
Then LKI, moving always parallel to the plane ABC, with

one extremity on BL and passing through K on a certain
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curve, describes a certain plectoid, which therefore contains the
point /.

Also IE = EF, IF is perpendicular to BC, and hence IF, and
therefore I, lies on a fixed plane through BC inclined to ABC
at an angle of \tt.

Therefore I, lying on the intersection of the plectoid and the

said plane, lies on a certain curve. So therefore does the

projection of I on ABC, i.e. the point E.

The locus of E is clearly the quadratrix.

[This result can also be verified analytically.]

(8) Digression: a spiral on a sphere.

Prop. 30 (chap. 35) is a digression on the subject of a certain

spiral described on a sphere, suggested by the discussion of

a spiral in a plane.

Take a hemisphere bounded by the great circle KLM,
with H as pole. Suppose that the quadrant of a great circle

HNK revolves uniformly about the radius HO so that K
describes the circle KIM and returns to its original position

at K, and suppose that a point moves uniformly at the same

time from H to K at such speed that the point arrives at K
at the same time that UK resumes its original position. The
point will thus describe a spiral on the surface of the sphere

between the points H and K as shown in the figure.

Pappus then sets himself to prove that the portion of the

surface of the sphere cut off towards the pole between the

spiral and the arc HNK is to the surface of the hemisphere in
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a certain ratio shown in the second figure where ABC is

a quadrant of a circle equal to a great circle in the sphere,

namely the ratio of the segment ABC to the sector I)ABC.

Draw the tangent CF to the quadrant at C. With C as

centre and radius CA draw the circle AEF meeting CF in F.

Then the sector CAF is equal to the sector ADC (since

CA 2 = 2AD2
, while AACF= \LADC).

It is required, therefore, to prove that, if $ be the area cut

off by the spiral as above described,

S : (surface of hemisphere) = (segmt. ABC) : (sector CAF).

Let KL be a (small) fraction, say I /nth., of the circum-

ference of the circle KLM, and let HPL be the quadrant of the

great circle through H, L meeting the spiral in F. Then, by
the property of the spiral,

(arc HP) : (arc HL) = (arc KL) : (circumf . of KLM)

= 1 :n.

Let the small circle NPQ passing through P be described

about the pole H.

Next let FE be the same fraction, \/nth, of the arc FA
that KL is of the circumference of the circle KLM, and join EC
meeting the arc ABC in B. With C as centre and CB as

radius describe the arc BG meeting CF in G.

Then the arc CB is the same fraction, 1 /nth, of the arc

CBA that the arc FE is of FA (for it is easily seen that

LFCE = \LBDC, while Z FCA = \L CDA). Therefore, since

(arc CBA) = (arc HPL), (arc CB) = (arc HP), and chord CB
= chord HP.



384 PAPPUS OF ALEXANDRIA

Now (sector HPN on sphere) : (sector HKL on sphere)

= (chord i/P) 2
: (chord HL) 2

(a consequence of Archimedes, On Sphere and Cylinder, I. 42).

And HP2
: HL2 = G'52

: CA 2

= GB2
: CE2

.

Therefore

(sector HPN) : (sector HKL) = (sector C56?) : (sector CEF).

Similarly, if the arc LU be taken equal to the arc KL and

the great circle through H, 1/ cuts the spiral in P', and a small

circle described about H and through Pf meets the arc HPL
in p ; and if likewise *the arc BB' is made equal to the arc BC,

and CB' is produced to meet AF in E', while again a circular

arc with G as centre and CB' as radius meets CE in b,

(sector HP'p on sphere) : (sector HLU on sphere)

= (sector CB'b) : (sector CE'E).

And so on.

Ultimately then we shall get a figure consisting of sectors

on the sphere circumscribed about the area $ of the spiral and

a figure consisting of sectors of circles circumscribed about the

segment GBA ; and in like manner we shall have inscribed

figures in each case similarly made up.

The method of exhaustion will then give

8: (surface of hemisphere) = (segmt. ABC) : (sector CAF)

= (segmt. ABC) : (sector DAG).

[We may, as an illustration, give the analytical equivalent

of this proposition. If p, go be the spherical coordinates of P
with reference to H as pole and the arc HNK as polar axis,

the equation of Pappus's curve is obviously co = 4 p.

If now the radius of the sphere is taken as unity, we have as

the element of area

dA — doo{\ — cosp) — 4dp (1 — cosp).

r>h

Therefore A = 4dp (1 — cosp) = 27T — 4.
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Therefore

A 5TT—

]

(surface of hemisphere) 2 it \tt

(segment ABC)
- (sector I)ABC)

The second part of the last section of Book IV (chaps. 36-41,

pp. 270-302) is mainly concerned with the problem of tri-

secting any given angle or dividing it into parts in any given

ratio. Pappus begins with another account of the distinction

between plane, solid and linear problems (cf. Book III, chaps.

20-2) according as they require for their solution (1) the

straight line and circle only, (2) conies or their equivalent,

(3) higher curves still, 'which have a more complicated and

forced (or unnatural) origin, being produced from more

irregular surfaces and involved motions. Such are the curves

which are discovered in the so-called loci on surfaces, as

well as others more complicated still and many in number
discovered by Demetrius of Alexandria in his Linear con-

siderations and by Philon of Tyana by means of the inter-

lacing of plectdids and other surfaces of all sorts, all of which

curves possess many remarkable properties peculiar to them.

Some of these curves have been thought bv the more recent

writers to be worthy of considerable discussion ; one of them is

that which also received from Menelaus the name of the

"paradoxical curve. Others of the same class are spirals,

quadratrices, cochloids and cissoids.' He adds the often-quoted

reflection on the error committed by geometers when they

solve a problem by means of an ' inappropriate class ' (of

curve or its equivalent), illustrating this by the use in

Apollonius, Book V, of a rectangular hyperbola for finding the

feet of normals to a "parabola passing through one point

(where a circle would serve the purpose), and by the assump-

tion by Archimedes of a solid vevcri? in his book On Spirals

(see above, pp. 65-8).

Trisection (or division in any ratio) of any angle.

The method of trisecting any angle based on a certain vevcris

is next described, with the solution of the vevo-is itself by
1523 2 C C
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means of a hyperbola which has to be constructed from certain

data, namely the asymptotes and a certain point through

which the curve must pass (this easy construction is given in

Prop. 33, chap. 41-2). Then the problem is directly solved

(chaps. 43, 44) by means of a hyperbola in two ways prac-

tically equivalent, the hyperbola being determined in the one

case by the ordinary Apollonian property, but in the other by
means of the focus-directrix property. Solutions follow of

the problem of dividing any angle in a given ratio by means

(1) of the quadratrix, (2) of the spiral of Archimedes (chaps.

45, 46). All these solutions have been sufficiently described

above (vol. i, pp. 235-7, 241-3, 225-7).

Some problems follow (chaps. 47-51) depending on these

results, namely those of constructing an isosceles triangle in

which either of the base angles has a given ratio to the vertical

angle (Prop. 37), inscribing in a circle a regular polygon of

any number of sides (Prop. 38), drawing a circle the circum-

ference of which shall be equal to a given straight line (Prop.

39), constructing on a given straight line AB a segment of

a circle such that the arc of the segment may have a given

ratio to the base (Prop. 40), and constructing an angle incom-

mensurable with a given angle (Prop. 41).

Section (5). Solution of the vevo-Ls of Archimedes, ' On Spirals',

Prop. 8, by means of conies.

Book IV concludes with the solution of the v everis which,

according to Pappus, Archimedes unnecessarily assumed in

On Spirals, Prop. 8. Archimedes's assumption is this. Given

a circle, a chord (BC) in it less than the diameter, and a point

A on the circle the perpendicular from which to BC cuts BO
in a point D such that BD > DO and meets the circle again

in E, it is possible to draw through A a straight line ARP
cutting BC in R and the circle in P in such a way that RP
shall be equal to DE (or, in the phraseology of vevo-eis, to

place between the straight line BC and the circumference

of the circle a straight line equal to DE and verging

towards A).

Pappus makes the problem rather more general by not

requiring PR to be equal to DE, but making it of any given
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length (consistent with a real solution). The problem is best

exhibited by means of analytical geometry.

If BD = a, DC = b, AD = c (so that DE = ab/c), we have

to find the point R on BC such that AR produced solves the

problem by making PR equal to k, say.

Let DR = x. Then, since BR.RC = PR.RA, we have

(a- x) (b+ x) = k V(c2 + x2
).

An obvious expedient is to put y for */(c
2 + x2

), when
we have

(a-x)(b + x) = ky, (1)

and y
2 = c

2 + x2
. (2)

These equations represent a parabola and a hyperbola

respectively, and Pappus does in fact solve the problem by

means of the intersection of a parabola and a hyperbola ; one

of his preliminary lemmas is, however, again, a little more

general. In the above figure y is represented by RQ.

The first lemma of Pappus (Prop. 42, p. 298) states that, if

from a given point A any straight line be drawn meeting

a straight line BC given in position in R, and if RQ be drawn
at right angles to BC and of length bearing a given ratio

to AR, the locus of Q is a hyperbola.

For draw'AD perpendicular to BC and produce it to A'

so that

QR:RA = A fD:DA = the given ratio.

cc2
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Measure LA" along LA equal to LA'.

Then, if QN be perpendicular to AL,

{AR2-AL2):(QR2 -A'L2
) = (const.),

that is, QN2
: A'N. A"N = (const.),

and the locus of Q is a hyperbola.

The equation of the hyperbola is clearly

x2 = /x(y2 -c2
),

where fi is a constant. In the particular case taken by

Archimedes QR = RA, or /z = 1, and the hyperbola becomes

the rectangular hyperbola (2) above.

The second lemma (Prop. 43, p. 300) proves that, if BC is

given in length, and Q is such a point that, when QR is drawn
perpendicular to BC, BR . RC = k . QR, where k is a given

length, the locus of Q is a parabola.

Let be the middle point of BC, and let OK be drawn at

right angles to BC and of length such that

0C2 = k.K0.

Let QN' be drawn perpendicular to OK.

Then QN' 2 = OR2

= 0C2-BR.RC
= k . (KO - QR)

}
by hypothesis,

= k . KN'.

Therefore the locus of Q is a parabola.

The equation of the parabola referred to LB, LE as axes of

x and y is obviously

which easity reduces to

(a— x) (b + x) = ley, as above (1).

In Archimedes's particular case k = ab/c.

To solve the problem then we have only to draw the para-

bola and hyperbola in question, and their intersection then

gives Q, whence R, and therefore ARP, is determined.
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Book V. Preface on the Sagacity of Bees.

It is characteristic of the great Greek mathematicians that,

whenever they were free from the restraint of the technical

language of mathematics, as when for instance they had occa-

sion to write a preface, they were able to write in language of

the highest literary quality, comparable with that of the

philosophers, historians, and poets. We have only to recall

the introductions to Archimedes's treatises and the prefaces

to the different Books of Apollonius's Conies, Heron, though

severely practical, is no exception when he has any general

explanation, historical or other, to give. We have now to

note a like case in Pappus, namely the preface to Book V of

the Collection. The editor, Hultsch, draws attention to the

elegance and purity of the language and the careful writing

;

the latter is illustrated by the studied avoidance of hiatus. 1

The subject is one which a writer of taste and imagination

would naturally find attractive, namely the practical intelli-

gence shown by bees in selecting the hexagonal form for the

cells in the honeycomb. Pappus does not disappoint us ; the

passage is as attractive as the subject, and deserves to be

reproduced.

1 It is of course to men that God has given the best and
most perfect notion of wisdom in general and of mathematical
science in particular, but a partial share in these things he
allotted to some of the unreasoning animals as well. To men,
as being endowed with reason, he vouchsafed that they should
do everything in the light of reason and demonstration, but to

the other animals, while denying them reason, he granted
that each of them should, by virtue of a certain natural

instinct, obtain just so much as is needful to support life.

This instinct may be observed to exist in very many other

species of living creatures, but most of all in bees. In the first

place their orderliness and their submission to the queens who
rule in their state are truly admirable, but much more admirable
still is their emulation, the cleanliness they observe in the

gathering of honey, and the forethought and housewifely care

they devote to its custody. Presumably because they know
themselves to be entrusted with the task of bringing from
the gods to the accomplished portion of mankind a share of

1 Pappus, vol. iii, p. 1233.
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ambrosia in this form, they do not think it proper to pour it

carelessly on ground or wood or any other ugly and irregular

material ; but, first collecting the sweets of the most beautiful

flowers which grow on the earth, they make from them, for

the reception of the honey, the vessels which we call honey-
combs, (with cells) all equal, similar and contiguous to one
another, and hexagonal in form. And that they have con-

trived this by virtue of a certain geometrical forethought we
may infer in this way. They would necessarily think that

the figures must be such as to be contiguous to one another,

that is to say, to have their sides common, in order that no
foreign matter could enter the interstices between them and
so defile the purity of their produce. Now only three recti-

lineal figures would satisfy the condition, I mean regular

figures which are equilateral and equiangular; for the bees

would have none of the figures which are not uniform. . . .

There being then three figures capable by themselves of

exactly filling up the space about the same point, the bees by
reason of their instinctive wisdom chose for the construction

of the honeycomb the figure which has the most angles,

because they conceived that it would contain more honey than
either of the two others.

' Bees, then, know just this fact which is of service to them-
selves, that the hexagon is greater than the square and the

triangle and will hold more honey for the same expenditure of

material used in constructing the different figures. We, how-
ever, claiming as we do a greater share in wisdom than bees,

will investigate a problem of still wider extent, namely that,

of all equilateral and equiangular plane figures having an
equal perimeter, that which has the greater number of angles

is always greater, and the greatest plane figure of all those

which have a perimeter equal to that of the polygons is the

circle.'

Book V then is devoted to what we may call isoperimetry,

including in the term not only the comparison of the areas of

different plane figures with the same perimeter, but that of the

contents of different solid figures with equal surfaces.

Section (1). Isoperimetry after Zenodorus.

The first section of the Book relating to plane figures

(chaps. 1-10, pp. 308-34) evidently followed very closely

the exposition of Zenodorus nepl lo-oiitTpoav (Tyj\\iaT(av (see

pp. 207-13, above) ; but before passing to solid figures Pappus

inserts the proposition that of all circular segments having
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the same circumference the semicircle is the greatest, with some

preliminary lemmas which deserve notice (chaps. 15, 16).

(1) ABC is a triangle right-angled at B. With C as centre

and radius CA describe the arc

AD cutting CB produced in D.

To prove that (R denoting a right

angle)

(sector CAD) : (area ABD)

> R:ABCA.

Draw AF at right angles to CA meeting CD produced in F,

and draw BH perpendicular to AF. With A as centre and

AB as radius describe the arc QBE.

Now (area EBF) : (area EBH) > (area EBF) : (sector ABE),

and, componendo, AFBH: (EBH) > AABF: (ABE).

But (by an easy lemma which has just preceded)

AFBH: (EBH) = AABF: (ABD),

whence AABF: (ABD) > AABF: (ABE),

and (ABE) > (ABD).

Therefore (ABE) : (ABG) > (ABD) : (ABG)

> (ABD): A ABC, a fortiori.

Therefore Z BAF: Z BAC > (ABD) : AABC,

whence, inversely, A ABC: (ABD) > Z BAC: L BAF.

and, componendo, (sector ACD) : (ABD) > R : Z BCA.

[If ol be the circular measure of /.BCA, this gives (if AC=b)

^ab2 :(^ocb2— -| sin a cos a . 62
) >^7r:a,

or 2a : (2a— sin 2a) > 7r :2a;

that is, 6/(0 -sin0) > n/O, where < < w.]

(2) ABC is again a triangle right-angled at B. With C as

centre and CA as radius draw a circle AD meeting BC pro-

duced in D. To prove that

(sector CAD) : (area ABD) > R : lACD.
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Draw AE at right angles to AC. With A as centre and
AC as radius describe the circle FCE meeting AB produced
in i^and AE in E.

Then, since lACD > ICAE, (sector AGD) > (sector AGE).

Therefore (AGD) : AABC > (ACE) : AABG

> (ACE) : (ACF), a fortiori,

> LEAG-.LCAB.

Inversely,

AABC: (AGD) < I CAB: I EAC,

and, componendo,

(ABD) : (ACD) < Z EAB : Z EAC

Inversely, (ACD) : (ABD) > Z EAC: L EAB

> R:IACD.

We come now to the application of these lemmas to the

proposition comparing the area of a semicircle with that of

other segments of equal circumference (chaps. 17, 18).

A semicircle is the greatest of all segments of circles which

have the same circumference.

Let ABC be a semicircle with centre G, and DEF another

segment of a circle such that the circumference DEF is equal

to the circumference ABC. I say that the area of ABC is

greater than the area of DEF.
Let H be the centre of the circle DEF. Draw EHK, BG at

right angles to DF, AC respectively. Join DH, and draw

LHM parallel to DF.
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Then LH:AG = (arc LE) : (arc AB)

= (arc LE): (axe DE)

= (sector £#i?) : (sector Di/#).

Also £# 2
: 4 G2 = (sector LHE) : (sector A GB).

Therefore the sector LHE is to the sector AGB in the

ratio duplicate of that which the sector LHE has to the

sector DUE.
Therefore

(sector LHE) : (sector DHE) = (sector BEE) : (sector AGB).

Now (1) in the case of the segment less than a semicircle

and (2) in the case of the segment greater than a semicircle

(sector EDH) : (EDK) > R : L DHE,

by the lemmas (1) and (2) respectively.

That is,

(sector EDH) : (EDK) > L LHE: Z DHE

> (sector LHE) : (sector DHE)

> (sector EDH) : (sector AGB),

from above.

Therefore the half segment EDK is less than the half

semicircle AGB, whence the semicircle ABC is greater than

the segment DEF.
We have already described the content of Zenodorus's

treatise (pp. 207-13, above) to which, so far as plane figures

are concerned, Pappus added nothing except the above pro-

position relating to segments of circles.

Section (2). Comparison of volumes of solids having their

surfaces equal. Case of the sphere.

The portion of Book V dealing with solid figures begins

(p. 350. -20) with the statement that the philosophers who
considered that the creator gave the universe the form of a

sphere because that was the most beautiful of all shapes also

asserted that the sphere is the greatest of all solid figures
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which have their surfaces equal ; this, however, they had not

proved, nor could it be proved without a long investigation.

Pappus himself does not attempt to prove that the sphere is

greater than all solids with the same surface, but only that

the sphere is greater than any of the five regular solids having

the same surface (chap. 19) and also greater than either a cone

or a cylinder of equal surface (chap. 20).

Section (3). Digression on the semi-regular solids

of Archimedes.

He begins (chap. 19) with an account of the thirteen semi-

regular solids discovered by Archimedes, which are contained

by polygons all equilateral and all equiangular but not all

similar (see pp. 98-101, above), and he shows how to determine

the number of solid angles and the number of edges which

they have respectively ; he then gives them the go-by for his

present purpose because they are not completely regular ; still

less does he compare the sphere with any irregular solid

having an equal surface.

The sphere is greater than any of the regular solids which

has its surface equal to that of the sphere.

The proof that the sphere is greater than any of the regular

solids with surface equal to that of the sphere is the same as

that given by Zenodorus. Let P be any one of the regular solids,

S the sphere with surface equal to that of P. To prove that

S>P. Inscribe in the solid a sphere s, and suppose that r is its

radius. Then the surface of P is greater than the surface of s,

and accordingly, if R is the radius of S, R > r. But the

volume of S is equal to the cone with base equal to the surface

of S, and therefore of P, and height equal to R ;
and the volume

of P is equal to the cone with base equal to the surface of P
and height equal to r. Therefore, since jR > r, volume of S >
volume of P.

Section (4). Proppositions on the lines of Archimedes,
( On the Sphere and Cylinder'.

For the fact that the volume of a sphere is equal to the cone

with base equal to the surface, and height equal to the radius,
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of the sphere, Pappus quotes Archimedes, On the Sphere and
Cylinder, but thinks proper to add a series of propositions

(chaps. 20-43, pp. 362-410) on much the same lines as those of

Archimedes and leading to the same results as Archimedes

obtains for the surface of a segment of a sphere and of the whole

sphere (Prop. 28), and for the volume of a sphere (Prop. 35).

Prop. 36 (chap. 42) shows how to divide a sphere into two
segments such that their surfaces are in a given ratio and
Prop. 37 (chap. 43) proves that the volume as well as the

surface of the cylinder circumscribing a sphere is lj times

that of the sphere itself.

Among the lemmatic propositions in this section of the

Book Props. 21, 22 may be mentioned. Prop. 21 proves that,

if C, E be two points on the tangent at if to a semicircle such

that CH = HE, and if CD, EF be drawn perpendicular to the

diameter AB, then (CD + EF) CE = AB.DF; Prop. 22 proves

a like result where C, E are points on the semicircle, CD, EF
are as before perpendicular to AB, and EH is the chord of

the circle subtending the arc which with %CE makes up a semi-

circle ; in this case (CD + EF)CE = EH . DF. Both results

are easily seen to be the equivalent of the trigonometrical

formula

sin (x + y) + sin (x— y) = 2 sin x cos y,

or, if certain different angles be taken as x, y,

sin x + sin y .
., ,= cot h (x— y).

cost/ — cosa;

Section (5). Of regular solids with surfaces equal, that is

greater which has more faces.

Returning to the main problem of the Book, Pappus shows

that, of the five regular solid figures assumed to have their

surfaces equal, that is greater which has the more faces, so

that the pyramid, the cube, the octahedron, the dodecahedron

and the icosahedron of equal surface are, as regards solid

content, in ascending order of magnitude (Props. 38-56).

Pappus indicates (p. 410. 27) that 'some of the ancients' had

worked out the proofs of these propositions by the analytical

method; for himself, he will give a method of his own by
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synthetical deduction, for which he claims that it is clearer

and shorter. We have first propositions (with auxiliary

lemmas) about the perpendiculars from the centre of the

circumscribing sphere to a face of (a) the octahedron, (b) the

icosahedron (Props. 39, 43), then the proposition that, if a

dodecahedron and an icosahedron be inscribed in the same

sphere, the same small circle in the sphere circumscribes both

the pentagon of the dodecahedron and the triangle of the

icosahedron (Prop. 48) ; this last is the proposition proved by
Hypsicles in the so-called ' Book XIV of Euclid ', Prop. 2, and

Pappus gives two methods of proof, the second of which (chap.

56) corresponds to that of Hypsicles. Prop. 49 proves that

twelve of the regular pentagons inscribed in a circle are together

greater than twenty of the equilateral triangles inscribed in

the same circle. The final propositions proving that the cube

is greater than the pyramid with the same surface, the octa-

hedron greater than the cube, and so on, are Props. 52-6

(chaps. 60-4). Of Pappus's auxiliary propositions, Prop. 41

is practically contained in Hypsicles's Prop. 1, and Prop. 44

in Hypsicles's last lemma ; but otherwise the exposition is

different.

Book VI.

On the contents of Book VI we can be brief. It is mainly

astronomical, dealing with the treatises included in the so-

called Little Astronomy, that is, the smaller astronomical

treatises which were studied as an introduction to the great

Syntaxis of Ptolemy. The preface says that many of those

who taught the Treasury of Astronomy, through a careless

understanding of the propositions, added some things as being

necessary and omitted others as unnecessary. Pappus mentions

at this point an incorrect addition to Theodosius, Sphaerica,

III. 6, an omission from Euclid's Phaenomena, Prop. 2, an

inaccurate representation of Theodosius, On Days and Nights,

Prop. 4, and the omission later of certain other things as

being unnecessary. His object is to put these mistakes

right. Allusions are also found in the Book to Menelaus's

tiphaerica, e.g. the statement (p. 476. 16) that Menelaus in

his Sphaerica called a spherical triangle rpLnXtvpov, three-side.
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The Spkaefica of Theodosius is dealt with at some length

(chaps. 1-26, Props. 1-27), and so are the theorems of

Autolycus On the moving Sphere (chaps. 27-9), Theodosius

On Days and Nights (chaps. 30-6, Props. 29-38), Aristarchus

On the sizes and distances of the Sun and Moon (chaps. 37-40,

including a proposition, Prop. 39 with two lemmas, which is

corrupt at the end and is not really proved), Euclid's Optics

(chaps. 41-52, Props. 4 2-54), and Euclid's Phaenomena (chaps.

53-60, Props. 55-61).

Problem arising out of Euclid's ' Optics \

There is little in the Book of general mathematical interest

except the following propositions which occur in the section on

Euclid's Op)tics.

Two propositions are fundamental in solid geometry,

namely

:

(a) If from a point A above a plane AB be drawn perpen-

dicular to the plane, and if from B a straight line BD be

drawn perpendicular to any straight line EF in the plane,

then will AD also be perpendicular to EF (Prop. 43).

(b) If from a point A above a plane AB be drawn to the plane

but not at right angles to it, and AM be drawn perpendicular

to the plane (i.e. if BM be the orthogonal projection of BA on

the plane), the angle ABM is the least of all the angles which

AB makes with any straight lines through B, as BP, in the

plane ; the angle ABP increases as BP moves away from BM
on either side ; and, given any straight line BP making
a certain angle with BA, only one other straight line in the

plane will make the same angle with BA, namely a straight

line BPr on the other side of BM making the same angle with

it that BP does (Prop. 44).

These are the first of a series of lemmas leading up to the

main problem, the investigation of the apparent form of

a circle as seen from a point outside its plane. In Prop. 50

(= Euclid, Optics, 34) Pappus proves the fact that all the

diameters of the circle will appear equal if the straight line

drawn from the point representing the eye to the centre of

the circle is either (a) at right angles to the plane of the circle

or (b), if not at right angles to the plane of the circle, is equal
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in length to the radius of the circle. In all other cases

(Prop. 51 = Eucl. Ojrtics, 35) the diameters will appear unequal.

Pappus's other propositions carry farther Euclid's remark

that the circle seen under these conditions will appear

deformed or distorted (irapecnracrixtvos), proving (Prop. 53,

pp. 588-92) that the apparent form will be an ellipse with its

centre not, ' as some think ', at the centre of the circle but

at another point in it, determined in this way. Given a circle

ABDE with centre 0, let the eye be at a point F above the

plane of the circle such that FO is neither perpendicular

to that plane nor equal to the radius of the circle. Draw ^67

perpendicular to the plane of the circle and let ADG be the

diameter through G. Join AF, DF, and bisect the angle AFD
by the straight line FC meeting AD in G. Through C draw

BE perpendicular to AD, and let the tangents at B, E meet

AG produced in K. Then Pappus proves that C (not 0) is the

centre of the apparent ellipse, that AD, BE are its major and

minor axes respectively, that the ordinates to AD are parallel

to BE both really and apparently, and that the ordinates to

BE will pass through K but will appear to be parallel to AD.
Thus in the figure, G being the centre of the apparent ellipse,

it is proved that, if LGM is any straight line through C, LG is

apparently equal to CM (it is practically assumed—a proposi-

tion proved later in Book VII, Prop. 156—that, if LK meet

the circle again in P, and if PM be drawn perpendicular to

AD to meet the circle again in M, LM passes through G).
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The test of apparent equality is of course that the two straight

lines should subtend equal angles at F.

The main points in the proof are these. The plane through

CF, CK is perpendicular to the planes BFE, PFM and LFR
;

hence CF is perpendicular to BE, QF to PM and HF to LR,

whence EC and CE subtend equal angles at F : so do LH, HR,
and PQ, QM.

Since FC bisects the angle AFD, and AC:CD = AK:KD
(by the polar property), Z CFK is a right angle. And CF is

the intersection of two planes at right angles, namely AFK
and BFE, in the former of which FK lies; therefore KF is

perpendicular to the plane BFE, and therefore to FN. Since

therefore (by the polar property) LN'

: NP = LK : KP, it

follows that the angle LFP is bisected by FN; hence LN, NP
are apparently equal.

Again LC:CM = LN:NP = LF:FP = LF:FM.

Therefore the angles LFC, CFM are equal, and LC, CM
are apparently equal.

Lastly LR:PM=LK:KP=LN:NP=LF:FP] therefore

the isosceles triangles FLR, FPM are equiangular; there-

fore the angles PFM, LFR, and consequently PFQ, LFH, are

equal. Hence LP, RM will appear to be parallel to AD.
We have, based on this proposition, an easy method of

solving Pappus's final problem (Prop. 54). ' Given a circle

ABBE and any point within it, to find outside the plane of

the circle a point from which the circle will have the appear-

ance of an ellipse with centre C!

We have only to produce the diameter AD through C to the

pole K of the chord BE perpendicular to AD and then, in

the plane through AK perpendicular to the plane of the circle,

to describe a semicircle on CK as diameter. Any point F on

this semicircle satisfies the condition.

Book VII. On the 'Treasury of Analysis'.

Book VII is of much greater importance, since it gives an

account of the books forming what was called the Treasury of

Analysis (dvaXvouevos 7-677*09) and, as regards those of the books

which are now lost, Pappus's account, with the hints derivable

from the large collection of lemmas supplied by him to each
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book, practically constitutes our only source of information.

The Book begins (p. 634) with a definition of analysis and
synthesis which, as being the most elaborate Greek utterance

on the subject, deserves to be quoted in full.

' The so-called 'AvaXvofievo? is, to put it shortly, a special

body of doctrine provided for the use of those who, after

finishing the ordinary Elements, are desirous of acquiring the

power of solving problems which may be set them involving

(the construction of) lines, and it is useful for this alone. It is

the work of three men, Euclid the author of the Elements,

Apollonius of Perga and Aristaeus the elder, and proceeds by
way of analysis and synthesis.'

Definition of Analysis and Synthesis.

1 Analysis, then, takes that which is sought as if it were
admitted and passes from it through its successive conse-

quences to something which is admitted as the result of

synthesis : for in analysis we assume that which is sought
as if it were already done (ytyovos), and we inquire what it is

from which this results, and again what is the antecedent

cause of the latter, and so on, until by so retracing our steps

we come upon something already known or belonging to the

class of first principles, and such a method we call analysis

as being solution backwards {avdirakLv Xvcriv).
i But in synthesis, reversing the process, we take as already

done that which was last arrived at in the analysis and, by
arranging in their natural order as consequences what before

were antecedents, and successively connecting them one with
another, we arrive finally at the construction of what was
sought ; and this we call synthesis.

' Now analysis is of two kinds, the one directed to searching

for the truth and called theoretical, the other directed to

finding what we are told to find and called problematical.

(1) In the theoretical kind we assume what is sought as if

it were existent and true, after which we pass through its

successive consequences, as if they too were true and established

by virtue of our hypothesis, to something admitted : then

(a), if that something admitted is true, that which is sought

will also be true and the proof will correspond in the reverse

order to the analysis, but (b), if we come upon something

admittedly false, that which is sought will also be false.

(2) In the problematical kind we assume that which is pro-

pounded as if it were known, after which we pass through its
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successive consequences, taking them as true, up to something
admitted : if then (a) what is admitted is possible and obtain-

able, that is, what mathematicians call given, what was
originally proposed will also be possible, and the proof will

again correspond in the reverse order to the analysis, but if (6)

we come upon something admittedly impossible, the problem
will also be impossible.'

This statement could hardly be improved upon except that

it ought to be added that each step in the chain of inference

in the analysis must be unconditionally convertible ; that is,

when in the analysis we say that, if A is true, B is true,

we must be sure that each statement is a necessary conse-

quence' of the other, so that the truth of A equally follows

from the truth of B. This, however, is almost implied by
Pappus when he says that we inquire, not what it is (namely

B) which follows from A, but what it is (B) from which A
follows, and so on.

List of works in the ' Treasury of Analysis '.

Pappus adds a list, in order, of the books forming the

'AvaXvofiev09, namely :

' Euclid's Data, one Book, Apollonius's Cutting-off of a ratio,

two Books, Cutting-off of an area, two Books, Determinate
Section, two Books, Contacts, two Books, Euclid's Porlsms,
three Books, Apollonius's Inclinations or Vergings (vtvoeis),

two Books, the same author's Plane Loci, two Books, and
Conies, eight Books, Aristaeus's Solid Loci, five Books, Euclid's

Surface-Loci, two Books, Eratosthenes's On means, two Books.

There are in all thirty-three Books, the contents of which up
to the Conies of Apollonius I have set out for your considera-

tion, including not only the number of the propositions, the

cliorismi and the cases dealt with in each Book, but also the

lemmas which are required; indeed I have not, to the best

of my belief, omitted any question arising in the study of the

Books in question.'

Description of the treatises.

Then follows the short description of the contents of the

various Books down to Apollonius's Conies; no account is

given of Aristaeus's Solid Loci, Euclid's Surface-Loci and
1623.2 D d
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Eratosthenes's On means, nor are there any lemmas to these

works except two on the Surface-Loci at the end of the Book.

The contents of the various works, including those of the

lost treatises so far as they can be gathered from Pappus,

have been described in the chapters devoted to their authors,

and need not be further referred to here, except for an

addendum to the account of Apollonius's Conies which is

remarkable. Pappus has been speaking of the ' locus with

respect to three or four lines ' (which is a conic), and proceeds

to say (p. 678. 26) that we may in like manner have loci with

reference to five or six or even more lines ; these had not up

to his time become generally known, though the synthesis

of one of them, not by an}' means the most obvious, had been

worked out and its utility shown. Suppose that there are

five or six lines, and that p1 , p2 , p3 , £>4 , pb
or pY , _p2 ,pz , p± , p5 , p6

are the lengths of straight lines drawn from a point to meet

the five or six at given angles, then, if in the first case

V\Vzlh = ^V±lJ5a (where X is a constant ratio and a a given

length), and in the second case 2hP2.Pz — ^P±PsPq, the locus

of the point is in each case a certain curve given in position.

The relation could not be expressed in the same form if

there were more lines than six, because there are only three

dimensions in geometry, although certain recent writers had

allowed themselves to speak of a rectangle multiplied by

a square or a rectangle without giving any intelligible idea of

what they meant by such a thing (is Pappus here alluding to

Heron's proof of the formula for the area of a triangle in

terms of its sides given on pp. 322-3, above ?). But the system

of compounded ratios enables it to be expressed for any

number of lines thus, ^.-O -U*
( r '-^ ) = A. Pappus

Lh Ih a v Pn /

proceeds in language not very clear (p. 680. 30) ; but the gist

seems to be that the investigation of these curves had not

attracted men of light and leading, as, for instance, the old

geometers and the best writers. Yet there were other impor-

tant discoveries still remaining to be made. For himself, he

noticed that every one in his day was occupied with the elements,

the first principles and the natural origin of the subject-

matter of investigation ; ashamed to pursue such topics, he had

himself proved propositions of much more importance and
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utility. In justification of this statement and ' in order that

he may not appear empty-handed when leaving the subject ',

he will present his readers with the following.

(Anticipation of Guldins Theorem.)

The enunciations are not very clearly worded, but there

is no doubt as to the sense.

' Figures generated by a complete revolution of a plane figure
about an axis are in a ratio compounded (1) of the ratio

of the areas of the figures, and (2) of the ratio of the straight

lines similarly drawn to (i.e. drawn to meet at the same angles)

the axes of rotation from the respective centres of gravity.

Figures generated by incomplete revolutions are in the ratio

compounded (1) of the ratio of the areas of the figures and
(2) of the ratio of the arcs described by the centres of gravity

of the respective figures, the latter rcdio being itself compounded
(a) of the ratio of the straight lines similarly drawn {from
the respective centres of gravity to the axes^ of rotation) and
(b) of the ratio of the angles contained (i. e. described) about
the axes of revolution by the extremities of the said straight

lines (i.e. the centres of gravity).'

Here, obviously, we have the essence of the celebrated

theorem commonly attributed to P. Guldin (1577-1643),
1 quantitas rotunda in viam rotationis ducta producit Pote-

statem Rotundam uno grado altiorem Potestate sive Quantitate

Rotata '}

Pappus adds that

f these propositious, which are practically one, include any
number of theorems of all sorts about curves, surfaces, and
solids, all of which are proved at once by one demonstration,
and include propositions both old and new, and in particular

those proved in the twelfth Book of these Elements.
5

Hultsch attributes the whole passage (pp. 680. 30-682. 20)

to an interpolator, I do not know for what reason; but it

seems to me that the propositions are quite beyond what

could be expected from an interpolator, indeed I know of

no Greek mathematician from Pappus's day onward except

Pappus himself who was capable of discovering such a pro-

position.

1 Centrobaryca, Lib. ii, chap, viii, Prop. 3. Viennae 1641.

Dd2
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If the passage is genuine, it seems to indicate, what is not

elsewhere confirmed, that the Collection originally contained,

or was intended to contain, twelve Books.

Lemmas to the different treatises.

After the description of the treatises forming the Treasury

of Analysis come the collections of lemmas given by Pappus

to assist the student of each of the books (except Euclid's

Data) down to Apollonius's Conies, with two isolated lemmas
to the Surface-Loci of Euclid. It is difficult to give any
summary or any general idea of these lemmas, because they

are very numerous, extremely various, and often quite diffi-

cult, requiring first-rate ability and full command of all the

resources of pure geometry. Their number is also greatly

increased by the addition of alternative proofs, often requiring

lemmas of their own, and by the separate formulation of

particular cases where by the use of algebra and conventions

with regard to sign we can make one proposition cover all the

cases. The style is admirably terse, often so condensed as to

make the argument difficult to follow without some little

filling-out; the hand is that of a master throughout. The
only misfortune is that, the books elucidated being lost (except

the Conies and the Cutting-off of a ratio of Apollonius), it is

difficult, often impossible, to see the connexion of the lemmas

with one another and the problems of the book to which they

relate. In the circumstances, all that I can hope to do is to

indicate the types of propositions included in the lemmas and,

by way of illustration, now and then to give a proof where it

is sufficiently out of the common.

(a) Pappus begins with Lemmas to the Sectio rationis and

Seetio spatii of Apollonius (Props. 1-21, pp. 684-704). The

first two show how to divide a straight line in a given ratio,

and how, given the first, second and fourth terms of a pro-

portion between straight lines, to find the third term. The

next section (Props. 3-12 and 16) shows how to manipulate

relations between greater and less ratios by transforming

them, e.g. componendo, convertendo, &c, in the same way
as Euclid transforms equal ratios in Book V ; Prop. 1 6 proves

that, according as a : b > or < c:d, ad > or < be. Props.
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17-20 deal with three straight lines a, b, c in geometrical

progression, showing how to mark on a straight line containing

a, b, c as segments (including the whole among 'segments'),

lengths equal to a + c ± 2 \/(ac) ; the lengths are of course equal

to a + c±2b respectively. These lemmas are preliminary to

the problem (Prop. 21), Given two straight lines AB, BC
(C lying between A and B), to find a point D on BA produced

such that BD:DA = CD : (AB + BC-2 VJbTBC). This is,

of course, equivalent to the quadratic equation (a + x) : x

= (a— c + x):(a + c — 2 Vac), and, after marking off AE along

AD equal to the fourth term of this proportion, Pappus solves

the equation in the usual way by application of areas.

(ft) Lemmas to the ' Determinate Section ' of Apottoniuz.

The next set of Lemmas (Props. 22-64, pp. 704-70) belongs

to the Determinate Section of Apollonius. As we have seen

(pp. 180-1, above), this work seems to have amounted to

a Theory of Involution. Whether the application of certain

of Pappus's lemmas corresponded to the conjecture of Zeuthen

or not, we have at all events in this set of lemmas some

remarkable applications of ' geometrical algebra '. They may
be divided into groups as follows

I. Props. 22, 25, 29.

If in the figure AD . DC = BD . DE, then

BD:DE=AB.BC:AE.EC.

A CPE B—
i » i .

The proofs by proportions are not difficult. Prop. 29 is an

alternative proof by means of Prop. 26 (see below). The
algebraic equivalent may be expressed thus : if ax — by, then

b (a + b)(b + x)

V
" (a + 2/)(« + 2/)

'

II. Props. 30, 32, 34.

If in the same figure AD.DE= BD. DC, then

BD : DC = AB . BE .EC. CA.
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Props. 32, 34 are alternative proofs based on other lemmas
(Props. 31, 33 respectively). The algebraic equivalent may be

stated thus : if ax = by, then - = -
,

"~
•

III. Props. 35, 36.

If AB.BE = GB.BD, then AB : BE = DA.AC-.CE.ED,
and CB:BD = AC .CE:AD.DE, results equivalent to the

following : if ax = by, then

a __ (a--y)Ja-b) b _
(a-b) (b-x)

x " (b-x) (y-x) y
" (a-y)(y-x)'

IV. Props. 23, 24, 31, 57, 58.

A § C E D1 » i »
1 •

If AB = CD, and E is any point in CD,

AC.CD = AE.ED + BE.EC,

and similar formulae hold for other positions of E. If E is

between B and C, AG .CD = AE .ED-BE .EG; and if E
is on AD produced, BE . EG = AE . ED + BD . DC.

V. A small group of propositions relate to a triangle ABC
with two straight lines AD, AE drawn from the vertex A to

points on the base BC in accordance with one or other of the

conditions (a) that the angles BAG, DAE are supplementary,

(b) that the angles BAE, DAG are both right angles or, as we

may add from Book VI, Prop. 12, (c) that the angles BAD,
EAG are equal. The theorems are

:

In case (a) BG . CD : BE . ED = CA 2
: AE2

,

(b) BG . CE :BD.DE= CA 2
: AD2

,

(c) DG.CE:EB.BD = AC 2 :AB2
.
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Two proofs are given of the first theorem. We will give the

first (Prop. 26) because it is a case of theoretical analysis

followed by synthesis. Describe a circle about ABD : produce

EA
}
CA to meet the circle again in F, G, and join BF, FG.

Substituting GC . CA for BC . CD and FE . EA for BE. ED,
we have to inquire whether GC.CA:CA 2 = FE . EA : AE2

,

i.e. whether GC : CA = FE:EA,

i.e. whether GA:AC= FA: AE,

i.e. whether the triangles GAF, CAE are similar or, in other

words, whether GF is parallel to BC.

But GF is parallel to BC, because, the angles BAG, DAE
being supplementary, Z DAE = Z GAB — Z GFB, while at the

same time Z DAE = suppt. of Z FAD = Z FBD.
The synthesis is obvious.

An alternative proof (Prop. 27) dispenses with the circle,

and only requires EKH to be drawn parallel to CA to meet

AB, AD in H, K.

Similarly (Prop. 28) for case (b) it is only necessary to draw
FG through D parallel to AC meeting BA in F and AE
produced in G.

Then, A FAG, Z ADF (= IDAC) being both right angles,

FD.DG = DA 2
.

Therefore CA 2
: AD2 = CA 2

: FD.DG = (CA : FD) . (CA : DG)

= (BC:BD).(CE:DE)

= BC.CE:BD.DE.

In case (c) a circle is circumscribed to ADE cutting AB in F
and AC in G. Then, since Z FAD = Z GAE, the arcs DF, EG
are equal and therefore FG is parallel to DE. The proof is

like that of case (a).
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VI. Props. 37, 38.

If AB:BC = AD2
: DC*, whether AB be greater or less

than AD, then
AB.BC = BD2

.

\E in the figure is a point such that ED = CD.]

A .(E) D C B
i 1 1 *

A C B P (e)

The algebraical equivalent is: If - = .,""
2 , then ac=b2

.

These lemmas are subsidiary to the next (Props. 39, 40),

being used in the first proofs of them.

Props. 39, 40 prove the following :

If ACDEB be a straight line, and if

BA . AE: BD.DE = AC 2
: CD2

,

then AB.BD: AE . ED = BC 2
: CE2

;

if, again, AC.CB-.AE . EB = CD2
: DE 2

,

then EA.AC:CB.BE = AD2
: DB2

.

If AB — a, BC = b, BD = c, BE — d, the algebraic equiva-

lents are the following.

a (a-d) (a-b) 2 ac b2
,

c(c-d) ~ (b-c)2 ' (a-d)(c-d)" (b-df

, .„ (a— b)b (b— c)
2

,. (a— d)(a— b) (a—c) 2

and it t tV-. = 7 fr, j then f-^
' = i

—

^- .

(a— d)d (c — dy bd c
2

VII. Props. 41, 42, 43.

If AD.DC= BD.DE, suppose that in Figures (1) and (2)

(1) O A C D E B

(2) A E D C B•—: 1 1

°

(3) A E B C D
I i < i-i

k = AE+CB, and in Figure (3) h = AE-BC, then

k.AD = BA.AE, k.CD = BC.CE, k.BD = AB.BC,

k.DE=AE.EC.
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The algebraical equivalents for Figures (,1) and (2) re-

spectively may be written (it* a — AD, b = DC, v = BD,

d = DE)

:

If ab — cd, then (a±d + c±b) a— (a + c) (a ± d),

(a±d + c±b) b —
(
c ±b){b + d),

(a±d + c±b) c = (e + a)(c±b) i

(a±d + c±b) d- (a±d)(d + b).

<

Figure (3) gives other varieties of sign. Troubles about

sign can be Avoided by measuring all lengths in one direction

from an origin outside the line. Thus, if A = a, OB = b,

&c, the proposition may be as follows

:

If (d— a) (d— c) = (b — d)(e-d) and k = e— a + b — c,

then Jc(d— a) = (b — a)(e— a), h(d— c) = (b— c)(e— c),

h{b— d) = (b—a) (b— c) and k (e— d) = (e— a) (e— c).

VIII. Props. 45-56.

More generally, if AD . DC = BD.DE and k = AE±BC,
then, if F be any point on the line, we have, according to the

position of F in relation to A, B, C, D, E,

±AF. FC±EF. FB = k.DF.

Algebraically, if 0A = a, OB = b ... OF = x, the equivalent

is: If (d — a)(d— c) = (b— d) (e— d), and k = (e— a) + (b— c),

then (x— a) (x— c) + (x— e) {b— x) = k(x— d).

By making x — a, b, c, e successively in this equation, we
obtain the results of Props. 41-3 above.

IX. Props. 59-64.

In this group Props. 59, 60, 63 are lemmas required for the

remarkable propositions (61, 62, 64) in which Pappus investi-

gates ' singular and minimum ' values of the ratio

AP.PD:BP.PC,

where (A
}
D), (B, C) are point-pairs on a straight line and' P

is another point on the straight line. He finds, not only when
the ratio has the ' singular and minimum (or maximum) ' value,
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but also what the value is, for three different positions of P in

relation to the four given points.

I will give, as an illustration, the first case, on account of its

elegance. It depends on the following Lemma. AEB being

a semicircle on AB as diameter, C, D any two points on AB,
and CE, DF being perpendicular to AB, let EF be joined and

To

(1)

(2)

(3)

C D

produced, and let BG be drawn perpendicular to EG
prove that

CB . BD = BG2
,

AC.DB = FG2
,

AB . BG = EG2
.

Join GG, GD, FB, EB, AF.

(1) Since the angles at G, D are right, F, G, B, D are concyclic.

Similarly E, G, B, C are concyclic.

Therefore

lBGD = IBFD
= I FAB
— Z FEB, in the same segment of the semicircle,

= Z GCB, in the same segment of the circle EGBC.

And the triangles GCB, DGB also have the angle GBG
common ; therefore they are similar, and GB : BG = BG : BD,

or GB . BD = BG 2
.

(2) We have AB . BD = BF2
;

therefore, by subtraction, AC . DB = BF'-BG2 = FG2
.

(3) Similarly AB . BC = BE2
;

therefore, by subtraction, from the same result (1),

AD.BC= BE2-BG 2 = EG2
.

Thus the lemma gives an extremely elegant construction for

squares equal to each of the three rectangles.
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Now suppose (A, D), (B, C) to be two point-pairs on a

straight line, and let P, another point on it, be determined by

the relation

AB.BD:AC.CD = BP2 :CP2
;

then, says Pappus, the ratio AP . PI) : BP . PC is singular and

a minimum, and is equal to

AD2
:

(
VAC . BD- VAB . CD) 2

.

On ii) as diameter draw a circle, and draw BF, CG perpen-

dicular to AD on opposite sides.

Then, by hypothesis, AB.BD:AC.CD = BP2
: CP2

;

therefore BF2
: CG2 = BP2

: CP2
,

or BF:CG = BP:CP,

whence the triangles FBP, GCP are similar and therefore

equiangular, so that FPG is a straight line.

Produce GC to meet the circle in H, join FH, and draw DK
perpendicular to FH produced. Draw the diameter FL and

join LH.
Now, by the lemma, FK 2 = AC . BD, and HK 2^ AB.CD:

therefore FH = FK - HK = V(AC . BD) - V(AB . CD).

Since, in the triangles FHL, PCG, the angles at H, C are

right and Z FLH— L PGC, the triangles are similar, and

GP:PC=FL: FH = AD : FH
= AD: {V(AC.BD)- V(AB.CD)}.

But GP:PC= FP-.PB;

therefore GP 2
: PC 2 = FP . PG : BP . PC

= AP.PD:BP.PC.
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Therefore

AP.PD:BP.PC = AD2
: { V(AC . BD)- V{AB . CD)}*.

The proofs of Props. 62 and 64 are different, the former
being long and involved. The results are

:

Prop. 62. If P is between G and D, and

AD.DB-.AC. CB = DP2
: PC\

then the ratio AP . PB : CP . PD is singular and a minimum
and is equal to { V(AC . BD) + V(AD . BC)

}
2

: DC 2
.

Prop. 64. If P is on AD produced, and

AB.BD: AC \ CD = BP2
: CP2

,

then the ratio AP . PD : BP . PC is singular and a maximum,
and is equal to AD2

: { V{AC . BD) + V{AB . CD)} 2
.

(y) Lemmas on the Nevaeis of Apollonius.

After a few easy propositions (e.g. the equivalent of the

proposition that, if ax + x2 = by + y
2

, then, according as a >
or < b, a + x > or < b + y), Pappus gives (Prop. 70) the

lemma leading to the solution of the vevat? with regard to

the rhombus (see pp. 190-2, above), and after that the solu-

tion by one Heraclitus of the same problem with respect to

a square (Props. 71, 72, pp. 780-4). The problem is, Given a

square ABCD, to draw through B a straight line, meeting CD
in H and AD produced in E, such that HE is equal to a given

length.

The solution depends on a lemma to the effect that, if any

straight line BHE through B meets CD in H and AD pro-

duced in E, and if EF be drawn perpendicular to BE meeting

BC produced in F, then

CF2 = BC2 +HEK
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Draw EG perpendicular to BF.

Then the triangles BCH, EGF are similar and ( since

BC = EG) equal in all respects : therefore EF = BH.

Now BF2 = BE2 + EF 2
,

or BC . BF+ BF . FC = BH . BE+BE . EH+ EF2
.

But, the angles HCF, HEF being right, H, C, F, E are

concyclic, and BC . BF = BH . BE.

Therefore, by subtraction,

BF . FC =BE.EH+ EF2

= BE.EH-\-BH2

= BH.HE+EH2 + BH2

= EB.BH+EH2

= FB.BC +EH2
.

Taking away the common part, BC . OF, we have

CF2 = BC 2 +EH2
.

Now suppose that we have to draw BHE through B in

such a way that HE — k. Since BC, EH are both given, we
have only to determine a length x such that x2 = BC 2 + k2

,

produce BC to F so that CF = x, draw a semicircle on BF as

diameter, produce AD to meet the semicircle in E, and join

BE. BE is thus the straight line required.

Prop. 73 (pp. 784-6) proves that, if D be the middle point

of BC, the base of an isosceles triangle ABC, then BC is the

shortest of all the straight lines through D terminated by

the straight lines A B, AC, and the nearer to BC is shorter than

the more remote.

There follows a considerable collection of lemmas mostly

showing the equality of certain intercepts made on straight

lines through one extremity of the diameter of one of two
semicircles having their diameters in a straight line, either

one including or partly including the other, or wholly ex-

ternal to one another, on the same or opposite sides of the

diameter.
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I need only draw two figures by way of illustration.

In the first figure (Prop. 83), ABG, DEF being the semi-

circles, BEKG is any straight line through C cutting both

;

FG is made equal to AD; AB is joined; GH is drawn per-

pendicular to BK produced. It is required to prove that

BE = KH. (This is obvious when from L, the centre of the

semicircle DEF, LM is drawn perpendicular to BK.) If E, K
coincide in the point M' of the semicircle so that B'GH' is

a tangent, then B'M' = M'Ef
(Props. 83, 84).

In the second figure (Prop. 91) D is the centre of the

semicircle ABG and is also the extremity of the diameter

of the semicircle DEF. If BEGF be any straight line through

F cutting both semicircles, BE = EG. This is clear, since DE
is perpendicular to BG.
The only problem of any difficulty in this section is Prop.

85 (p. 796). Given a semicircle ABC on the diameter AC
and a point D on the diameter, to draw a semicircle passing

through D and having its diameter along DC such that, if

CEB be drawn touching it at E and meeting the semicircle

ABG in B
}
BE shall be equal to AD.
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The problem is reduced to a problem contained in Apollo-

nius's Determinate Section thus.

Suppose the problem solved by the semicircle DEF, BE
being equal to AD. Join E to the centre G of the semicircle

F c

DEF. Produce DA to H, making HA equal to AD. Let K
be the middle point of DC.

Since the triangles ABC, GEC are similar,

AG 2 :GC 2 = BE2
: EC"

= AD2
: EC 2

, by hypothesis,

= AD*:GC--DG2 (since DG = GE)

= AG2-AD2 :DG2

= HG.DG: DG2

= HG : DG.

Therefore

HG:DG = AD*:GC 2-DG2

= AD2 :2DC.GK.

Take a straight line L such that AD2 = L . 2 DC;

therefore HG:DG = L: GK,

or HG.GK = L. DG.

Therefore, given the two straight lines HD, DK (or the

three points H, D, K on a straight line), we have to find

a point G between D and K such that

HG.GK = L. DG,

which is the second eiritagma of the third Problem in the

Determinate Section of Apollonius, and therefore may be

taken as solved. (The problem is the equivalent of the
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solution of a certain quadratic equation.) Pappus observes

that the problem is always possible (requires no Siopta-fios),

and proves that it has only one solution.

(8) Lemmas on the treatise ' On contacts' by Apollonius.

These lemmas are all pretty obvious except two, which are

important, one belonging to Book I of the treatise, and the other

to Book II. The two lemmas in question have already been set

out a propos of the treatise of Apollonius (see pp. 182-5, above).

As, however, there are several cases of the first (Props. 105,

107, 108, 109), one case (Prop. 108, pp. 836-8), different from

that before given, may be put down here : Given a circle and
two points D, E within it, to draiv straight lines through D, E
to a rpoint A on the circumference in such a way that, if they

meet the circle again in B, C, BC shall be parallel to DE.
We proceed by analysis. Suppose the problem solved and

DA, EA drawn ('inflected') to A in such a way that, if AD,
AE meet the circle again in B, C,

BC is parallel to DE.
Draw the tangent at B meeting

ED produced in F.

Then Z FBD = Z AGB = lAED;

therefore A, E, B, F are coneyclic,

and consequently

FD.DE=AD.DB.
But the rectangle AD . DB is given, since it depends only

on the position of D in relation to the circle, and the circle

is given.

Therefore the rectangle FD . DE is given.

And DE is given ; therefore FD is given, and therefore F.

If follows that the tangent FB is given in position, and

therefore B is given. Therefore BDA is given and conse-

quently AE also.

To solve the problem, therefore, we merely take F on ED
produced such that FD . DE = the given rectangle made by

the segments of any chord through D, draw the tangent FB,

join BD and produce it to A, and lastly draw AE through to

C ; BC is then parallel to DE.
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The other problem (Prop. 117, pp. 848-50) is, as we have

seen, equivalent to the following : Given a circle and three

points D, E, F in a straight line external to it, to inscribe in

the circle a triangle ABC such that its sides iiass severally

through the three points D, E
f

F. For the solution, see

pp. 182-4, above.

(e) The Lemmas to the Plane Loci of Apollonius (Props.

119-26, pp. 852-64) are mostly propositions in geometrical

algebra worked out by the methods of Eucl., Books II and VI.

We may mention the following

:

Prop. 122 is the well-known proposition that, if D be the

middle point of the side BC in a triangle ABC,

BA 2 + AC 2 = 2 (AD2 + DC 2
).

Props. 123 and 124 are two cases of the same proposition,

the enunciation being marked by an expression which is also

found in Euclid's Data. Let AB : BC be a given ratio, and

A DEC B

B

let the rectangle CA .AD be given; then, if BE is a mean
proportional between DB, BC, ' the square on AE is greater

by the rectangle CA . AD than in the ratio of AB to BC to the

square on EC\ by which is meant that

A 7?

AE 2 = CA.AD+ ^ EC2
,

or (AE 2 - CA . AD) : EC 2 = AB : BC.

The algebraical equivalent may be expressed thus (if AB=a,
BC=b, AD = c, BE=x):

If x = V(a~^b, then
{aTfZ^ ° = %K

' (x + bf b

Prop. 125 is remarkable : If C, D be two points on a straight

line AB,
AC A R

AD*+ ~~ . DB2 = AC2 + AC.CB+^ • CD\

1823,2 E e
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This is equivalent to the general relation between four

points on a straight line discovered by Simson and therefore

wrongly known as Stewart's theorem

:

AD2
. BC+BD2

. CA + GD2
. AB + BC.CA . AB = 0.

(Simson discovered this theorem for the more general case

where D is a point outside the line ABC.)

An algebraical equivalent is the identity

(d-af (b-c) + (d-b) 2 (c—a) + (d-c) 2 (a-b)

+ (b — c) (c— a) (a-b) = 0.

Pappus's proof of the last-mentioned lemma is perhaps

worth giving.

B

C, D being two points on the straight line AB, take the

point F on it such that

FD:DB = AC:CB. (1)

Then FB : BD = AB : BG,

and {AB- FB) : (BG-BD) = AB: BG,

or AF:CD = AB:BC,

and therefore

AF.CD:CD2 = AB:BC. (2)

From (1) we derive

AG

and from (2)

. DB2 = FB. LB,

^ • GD2 = AF.CD.
±J\y

We have now to prove that

AD2 + BD.DF= AC 2 + AG.CB + AF.CD,

or AD2 + BD.DF= GA.AB + AF.GD,
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i.e. (if DA . AC be subtracted from each side)

that AD.DC + FD.DB = AC. DB + AF. CD,

i.e. (if AF . CD be subtracted from each side)

that FD . DC+ FD.DB = AC . DB,

or FD.CB = AC.DB:
which is true, since, by (1) above, FD : DB — AC : CB.

(^) Lemmas io ike ' Porisms ' of Euclid.

The 38 Lemmas to the Porisms of Euclid form an important

collection which, of course, has been included in one form or

other in the ' restorations ' of the original treatise. Chasles l

in particular gives a classification of ' them, and we cannot

do better than use it in this place :
'23 of the Lemmas relate

to rectilineal figures, 7 refer to the harmonic ratio of four

points, and 8 have reference to the circle.

' Of the 23 relating to rectilineal figures, 6 deal with the

quadrilateral cut by a transversal ; 6 with the equality of

the anharmonic ratios of two systems of four points arising

from the intersections of four straight lines issuing from

one point with two other straight lines ; 4 may be regarded as

expressing a property of the hexagon inscribed in two straight

lines ; 2 give the relation between the areas of two triangles

which have two angles equal or supplementary ; 4 others refer

to certain systems of straight lines; and the last is a case

of the problem of the Cutting-off of an area*

The lemmas relating to the quadrilateral and the transversal

are 1, 2, 4, 5, 6 and 7 (Props. 127, 128, 130, 131, 132, 133).

Prop. 130 is a general proposition about any transversal

whatever, and is equivalent to one of the equations by which
we express the involution of six points. If A

}
A /

; B, Bf

;

C, C be the points in which the transversal meets the pairs of

1 Chasles, Les trots livres de Porismes d'Euclide, Paris, 1860, pp. 74 sq.

E e 2
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opposite sides and the two diagonals respectively, Pappus's

result is equivalent to

AB.B'C GA
TB\BC' ~ GrA }

'

Props. 127, 128 are particular cases in which the transversal

is parallel to a side; in Prop. 131 the transversal passes

through the points of concourse of opposite sides, and the

result is equivalent to the fact that the two diagonals divide

into proportional parts the straight line joining the points of

concourse of opposite sides; Prop. 132 is the particular case

of Prop. 131 in which the line joining the points of concourse

of opposite sides is parallel to a diagonal; in Prop. 133 the

transversal passes through one only of the points of concourse

of opposite sides and is parallel to a diagonal, the result being

CA 2 = GB . CB\
Props. 129, 136, 137, 140, 142, 145 (Lemmas 3, 10, 11, 14, 16,

19) establish the equality of the anharmonic ratios which

four straight lines issuing from a point determine on two

transversals ; but both transversals are supposed to be drawn
from the same point on one of the four straight lines. Let

AB, AC, AD be cut by transversals HBGD, HEFG. It is

required to prove that

HE.FG HB.GD
HG.EF~ HD.BG'

Pappus gives (Prop. 129) two methods of proof which are

practically equivalent. The following is the proof ' by com-

pound ratios '.

Draw HK parallel to AF meeting DA and AE produced
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in K, L; and draw LM parallel to AD meeting GH pro-

duced in M.

HE.FG HE FG LH AF LH
HG.EF~ EF ' EG ~ AF ' HK =

'~ HK
'

In exactly the same way, if BE produced meets LM in M'
we prove that

HB . CD LH

Therefore

HD.BC ' EK
HE.FG HB.CD
EG .EF ED. BC

(The proposition is proved for HBCD and any other trans-

versal not passing through H by applying our proposition

twice, as usual.)

Props. 136, 142 are the reciprocal; Prop. 137 is a particular

case in which one of the transversals is parallel to one of the

straight lines, Prop. 140 a reciprocal of Prop. 137, Prop. 145

another case of Prop. 129.

The Lemmas 12, 13, 15, 17 (Props. 138, 139, 141, 143) are

equivalent to the property of the hexagon inscribed in two
straight lines, viz. that, if the vertices of a hexagon are

situate, three and three, on two straight lines, the points of

concourse of opposite sides are in a straight line ; in Props.

138, 141 the straight lines .are parallel, in Props. 139, 143 not

parallel.

Lemmas 20, 21 (Props. 146, 147) prove that, when one angle

of one triangle is equal or supplementary to one angle of

another triangle, the areas of the triangles are in the ratios

of the rectangles contained by the sides containing the equal

or supplementary angles.

The seven Lemmas 22, 23, 24, 25, 26, 27, 34 (Props. 148-53

and 160) are propositions relating to the segments of a straight

line on which two intermediate points are marked. Thus

;

Props. 148, 150.

If C
}
D be two points on AB, then

{a) if 2AB.CD = CB2
, AD2 = AC 2 + DB2

;

A CD B

(b) if 2AC . BD = CD2
, AB2 = AD2 + CB2

.
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Props. 149, 151.

If AB . BC = BD2
,

then (AD± DC) BD = AD . DC,

(AD±DC)BC = DC 2
,

A C B D

A
(

D
1

C—i
B

and (AD±DC)BA = AD2
.

Props. 152, 153. *

If AB:BC=AD2
: DC2

, then AB . BC = BD2
.

D CH fe-

Prop. 160.

If j4JB : BC=AD : DC, then, if 17 be the middle point of AC,

BE . ED = EC 2
,

BD.DE= AD.DC,

EB.BD =AB.BC.

A B D C B
! 1 1

The Lemmas about the circle include the harmonic proper-

ties of the pole and polar, whether the pole is external to the

circle (Prop. 154) or internal (Prop. 161). Prop. 155 is a

problem, Given a segment of a circle on AB as base, to inflect

straight lines AC, BC to the segment in a given ratio to one

another.

Prop. 156 is one which Pappus has already used earlier

in the Collection. It proves that the straight lines drawn

from the extremities of a chord (DE) to any point (F) of the

circumference divide harmonically the diameter (AB) perpen-

dicular to the chord. Or, if ED, FK be parallel chords, and

EF, DK meet in G, and EK, DF in H, then

AH:HB = AG:GB.
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Since AB bisects BE perpendicularly, (arc AE) — (arcJ-D)

and lEFA = lAFB, or AF bisects the angle EFD.

Since the angle AFB is right, FB bisects /.HFG, the supple-

ment of Z EFD.

Therefore (Eucl. VI. 3) GB : BR = GF : FH = GA: All,

and, alternately and inversely, All: 11B = AG : GB.

Pijpp. 157 is remarkable in that (without any mention of

a co$ic) it is practically identical with Apollonius's Conies

III/ 45 about the foci of a central conic. Pappus's theorem

is as follows. Let AB be the diameter of a semicircle, and

gVa

from A, B let two straight lines AE, BD be drawn at right

angles to AB. Let any straight line BE meet the two perpen-

diculars in B, E and the semicircle in F. Further, let FG be
drawn at right angles to BE, meeting AB produced in G.

It is to be proved that

AG.GB = AE.BB

Since F
t
B, G

}
B are concyclic, IBBG = Z BFG.
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And, since AFB,EFG are both right angles, LBFG^LAFE.

But, since A, E, G, F are concyclic, LAFE = I AGE.

Therefore lBDG = I AGE;

and the right-angled triangles DBG, GAE are similar.

Therefore AG:AE=BD:GB,

or AG.GB = AE.DB.

In Apollonius G and the corresponding point G' on BA
produced which is obtained by drawing F'G' perpendicular to

ED (where DE meets the circle again in F') are the foci

of a central conic (in this case a hyperbola), and DE is any
tangent to the conic ; the rectangle AE . BD is of course equal

to the square on half the conjugate axis.

(t]) The Lemmas to the Conies of Apollonius (pp. 918-1004)

do not call for any extended notice. There are a large number
of propositions in geometrical algebra of the usual kind,

relating to the segments of a straight line marked by a number
of points on it

;
propositions about lines divided into propor-

tional segments and about similar figures ; two propositions

relating to the construction of a hyperbola (Props. 204, 205)

and a proposition (208) proving that two hyperbolas with the

same asymptotes do not meet one another. There are also

two propositions (221, 222) equivalent to an obvious trigono-

E'
„ -I

i

i

D
A ^ '

i

+*

F' "B F\

metrical formula. Let ABGD be a rectangle, and let any

straight line through A meet DC produced in E and BC
(produced if necessary) in F.

Then EA . AF = ED . DC+ CB . BF.
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For EA 2 + AF2 = ED2 + DA 2 +AB2 + BF2

= ED' + BC 2 + CD2 + £i^2
.

Also EA* + AF2 = EF* + 2EA. AF.

Therefore *

2EA . AF = EA 2 + AF2 -EF2

=-. ED2 + BC 2 + CjD* + BF2-AT2

= (#i)2 + CD2
) + (JBC2 + BF2

) -EF2

= EC 2 + 2ED.DC+CF2 + 2 CB . BF-EF2

= 2ED.BC+2CB.BF;

i.e. £T

J. .^ = #D . 1X7+ (72* . BF.

This is equivalent to sec cosec # = tan 6 + cot 0.

The algebraical equivalents of some of the results obtained

by the usual geometrical algebra may be added.

Props. 178, 179, 192-4.

(a + 2b)a+(b + x) (b~x) = (a+ b + x)(a + b—x).

Prop. 195. 4ct
2 = 2{(a-x)(a + x) + (a-y)(a + y) + x2 + y

2
\.

Prop. 196.

{a + 6 - x)2 + (a + 6 + <c)
2 = (a- &)

2 + (u; + 6)
2 + 2 (a + 2 b) a.

Props. 197, 199, 198.

If (x + y + a)a + x 2 = (a + xf, \

or if (x + y + a) a + #2 = (a + y}
2

, I then x = y.

or if (# + 2/-a)a + (a-a) 2 =
2/

2
, j

Props. 200, 201. If (a + b)x = b 2
, then

2^±i" = ^±j? and
a o— x

(26 + <x)a = (a + 6) (a + b—x).

Prop. 207. If (a + 6)6 = 2d1
, then a = 6.

(0) The two Lemmas to the Surface-Loci of Euclid have
already been mentioned as significant. The first has the

appearance of being a general enunciation, such as Pappus
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is fond of giving, to cover a class of propositions. The
enunciation may be translated as follows :

' If AB be a straight

line, and CD a straight line parallel to a straight line given in

position, and if the ratio AD . DB : DC 2 be given, the point C
lies on a conic section. If now AB be no longer given in

position, and the points A, B are no longer given but lie

(respectively) on straight lines AE, EB given in position, the

point C raised above (the plane containing AE, EB) lies on

a surface given in position. And this was proved.' Tannery

was the first to explain this intelligibly

;

and his interpretation only requires the

very slight change in the text of sub-

stituting tvOeiais for evdeia in the phrase

yewrjTai 8k 777)0? Oio-ei evOeia tou$ AE, EB.

It is not clear whether, when AB ceases

to be given in position, it is still given

in length. If it is given in length and A, B move on the lines

AE, EB respectively, the surface which is the locus of C is

a complicated one such as Euclid would hardly have been

in a position to investigate. But two possible cases are

indicated which he may have discussed, (1) that in which AB
moves always parallel to itself and varies in length accord-

ingly, (2) that in which the two lines on which A, B move are

parallel instead of meeting at a point. The loci in these two

cases would of course be a cone and a cylinder respectively.

The second Lemma is still more important, since it is the

first statement on record of the focus-directrix property of

the three conic sections. The proof, after Pappus, has been

set out above (pp. 119-21).

(1) An unallocated Lemma.

Book VII ends (pp. 1016-18) with a lemma which is not

given under any particular treatise belonging to the Treasury

of Analysis, but is simply called 'Lemma to the 'AuaXvo/xevos '.

If ABC be a triangle right-angled at B, and AB, BC be

divided at F, G so that AF : FB = BG : GC = AB : BC, and

if AEG, CEF be joined and BE joined and produced to D,

then shall BD be perpendicular to AC.

The text is unsatisfactory, for there is a long interpolation

containing an attempt at a proof by reductio ad abburdum
;
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but the genuine proof is indicated, although it breaks off

before it is quite complete.

Since AF:FB = BG:GC,

AB:FB = BC:GC
i

or AB : BC = FB : GC.

But, by hypothesis, AB:BC=BG:GC;

therefore BF = BG.

From this point the proof apparently proceeded by analysis.

' Suppose it done ' (yeyo^lra)), i.e. suppose the proposition true,

and BED perpendicular to AC.

Then, by similarity of triangles, AD : DB — AB : BC
;

therefore AF: FB = AD: DB, and consequently the angle

ADB is bisected by DF.

Similarly the angle BDC is bisected by DG.
Therefore each of the angles BDF, BDG is half a right

angle, and consequently the angle FDG is a right angle.

Therefore B, G, D, F are concyclic ; and, since the angles

FDB, BDG are equal, FB = BG.

This is of course the result above proved.

Evidently the interpolator tried to clinch the argument by

proving that the angle BDA could not be anything but a right

angle.

Book VIII.

Book VIII of the Collection is mainly on mechanics, although

it contains, in addition, some propositions of purely geometrical

interest.
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Historical preface.

It begins with an interesting preface on the claim of

theoretical mechanics, as distinct from the merely practical

or industrial, to be regarded as a mathematical subject.

Archimedes, Philon, Heron of Alexandria are referred to as

the principal exponents of the science, while Carpus of Antioch

is also mentioned as having applied geometry to 'certain

(practical) arts'.

The date of Carpus is uncertain, though it is probable that

he came after Geminus; the most likely date seems to be the

first or second century A.D. Simplicius gives the authority of

Iamblichus for the statement that Carpus squared the circle

by means of a certain curve, which he simply called a curve

generated by a double motion.1 Proclus calls him ' Carpus the

writer on mechanics (6 n^aviKos) ', and quotes from a work of

his on Astronomy some remarks about the relation between

problems and theorems and the ' priority in order ' of the

former. 2 Proclus also mentions him as having held that an

angle .belongs to the category of quantity (ttoctov), since it

represents a sort of ' distance ' between the two lines forming-

it, this distance being 'extended one way' (k(f> tv Sieo-Toos)

though in a different sense from that in which a line represents

extension one way, so that Carpus's view appeared to be ' the

greatest possible paradox ' 3
; Carpus seems in reality to have

been anticipating the modern view of an angle as representing

divergence rather than distance, and to have meant by e<p' tv

in one sense (rotationally), as distinct from one way or in one

dimension (linearly).

Pappus tells us that Heron distinguished the logical, i.e.

theoretical, part of mechanics from the practical or manual

(XtipovpyiKov), the former being made up of geometry, arith-

metic, astronomy and physics, the latter of work in metal,

architecture, carpentering and painting ; the man who had

been trained from his youth up in the sciences aforesaid as well

as practised in the said arts would naturally prove the best

architect and inventor of mechanical devices, but, as it is diffi-

cult or impossible for the same person to do both the necessary

1 Simplicius on Arist. Categ., p. 192, Kalbfleisch.
2 Proclus on Eucl. I, pp. 241-3. a Ib.

t pp. 125. 25-126. 6.
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mathematics and the practical work, he who has not the former

must perforce use the resources which practical experience in

his particular art or craft gives him. Other varieties of

mechanical work included by the ancients under the general

term mechanics were (1) the use of the mechanical powers,

or devices for moving or lifting great weights by means of

a small force, (2) the construction of engines of war for

throwing projectiles a long distance, (3) the pumping of water

from great depths, (4) the devices of ' wonder-workers

'

(Oav/iao-Lovpyoi), some depending on pneumatics (like Heron

in the Pneumatica), some using strings, &c, to produce move-

ments like those of living things (like Heron in 'Automata and

Balancings'), some employing floating bodies (like Archimedes

in ' Floating Bodies '), others using water to measure time

(like Heron in his ' Water-clocks'), and lastly ' sphere-making
',

or the construction of mechanical imitations of the movements
of the heavenly bodies with the uniform circular motion of

water as the motive power. Archimedes, says Pappus, was
held to be the one person who had understood the cause and

the reason of all these various devices, and had applied his

extraordinarily versatile genius and inventiveness to all the

purposes of daily life, and yet, although this brought him
unexampled fame the world over, so that his name was on

every one's lips, he disdained (according to Carpus) to write

any mechanical work save a tract on sphere-making, but

diligently wrote all that he could in a small compass of tjie

most advanced parts of geometry and of subjects connected

with arithmetic. Carpus himself, sa}^s Pappus, as well as

others applied geometry^ to practical arts, and with reason

:

' for geometry is in no wise injured, nay it is by nature

capable of giving substance to many arts by being associated

with them, and, so far from being injured, it may be said,

while itself advancing those arts, to be honoured and adorned

by them in return.'

The object of the Book.

Pappus then describes the object of the Book, namely

to set out the propositions which the ancients established by
geometrical methods, besides certain useful theorems dis-

covered by himself, but in a shorter and clearer form and
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in better logical sequence than his predecessors had attained.

The sort of questions to be dealt with are (1) a comparison

between the force required to move a given weight along

a horizontal plane and that required to move the same weight

upwards on an inclined plane, (2) the finding of two mean
proportionals between two unequal straight lines, (3) given

a toothed wheel with a certain number of teeth, to find the

diameter of, and to construct, another wheel with a given num-
ber of teeth to work on the former. Each of these things, he says,

will be clearly understood in its proper place if the principles

on which the ' centrobaric doctrine ' is built up are first set out.

It is not necessary, he adds, to define what is meant by ' heavy

'

and ' light ' or upward and downward motion, since these

matters are discussed by Ptolemy in his Matkematica; but

the notion of the centre of gravity is so fundamental in the

whole theory of mechanics that it is essential in the first

place to explain what is meant by the ' centre of gravity

'

of any body.

On the centre of gravity.

Pappus then defines the centre of gravity as 'the point

within a body which is such that, if the weight be conceived

to be suspended from the point, it will remain at rest in any

position in which it is put '} The method of determining the

point by means of the intersection, first of planes, and then of

straight lines, is next explained (chaps. 1,2), and Pappus then

proves (Prop. 2) a proposition of some difficulty, namely that,

if D, E, F be points on the sides BC, CA, AB of a triangle ABC
such that

BD:DC=CE:EA = AF.FB,

then the centre of gravity of the triangle ABC is also the

centre of gravity ef the triangle DEF.
Let H, K be the middle points of BC, CA respectively;

join AH, BK. Join HK meeting DE in L.

Then AH, BK meet in G, the centre of gravity of the

triangle ABC, and AG = 2GH, BG = 2GK, so that

CA :AK = AB: HK = BG : GK = AG : GH.

1 Pappus, viii, p. 1030. 11-13.
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Now, by hypothesis,

CE-.EA = BD:DC,

whence CA : AE = BC : CD,

and, if we halve the antecedents,

AK:AE= EC:CD;

therefore AK : EK = EC : ED or BE : ED,

431

whence, componiiendo, CE : EK = BD : DE. ( 1

)

But AF: FB = BD: DC == (52) : D//) . (DE : DC)

= (CE:EK).(DE:DC). (2)

Now, J5XD being a transversal cutting the sides of the

triangle KEC, we have

EL:KL = (CE:EK) . (DE:DC). (3)

[This is ' Menelaus's theorem
'

; Pappus does not, however,

quote it, but proves the relation ad hoc in an added lemma by
drawing CM parallel to DE to meet HK produced in M. The

proof is easy, for HL . LK = (HL . LM) {LM . LK)

= (ED:DC).(CE:EK).]

It follows from (2) and (3) that

AF: FB = EL: LK,

and, since AB is parallel to EK, and AE, BK are straight

lines meeting in G, FGL is a straight line.

[This is proved in another easy lemma by veductio ad
absuvdum.]
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We have next to prove that EL = LD.

Now [again by ' Menelaus's theorem ', proved ad hoc by
drawing CN parallel to HK to meet ED produced in N]

EL:LD = (EK : KG) . (CH : HD). (4)

But, by (1) above, CE:EK = BD : DH;

therefore CK : KE = BH :HD = CH : HD,

so that (EK:KC).(CH:HD)=1, and therefore, from (4),

EL = LD.

It remains to prove that FG = 2 6rZ, which is obvious by

parallels, since FG : GL = AG : GH =2:1.-

Two more propositions follow with reference to the centre

of gravity. The first is, Given a rectangle with AB, BC as

adjacent sides, to draw from G a straight line meeting the side

opposite BC in a point D such that, if the trapezium ADCB is

hung from the point D, it will rest with AD, BC horizontal.

G E

B M N

In other words, the centre of gravity must be in DLj drawn

perpendicular to BC. Pappus proves by analysis that

CZ2 = 3BL2
, so that the problem is reduced to that of

dividing BC into parts BL, LC such that this relation holds.

The latter problem is solved (Prop. 6) by taking a point,

say X, in CB such that CX = 3 XB, describing a semicircle on

BC as diameter and drawing XY at right angles to BC to

meet the semicircle in F, so that XY 2 = -£S BC 2
, and then

dividing CB at X so that

CL:LB = CX:XY( = !:|V3 = v/3 1).

The second proposition is this (Prop. 7). Given two straight

lines AB, AC, and B a fixed point on AB, if CD be drawn
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with its extremities on AC, AB and so that AC : BD is a given

ratio, then the centre of gravity of the triangle ADC will lie

on a straight line.

Take E, the middle point of AC, and F a point on BE such

that DF = 2 FE. Also let F be a point on BA such that

BH=2HA. Draw FG parallel to AC.

Then AG = $AD, and AH=±AB',
therefore HG = § 52).

Also jTO = §4# = J jitf. Therefore,

since the ratio AC:BD is given, the

ratio 6r// : 6ri^ is given.

And the angle FGH (= A) is given
;

therefore the triangle FGH is given in

species, and consequently the angle GHF
is given. And H is a given point.

Therefore HF is a given straight line, and it contains the

centre of gravity of the triangle ABC.

The inclined plane.

Prop. 8 is on the construction of a plane at a given inclina-

tion to another plane parallel to the horizon, and with this

Pappus leaves theory and proceeds to the practical part.

Prop. 9 (p. 1054. 4 sq.) investigates the problem 'Given

a weight which can be drawn along a plane parallel to the

horizon by a given force, and a plane inclined to the horizon

at a given angle, to find the force required to draw the weight

upwards on the inclined plane'. This seems to be the first

or only attempt in ancient times to investigate motion on

*an inclined plane, and as such it is curious, though of no

value.

Let A be the weight which can be moved by a force C along

a horizontal plane. Conceive a sphere with weight equal to A
placed in contact at L with the given inclined plane ; the circle

OGL represents a section of the sphere by a vertical plane

passing through E its centre and LK the line of greatest slope

drawn through the point L. Draw EGH horizontal and there-

fore parallel to MN in the plane of section, and draw LF
perpendicular to EH. Pappus seems to regard the plane

as rough, since he proceeds to make a system in equilibrium

1523.2 p f
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about FL as if L were the fulcrum of a lever. Now the

weight A acts vertically downwards along a straight line

through E. To balance it, Pappus supposes a weight B
attached with its centre of gravity at G.

Then A:B=GF:EF

= (EL-EF):EF

[= (l-sin0):sin0,

where ZKMW = 0] ;

and, since IKMN is given, the ratioEF: EL,

and therefore the ratio (EL - EF) : EF, is

given ; thus B is found.

Now, says Pappus, if D is the force which will move B
along a horizontal plane, as C is the force which will move
A along a horizontal plane, the sum of C and D will be the

force required to move the sphere upwards on the inclined

plane. He takes the particular case where 6 = 60°. Then
sin 6 is approximately J§£ (he evidently uses \ . \§ for \ \/3),

and A:B - 16:104.

Suppose, for example, that A == 200 talents; then B is 1300

talents. Suppose further that C is 40 man-power; then, since

B :C = B:A, D — 260 man-power ; and it will take D + C, or

300 man-power, to move the weight up the plane

!

Prop. 10 gives, from Heron's Barulcus, the machine con-

sisting of a pulley, interacting toothed wheels, and a spiral

screw working on the last wheel and turned by a handle

;

Pappus merely alters the proportions of the weight to the

force, and of the diameter of the wheels. At the end of

the chapter (pp. 1070-2) he repeats his construction for the

finding of two mean proportionals.

Construction of a conic through Jive points.

Chaps. 13-17 are more interesting, for they contain the

solution of the problem of constructing a conic through Jive

given points. The problem arises in this way. Suppose we
are given a broken piece of the surface of a cylindrical column

such that no portion of the circumference of either of its base
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is left intact, and let it be required to find the diameter of

a circular section of the cylinder. We take any two points

A, B on the surface of the fragment and by means of these we
find five points on the surface all lying in one plane section,

in general oblique. This is done by taking five different radii

and drawing pairs of circles with A, B as centres and with

each of the five radii successively. These pairs of circles with

equal radii, intersecting at points on the surface, determine

five points on the plane bisecting AB at right angles. The five

points are then represented on any plane by triangulation.

Suppose the points are A, B, C, D, E and are such that

no two of the lines connecting the different pairs are parallel.

Q"

q!

This case can be reduced to the construction of a conic through

the five points A, B, D, E, F where EF is parallel to AB.
This is shown in a subsequent lemma (chap. 16).

For, if EF be drawn through E parallel to AB, and if CD
meet AB in and EF in 0', we have, by the well-known

proposition about intersecting chords,

CO .0D:A0.0B = CO' . O'D : E0 f
. O'F,

whence O'F is known, and F is determined.

We have then (Prop. 13) to construct a conic through A, B,

D, E, F, where EF is parallel to AB.
Bisect AB, EF at V, W; then VW produced both ways

is a diameter. Draw DR, the chord through D parallel

F f 2 -
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to this diameter. Then R is determined by means of the

relation

RG.GD-.BG.GA = RH.HD:FH.HE (1)

in this way.

Join DB, RA, meeting EF in K, L respectively.

Then, by similar triangles,

RG.GD: BG . GA = (RH:HL) . {DH-.HK)

= RH.IID:KH.HL.

Therefore, by ( 1 ), FH . HE = KH . HL,

whence HL is determined, and therefore L. The intersection

of AL, DH determines R.

Next, in order to find the extremities P, P' of the diameter

through V, W, we draw ED, RF meeting PP' in M, JST respec-

tively.

Then, as before,

FW . WEiFW. WP = FH.HE-.RH.HD, by the ellipse,

= FW.WEiNW.WM, by similar triangles.

Therefore Pf W. WP = NW. WM;

and similarly we can find the value of P'V . VP.

Now, says Pappus, since P'W. WP and P'V.VP are given

areas and the points V, W are given, P, P/
are given. His

determination of P, P/ amounts (Prop. 14 following) to an

elimination of one of the points and the finding of the other

by means of an equation of the second degree.

Take two points Q, Q' on the diameter such that

P'V.VP=WV.VQ, (a)

PfW.WP = VW.WQ f

\ ((3)

Q, Q' are thus known, while P, Pf remain to be found.

By (a) P'V: VW= QV: VP,

whence P'W : VW= PQ:PV.

Therefore, by means of (f3),

PQ:PV=Q'W:WP,
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so that PQ :QV= Q'W : PQ',

or PQ.PQ'=QV.Q'W.

Thus P can be found, and similarly P'

.

The conjugate diameter is found by virtue of the relation

(conjugate diam.) 2
: PP' L = p : PP\

where p is the latus rectum to PP' determined by the property

of the curve
V , VF= AV>:1>V.V1»

.

Problem, Given two conjugate diameters of an ellipse,

to find the axes.

Lastly, Pappus shows (Prop. 14, chap. 17) how, when we are

given two conjugate diameters, we can find the axes. The
construction is as follows. Let A B, CD be conjugate diameters

(CD being the greater), E the centre.

Produce EA to II so that

EA.AH= DE\

Through A draw FG parallel to CD. Bisect EH in K, and

draw KL at right angles to EH meeting FG in L.

M\\E/
H"\-^ pi ^ .- ''/

l\
\/>

/ N J/Q
r^-jiA F

With L as centre, and LE as radius, describe a circle cutting

GF in G,F.

Join EF, EG, and from A draw AM, AN parallel to EF, EG
respectively.
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Take points P, R on EG, EF such that

EP1 = GE. EM, and Em = FE.EN
Then EP is half the major axis, and ER half the minor axis.

Pappus omits the proof.

Problem of seven hexagons in a circle.

Prop. 19 (chap. 23) is a curious problem. To inscribe seven

equal regular hexagons in a circle in such a way that one

is about the centre of the circle, while six others stand on its

sides and have the opposite sides in each case placed as chords

in the circle.

Suppose GHKLNM to be the hexagon so described on HK,
a side of the inner hexagon ; OKL will then be a straight line.

Produce OL to meet the circle in P.

Then OK = KL = LN. Therefore, in the triangle OLN,
OL = 2LN, while the included angle OLN (= 120°) is also

given. Therefore the triangle is given in species; therefore

the ratio ON : NL is given, and, since ON is given, the side NL
of each of the hexagons is given.

Pappus gives the auxiliary construction thus. Let AF be

taken equal to the radius OP. Let AC — ^AF,rfnd on AC as

base describe a segment of a circle containing an angle of 60°.

Take CE equal to %AC, and draw EB to touch the circle at B.
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Then he proves that, if we join AB, AB is equal to the length

of the side of the hexagon required.

Produce BC to D so that BD = BA, and join DA. ABD
is then equilateral.

Since EB is a tangent to the segment, AE.EC = EB2 or

AE:EB = EB : EC, and the triangles EAB, EBC are similar.

Therefore BA 2 :BC 2 = AEl :EB2 = AE:EC = 9 : 4
;

and BC = %BA=%BD, so that BC = 2 CD.

But CF = 2CA ; therefore AC:CF= DC:CB, and AD, BF
are parallel.

Therefore BF: AD = BC:CD = 2:1, so that

BF=2AD= 2AB.

Also IFBC = IBDA = 60°, so that Z^5,F= 120°, and

the triangle ABF is therefore equal and similar to the required

triangle NLO.

Construction of toothed ivheels and indented screivs.

The rest of the Book is devoted to the construction (1) of

toothed wheels with a given number of teeth equal to those of

a given wheel, (2) of a cylindrical helix, the cochlias, indented

so as to work on a toothed wheel. The text is evidently

defective, and at the end an interpolator has inserted extracts

about the mechanical powers from Heron's Mechanics.
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ALGEBRA: DIOPHANTUS OF ALEXANDRIA

Beginnings learnt from Egypt.

In algebra, as in geometry, the Greeks learnt the beginnings

from the Egyptians. Familiarity on the part of the Greeks

with Egyptian methods of calculation is well attested. (1)

These methods are found in operation in the Heronian writings

and collections. (2) Psellus in the letter published by Tannery

in his edition of Diophantus speaks of ' the method of arith-

metical calculations used by the Egyptians, by which problems

in analysis are handled
'

; he adds details, doubtless taken

from Anatolius, of the technical terms used for different kinds

of numbers, including the powers of the unknown quantity.

(3) The scholiast to Plato's Gharmides 165 e says that 'parts

of XoyicrTLKij, the science of calculation, are the so-called Greek
and Egyptian methods in multiplications and divisions, and

the additions and subtractions of fractions '. (4) Plato himself

in the Laws 819 x\-c says that free-born boys should, as is the

practice in Egypt, learn, side by side with reading, simple

mathematical calculations adapted to their age, which should

be put into a form such as to combine amusement with

instruction : problems about the distribution of, say, apples or

garlands, the calculation of mixtures, and other questions

arising in military or civil life.

«

* Hau '-calculations.

The Egyptian papulations here in point (apart from their

method of writing and calculating in fractions, which, with

the exception of §, were always decomposed and written

as the sum of a diminishing series of aliquot parts or sub-

multiples) are the ^cm-calculations. Hau, meaning a heap, is

the term denoting the unknown quantity, and the calculations
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in terms of it are equivalent to the solutions of simple equations

with one unknown quantity. Examples from the Papyrus

Rhind correspond to the following equations

:

^ rv> _l_ 1. /y» I 1. /y I rv> 9 9
7? <A/ T^ o tt/ T^ Y 1*' T w OOj

(# + §«)--J(^ + § A') = 10.

The Egyptians anticipated, though only in an elementary

form, a favourite method of Diophantus, that of the ' false

supposition ' or ' regula falsi '. An arbitrary assumption is

made as to the value of the unknown, and the true value

is afterwards found by a comparison of the result of sub-

stituting the wrong value in the original expression with the

actual data. Two examples may be given. The first, from

the Papyrus Rhind, is the problem of dividing 100 loaves

among five persons in such a way that the shares are in

arithmetical progression, and one-seventh of the sum of the

first three shares is equal to the sum of the other two. If

a + 4d, a + 3d, a + 2d, a + d, a be the shares, then

3a + 9d — 7(2a + d),

or d = 5^a.

Ahmes says, without any explanation, ' make the difference,

as it is, 5-J ', and then, assuming a = 1, writes the series

23, 17}, 12, 6}, 1. The addition of these gives 60, and 100 is

1| times 60. Ahmes says simply 'multiply If times' and

thus gets the correct values 38J, 29^, 20, 10| J, 1§.

The second example (taken from the Berlin Papyrus 6619)

is the solution of the equations

x2 +y 2 = 100,

# '-y = 1 :f, or y = |a?.
»

x is first assumed to be 1 , and x2 + y
2

is thus found to be ff

.

In order to make 100, ff has to be multiplied by 64 or 8 2
.

The true value of x is therefore 8 times 1, or 8.

Arithmetical epigrams in the Greek Anthology.

The simple equations solved in the Papyrus Rhind are just

the kind of .equations of which we find many examples in the



442 ALGEBRA: DIOPHANTUS OF ALEXANDRIA

arithmetical epigrams contained in the Greek Anthology. Most
of these appear under the name of Metrodorus, a grammarian,

probably of the time of the Emperors Anastasius I (a.d. 491-

518) and Justin I (a.d. 518-27). They were obviously only

collected by Metrodorus, from ancient as well as more recent

sources. Many of the epigrams (46 in number) lead to simple

equations, and several of them are problems of dividing a num-
ber of apples or nuts among a certain number of persons, that

is to say, the very type of problem mentioned by Plato. For

example, a number of apples has to be determined such that,

if four persons out of six receive one-third, one-eighth, one-

fourth and one-fifth respectively of the whole number, while

the fifth person receives 1 apples, there is one apple left over

for the sixth person, i.e.

^x+±x+ ^x + ~x + 10 + 1 = x.

Just as Plato alludes to bowls ((pidXai) of different metals,

there are problems in which the weights of bowls have to

be found. We are thus enabled to understand the allusions of

Proclus and the scholiast on Charmides 165 E to fi-qXtrai

and (ptaXiTcu apiQjioi, 'numbers of apples or of bowls'.

It is evident from Plato's allusions that the origin of such

simple algebraical problems dates back, at least, to the fifth

century B.C.

The following is a classification of the problems in the

Anthology. (1) Twenty-three are simple equations in one

unknown and of the type shown above; one of these is an

epigram on the age of Diophantus and certain incidents of

his life (xiv. 126). (2) Twelve are easy simultaneous equations

with two unknowns, like Dioph. I. 6 ; they can of course be

reduced to a simple equation with one unknown by means of

an easy elimination. One other (xiv. 51) gives simultaneous

equations in three unknowns

and one (xiv. 49) gives four equations in four unknowns,

x + y = 40, x + z=45, x + u = 36, x+y+z+u — 60.

With these may be compared Dioph. I. 16-21, as well as the

general solution of any number of simultaneous linear equa-
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tions of this type with the same number of unknown quantities

which was given by Thymaridas, an early Pythagorean, and

was called the kirdvO-qua, ' flower ' or ' bloom ' of Thymaridas

(see vol. i, pp. 94-6). (3) Six more are problems of the usual

type about the filling and emptying of vessels by pipes ; e.g.

(xiv. 130) one pipe fills the vessel in one day, a second in two

and a third in three ; how long will all three running together

take to fill it? Another about brickmakers (xiv. 136) is of

the same sort.

Indeterminate equations of the first degree.

The Anthology contains (4) two indeterminate equations of

the first degree which can be solved in positive integers in an

infinite number of ways (xiv. 48, 144) ; the first is a distribu-

tion of apples, 3 a? in number, into parts satisfying the equation

x— Sy = y t
where y is not less than 2 ; the second leads to

three equations connecting four unknown quantities

:

x + y = x
1 + y19

x = 2ylt

x
l
= 3y,

the general solution of which is x = 4 k, y = k, x
x
= 3 fc,

yx
= 2L These very equations, which, however, are made

determinate by assuming that x + y = x
1 + y1

=z 100, are solved

in Dioph. I. 12.

Enough has been said to show that Diophantus was not

the inventor of Algebra. Nor was he the first to solve inde-

terminate problems of the second degree.

Indeterminate equations of second degree before

Diophantus.

Take first the problem (Dioph. II. 8) of dividing a square

number into two squares, or of finding a right-angled triangle

with sides in rational numbers. We have already seen that

Pythagoras is credited with the discovery of a general formula

for finding such triangles, namely,

*>+{*(», -»)} , = {i(*
,
+J)}*.



444 ALGEBRA: DIOPHANTUS OF ALEXANDRIA

where n is any odd number, and Plato with another formula

of the same sort, namely {2n)2 + (n2— l) 2 = (n 2 +l) 2
. Euclid

(Lemma following X. 28) finds the following more general

formula

m2
it
2p1

q
2 = {J (mnp

2 +m nq2
) }

2—
{\ (mnp2 —m uq2

) }
2

.

The Pythagoreans too, as we have seen (vol. i, pp. 91-3),

solved another indeterminate problem, discovering, by means
of the series of ' side- ' and ' diameter-numbers ', any number
of successive integral solutions of the equations

2x2— y
2 = + 1.

Diophantus does not particularly mention this equation,

but from the Lemma to VI. 15 it is clear that he knew how
to find any number of solutions when one is known. Thus,

seeing that 2x2 —\ — y
2

is satisfied by x = 1 , y = 1 , he would

put
2(1 +x) 2 — 1 = a square

= (px-1) 2
, say;

whence x = (4 + 2p)/(p
2— 2).

Take the value p = 2, and we have x = 4, and x+1 =5;
irl this case 2 . 5 2— 1 =49 = 7 2

. Putting x + 5 in place of a;,

we can find a still higher value, and so on.

Indeterminate equations in the Heronian collections.

Some further Greek examples of indeterminate analysis are

now available. They come from the Constantinople manuscript

(probably of the twelfth century) from which Schone edited

the Metrica of Heron ; they have been published and translated

by Heiberg, with comments by Zeuthen. 1 Two of the problems

(thirteen in number) had been published in a less complete

form in Hultsch's Heron (Geeponicus, 78, 79); the others

are new.

I. The first problem is to find two rectangles such that the

perimeter of the second is three times that of the first, and

the area of the first is three times that of the second. The

1 Bibliotheca mathematica, viii3 , 1907-8, pp. 118-34. See now Geom.
24. 1-13 in Heron, vol. iv (ed. Heiberg), pp. 414-26.
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number 3 is of course only an illustration, and the problem is

equivalent to the solution oi' the equations

(1) u + v= n(x + y)'

(2) xy = n. uv

The solution given in the text is equivalent to

x = 2 n ?J — 1, y = 2%3

|

u = /i(4?i3— 2), v — n
J

Zeuthen suggests that the solution may have been obtained

thus. As the problem is indeterminate, it would be natural

to start with some hypothesis, e.g. to put v = n. It would

follow from equation (1) that u is a multiple of n, say nz.

We have then

x + y = 1 + z,

while, by (2), xy — nz
z,

whence xy — n3 (x + y) — n3
,

or (x — ri
3
) (y— n3

) = n3 (a3 —
1 ).

An obvious solution is

x— n 3 = n3 — 1, y — n 3 = n 3
,

which gives z — 2n3— 1 + 2 ft
3— 1 = 4 w3 — 2, so that

it, = nz — n(4n3 — 2).

II. The second is a similar problem about two rectangles,

equivalent to the solution of the equations

(1) x + y = u + v)

(2) xy = n . iwj

and the solution given in the text is

x + y — u + v — >i
3 — 1

,

(3)

11 = 7b— 1, v = n (n2—
1)]

a?=n2-l
5 2/= ri*(n-l)]'

^
In this case trial may have been made of the assumptions

v = nx, y — n~u,
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when equation (1) would give

(n — I ) x = (n2 — 1 ) it,

a solution of which is x = n2— 1, u = n — 1.

III. The fifth problem is interesting in one respect. We are

asked to find a right-angled triangle (in rational numbers)

with area of 5 feet. We are told to multiply 5 by some

square containing as a factor, e.g. 36. This makes 180,

and this is the area of the triangle (9, 40, 41). Dividing each

side by 6, we have the triangle required, The author, then,

is aware that the area of a right-angled triangle with sides in

whole numbers is divisible by 6. If we take the Euclidean

formula for a right-angled triangle, making the sides a . nm,
a . J(m2— 7i

2
), a . ^(m2 + n2

), where a is any number, and m, n
are numbers which are both odd or both even, the area is

\mn (m— n) (m + n) a2
,

and, as a matter of fact, the number mn (m— n) (m + n) is

divisible by 24, as was proved later (for another purpose) by

Leonardo of Pisa.

IV. The last four problems (10 to 13) are of great interest.

They are different particular cases of one problem, that of

finding a rational right-angled triangle such that the numerical

sum of its area and its perimeter is a given number. The
author's solution depends on the following formulae, where

a, b are the perpendiculars, and c the hypotenuse, of a right-

angled triangle, S its area, r the radius of the inscribed circle,

and s = \ (a + b + c)
;

S = rs = \ab, r + s=a + b, c — s— r.

(The proof of these formulae by means of the usual figure,

namely that used by Heron to prove the formula

8= V{s(s-a)(s-b)(s-c)}
i

is easy.)

Solving the first two equations^ in order to find a and b,

we have

(t

\ = i[r+ s+^{(r+s)2-8rs}],

which formula is actually used by the author for finding a
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and b. The method employed is to take the sum of the area

and the perimeter S+2s, separated into its two obvious

factors s(r+2), to put s(r+2) = A (the given number), and

then to separate A into suitable factors to which s and r + 2

may be equated. They must obviously be such that sr, the

area, is divisible by 6. To take the first example where

A = 280 : the possible factors are 2 x 140, 4 x 70, 5 x 56, 7 x 40,

8 x 35, 10 x 28, 14 x 20. The suitable factors in this case are

r + 2 = 8, s = 35, because r is then equal to 6, and rs is

a multiple of 6.

The author then says that

a= J [6 + 35- /{(6 + 35)2 -8.6. 35}] = |(41-1) = 20,

6 = |(41 + 1)= 21,

c = 35-6 = 29.

The triangle is therefore (20, 21, 29) in this case. The

triangles found in the other three cases, by the same method,

are (9, 40, 41), (8, 15, 17) and (9, 12, 15).

Unfortunately there is no guide to the date of the problems

just given. The probability is that the original formulation

of the most important of the problems belongs to the period

between Euclid and Diophantus. This supposition best agrees

with the fact that the problems include nothing taken from

the great collection in the Arithmetica. On the other hand,

it is strange that none of the seven problems above mentioned

is found in Diophantus. The five relating to rational right-

angled triangles might well have been included by him ; thus

he finds rational right-angled triangles such that the &rea, plus

or minus one of the perpendiculars is a given number, but not

the rational triangle which has a given area ; and he finds

rational right-angled triangles such that the area £>Ziis or minus
the sum of two sides is a given number, but not the rational

triangle such that the sum of the area and the three sides is

a given number. The omitted problems might, it is true, have

come in the lost Books ; but, on the other hand, Book YI would

have been the appropriate place for them.

The crowning example of a difficult indeterminate problem

propounded before Diophantus's time is the Cattle-Problem

attributed to Archimedes, described above (pp. 97-8).
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Numerical solution of quadratic equations.

The geometrical algebra of the Greeks has been in evidence

all through our history from the Pythagoreans downwards,

and no more need be said of it here except that its arithmetical

application was no new thing in Diophantus. It is probable,

for example, that the solution of the quadratic equation,

discovered first by geometry, was applied for the purpose of

finding numerical values for the unknown as early as Euclid,

if not earlier still. In Heron the numerical solution of

equations is well established, so that Diophantus was not the

first to treat equations algebraically. What he did was to

take a step forward towards an algebraic notation.

The date of Diophantus can now be fixed with fair certainty.

He was later than Hypsicles, from whom he quotes a definition

of a polygonal number, and earlier than Theon of Alexandria,

who has a quotation from Diophantus's definitions. The

possible limits of date are therefore, say, 150 B.C. to a.d. 350.

But the letter of Psellus already mentioned says that Anatolius

(Bishop of Laodicea about a.d. 280) dedicated to Diophantus

a concise treatise on the Egyptian method of reckoning

;

hence Diophantus must have been a contemporary, so that he

probably flourished a.d. 250 or not much later.

An epigram in the Anthology gives some personal particulars:

his boyhood lasted |th of his life ; his beard grew after ^th
more ; he married after -f-th more, and his son was born 5 years

later; the son lived to half his father's age, and the father

died 4 years after his son. Thus, if x was his age when

he died,

which gives x = 84.

Works of Diophantus.
t

The works on which the fame of Diophantus rests are

:

( 1

)

the Arithmetica (originally in thirteen Books),

(2) a tract On Polygonal Numbers.
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Six Books only of the former and a fragment of the latter

survive.

Allusions in the Arithmetica imply the existence of

(3) A collection of propositions under the title of Porisms
;

in three propositions (3, 5, 16) of Book V, Diophantus quotes

as known certain propositions in the Theory of Numbers,

prefixing to the statement of them the words ' We have it in

the Porisms that . .

.'

A scholium on a passage of Iamblichus, where Iamblichus

cites a dictum of certain Pythagoreans about the unit being

the dividing line (fxeOopiov) between number and aliquot parts,

says ' thus Diophantus in the Moriastica .... for he describes

as " parts " the progression without limit in the direction of

less than the unit \ The Moriastica may be a separate work
by Diophantus giving rules for reckoning with fractions ; but

I do not feel sure that the reference may not simply be to the

definitions at the beginning of the Arithmetica.

The Arithmetica.

The seven lost Books and their place.

None of the manuscripts which we possess contain more

than six Books of the Arithmetica, the only variations being

that some few divide the six Books into seven, while one or

two give the fragment on Polygonal Numbers as VIII. The
missing Books were evidently lost at a very early date.

Tannery suggests that Hypatia's commentary extended only

to the first six Books, and that she left untouched the remain-

ing seven, which, partly as a consequence, were first forgotten

and then lost (cf. the case of Apollonius's Conies, where the

only Books which have survived in Greek, I-IV, are those

on which Eutocius commented). There is no sign that even

the Arabians ever possessed the missing Books. The Fakhrl,

an algebraical treatise by Abu Bekr Muh. b. al-Hasan al-

Karkhl (d. about 1029), contains a collection of problems in

determinate and indeterminate analysis which not only show
that their author had deeply studied Diophantus but in many
cases are taken direct from the Arithmetica, sometimes with
a change in constants; in the fourth section of the work,

1623.2 O o*
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between problems corresponding to problems in Dioph. II

and III, are 25 problems not found in Diophantus, but

internal evidence, and especially the admission of irrational

results (which are always avoided by Diophantus), exclude

the hypothesis that we have here one of the lost Books.

Nor is there any sign that more of the work than we possess

was known to Abul Wafa al-Buzjani (a.d. 940-98) who wrote

a ' commentary on the algebra of Diophantus ', as well as

a 'Book of proofs of propositions used by Diophantus in his

work'. These facts again point to the conclusion that the

lost Books were lost before the tenth century.

The old view of the place originally occupied by the lost

seven Books is that of Nesselmann, who argued it with great

ability.1 According to him (1) much less of Diophantus is

wanting than would naturally be supposed on the basis of

the numerical proportion of 7 lost to 6 extant Books, (2) the

missing portion came, not at the end, but in the middle of

the work, and indeed mostly between the first and second

Books. Nesselmann's general argument is that, if we care-

fully read the last four Books, from the third to the sixth,

we shall find that Diophantus moves in a rigidly defined and

limited circle of methods and artifices, and seems in fact to be

at the end of his resources. As regards the possible contents

of the lost portion on this hypothesis, Nesselmann can only

point to (1) topics which we should expect to find treated,

either because foreshadowed by the author himself or as

necessary for the elucidation or completion of the whole

subject, (2) the Porisms; under head (l) come, (a) deter-

minate equations of the second degree, and (b) indeterminate

equations of the first degree. Diophantus does indeed promise

to show how to solve the general quadratic ax2± bx ± c = so

far as it has rational and positive solutions ; the suitable place

for this would have been between Books I and II. But there

is nothing whatever to show that indeterminate equations

of the first degree formed part of the writer's plan. Hence

Nesselmann is far from accounting for the contents of seven

whole Books ; and he is forced to the conjecture that the six

Books may originally have been divided into even more than

seven Books ; there is, h.owever, no evidence to support this.

1 Nesselmann, Algebra der Griechen, pp. 264-73.
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Relation of the ' Porisms ' to the Arithmetica,

Did the Porisms form part of the Arithmetica in its original

form ? The phrase in which they are alluded to, and which

occurs three times, 'We have it in the Porisms that . .
.' suggests

that they were a distinct collection of propositions concerning

the properties of certain numbers, their divisibility into a

certain number of squares, and so on ; and it is possible that

it was from the same collection that Diophantus took the

numerous other propositions which he assumes, explicitly or

implicitly. If the collection was part of the Arithmetica, it

would be strange to quote the propositions under a separate

title ' The Porisms ' when it would have been more natural

to refer to particular propositions of particular Books, and

more natural still to say tqjuto yap npoSiSeLKTai, or some such

phrase, ' for this has been proved ', without any reference to

the particular place where the proof occurred. The expression

'We have it in the Porisms' (in the plural) would be still

more inappropriate if the Porisms had been, as Tannery

supposed, not collected together as one or more Books of the

Arithmetica, but scattered about in the work as corollaries to

particular propositions. Hence I agree with the view of

Hultsch that the Porisms were not included in the Arith-

metica at all, but formed a separate work.

If this is right, we cannot any longer hold to the view of

Nesselmann that the lost Books were in the middle and not at

the end of the treatise ; indeed Tannery produces strong

arguments in favour of the contrary view, that it is the last

and most difficult Books which are lost. He replies first to

the assumption that Diophantus could not have proceeded

to problems more difficult than those of Book V. ' If the

fifth or the sixth Book of the Arithmetica had been lost, who,

pray, among us would have believed that such problems had

ever been attempted by the Greeks ? It would be the greatest

error, in any case in which a thing cannot clearly be proved

to have been unknown to all the ancients, to maintain that

it could not have been known to some Greek mathematician.

If we do not know to what lengths Archimedes brought the

theory of numbers (to say nothing of other things), let us

admit our ignorance. But, between the famous problem of the

G g 2
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cattle and the most difficult of Diophantus's problems, is there

not a sufficient gap to require seven Books to fill it? And,

without attributing to the ancients what modern mathe-

maticians have discovered, may not a number of the things

attributed to the Indians and Arabs have been drawn from

Greek sources? May not the same be said of a problem

solved by Leonardo of Pisa, which is very similar to those of

Diophantus but is not now to be found in the Arithmetical

In fact, it may fairly be said that, when Chasles made his

reasonably probable restitution of the Porisms of Euclid, he,

notwithstanding that he had Pappus's lemmas to help him,

undertook a more difficult task than he would have undertaken

if he had attempted to fill up seven Diophantine Books with

numerical problems which the Greeks may reasonably be

supposed to have solved.' 1

It is not so easy to agree with Tannery's view of the relation

of the treatise On Polygonal Numbers to the Arithmetica.

According to him, just as Serenus's treatise on the sections

of cones and cylinders was added to the mutilated Conies of

Apollonius consisting of four Books only, in order to make up

a convenient volume, so the tract on Polygonal Numbers was
added to the remains of the Arithmetica, though forming no

part of the larger work. 2 Thus Tannery would seem to deny

the genuineness of the whole tract on Polygonal Numbers,

though in his text he only signalizes the portion beginning

with the enunciation of the problem ' Given a number, to find

in how many ways it can be a polygonal number ' as * a vain

attempt by a commentator ' to solve this problem. Hultsch,

on the other hand, thinks that we may conclude that Dio-

phantus really solved the problem. The tract begins, like

Book I of the Arithmetica, with definitions and preliminary

propositions; then comes the difficult problem quoted, the

discussion of which breaks off in our text after a few pages,

and to these it would be easy to tack on a great variety of

other problems.

The name of Diophantus was used, as were the names of

Euclid, Archimedes and Heron in their turn, for the pur-

pose of palming off the compilations of much later authors.

1 Diophantus, ed. Tannery, vol. ii, p. xx.
2

lb., p. xviii.
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Tannery includes in his edition three fragments under the

heading ' Diophantus Pseudepigraphus '. The first, which is

not ' from the Arithmetic of Diophantus ' as its heading states,

is worth notice as containing some particulars of one of ' two

methods of finding the square root of any square number
'

;

we are told to begin by writing the number ' according to

the arrangement of the Indian method', i.e. in the Indian

numerical notation which reached us through the Arabs. The

second fragment is the work edited by C. Henry in 1879 as

Opuscnlum de multiplicatione et divisione sexagesimalibus

Diophanto vet Pappo attribueridiim. The third, beginning

with Aio(f)dvTov €7wre8ofi€TpLKd is a Byzantine compilation

from later reproductions of the yeco/xerpovfieua and o-repeo-

jieTpovjizva of Heron. Not one of the three fragments has

anything to do with Diophantus.

Commentators from Hypatia dowmvards.

The first commentator on Diophantus of whom we hear

is Hypatia, the daughter of Theon of Alexandria ; she

was murdered by Christian fanatics in a.d. 415. I have

already mentioned the attractive hypothesis of Tannery that

Hypatia's commentary extended only to our six Books, and

that this accounts for their survival when the rest were lost.

It is possible that the remarks of Psellus (eleventh century) at

the beginning of his letter about Diophantus, Anatolius and

the Egyptian method of arithmetical reckoning were taken

from Hypatia's commentary.'

Georgius Pachymeres (1240 to about 1310) wrote in Greek

a paraphrase of at least a portion of Diophantus. Sections

25-44 of this commentary relating to Book I, Def. 1 to Prop.

11, survive. Maximus Planudes (about 1260-1310) also wrote

a systematic commentary on Books I, II. Arabian commen-
tators were Abu'l Wafa al-BuzjanT (940-98), Qusta b. Liiqa

al-Ba'labakki (d. about 912) and probably Ibn al-Haitham

(about 965-1039).

Translations and editions.

To Regiomontanus belongs the credit of being the first to

call attention to the work of Diophantus as being extant in
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Greek. In an Oratio delivered at the end oi' 1463 as an
introduction to a course of lectures on astronomy which he

gave at Padua in 1403-4 he observed: 'No one has yet

translated from the Greek into Latin the fine thirteen Books
of Diophantus, in which the very flower of the whole of

arithmetic lies hid, the ars rei et census which to-day they

call by the Arabic name of Algebra.' Again, in a letter dated

February 5, 1464, to Bianchini, he writes that he has found at

Venice ' Diofantus, a Greek arithmetician who has not yet

been translated into Latin '. Rafael Bombelli was the first to

find a manuscript in the Vatican and to conceive the idea of

publishing the work; this was towards 1570, and, with

Antonio Maria Pazzi, he translated five Books out of the

seven into which the manuscript was divided. The translation

was not published, but Bombelli took all the problems of the

first four Books and some of those of the fifth and embodied

them in his Algebra (1572), interspersing them with his own
problems.

The next writer on Diophantus was Wilhelm Holzmann,

who called himself Xylander, and who with extraordinary

industry and care produced a very meritorious Latin trans-

lation with commentary (1575). Xylander was an enthusiast

for Diophantus, and his preface and notes are often delightful

reading. Unfortunately the book is now very rare. The
standard edition of Diophantus till recent years was that of

Bachet, who in 1621 published for the first time the Greek

text with Latin translation and notes. A second edition

(1670) was carelessly printed and is untrustworthy as regards

the text ; on the other hand it contained the epoch-making

notes of Fermat ; the editor was S. Fermat, his son. The

great blot on the work of Bachet is his attitude to Xylander,

to whose translation he owed more than he was willing to

avow. Unfortunately neither Bachet nor Xylander was able

to use the best manuscripts ; that used by Bachet was Parisinus

2379 (of the middle of the sixteenth century), with the help

of a transcription of part of a Vatican MS. (Vat. gr. 304 of

the sixteenth century), while Xylander's manuscript was the

Wolfenbiittel MS. Guelferbytanus Gudianus 1 (fifteenth cen-

tury). The best and most ancient manuscript is that of

Madrid (Matritensis 48 of the thirteenth century) which was
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unfortunately spoiled by corrections made, especially in Books

I, II, from some manuscript of the ' Planudean ' class ; where

this is the case recourse must be had to Vat. gr. 191 which

was copied from it before it had suffered the general alteration

referred to : these are the first two of the manuscripts used by

Tannery in his definitive edition of the Greek text (Teubner,

1893, 1895).

Other editors can only be shortly enumerated. In 1585

Simon Stevin published a French version of the first four

Books, based on Xylander. Albert Girard added the fifth and

sixth Books, the complete edition appearing in 1625. German
translations were brought out by Otto Schulz in 1822 and by

G. Wertheim in 1890. Poselger translated the fragment on

Polygonal Numbers in 1810. All these translations depended

on the text of Bachet.

A reproduction of Diophantus in modern notation with

introduction and notes by the present writer (second edition

1910) is based on the text of Tannery and may claim to be the

most complete and up-to-date edition.

My account of the Arithmetica of Diophantus will be most

conveniently arranged under three main headings (1) the

notation and definitions, (2) the principal methods employed,

so far as they can be generally stated, (3) the nature of the

contents, including the assumed Porisms, with indications of

the devices by which the problems are solved.

Notation and definitions.

In his work Die Algebra der Griechen Nesselmann distin-

guishes three stages in the evolution of algebra. (1) The
first stage he calls ' Rhetorical Algebra ' or reckoning by
means of complete words. The characteristic of this stage

is the absolute want of all symbols, the whole of the calcula-

tion being carried on by means of complete words and forming

in fact continuous prose. This first stage is represented by
such writers as Iamblichus, all Arabian and Persian algebraists,

and the oldest Italian algebraists and their followers, including

Regiomontanus. (2) The second stage Nesselmann calls the

' Syncopated Algebra ', essential ly like the first as regards
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literary style, but marked by the use of certain abbreviational

symbols for constantly recurring quantities and operations.

To this stage belong Diophantus and, after him, all the later

Europeans until about the middle of the seventeenth century

(with the exception of Vieta, who was the first to establish,

under the name of Logistica speciosa, as distinct from Logistica

numerosa, a regular system of reckoning with letters denoting

magnitudes as well as numbers). (3) To the third stage

Nesselmann gives the name of ' Symbolic Algebra ', which

uses a complete system of notation by signs having no visible

connexion with the words or things which they represent,

a complete language of symbols, which entirely supplants the

' rhetorical ' system, it being possible to work out a solution

without using a single word of ordinary language with the

exception of a connecting word or two here and there used for

clearness' sake.

Sign for the unknown (= x), and its origin,

Diophantus's system of notation then is merely abbrevia-

tional. We will consider first the representation of the

unknown quantity (our x). Diophantus defines the unknown
quantity as ' containing an indeterminate or undefined multi-

tude of units ' (7r\rj6o$ uopdScou dopidTOv), adding that it is

called dpid/xos, i.e. number simply, and is denoted by a certain

sign. This sign is then used all through the book. In the

earliest (the Madrid) MS. the sign takes the form ^, in

Marcianus 308 it appears as S. In the printed editions of

Diophantus before Tannery's it was represented by the final

sigma with an accent, /, which is sufficiently like the second

of the two forms. Where the symbol takes the place of

inflected forms dpiOfiov, dpiOfiov, &c, the termination was put

above and to the right of the sign like an exponent, e.g. ?
v
for

dpiOfjLov as r
v

for rbv, y " for dpiO/jLov; the symbol was, in

addition, doubled in the plural cases, thus ??
ot

', ss™*, &c. The

coefficient is expressed by putting the required Greek numeral

immediately after it ; thus y?
01 ia = 1 1 dpiBp.oi, equivalent

to 1 1 x, ?' a = x, and so on. Tannery gives reasons for think-

ing that in the archetype the case-endings did not appear, and
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that the sign was not duplicated for the plural, although such

duplication was the practice of the Byzantines. That the

sign was merely an abbreviation for the word dpcd/xos and no

algebraical symbol is shown by the fact that it occurs in the

manuscripts for dpiOfjios in the ordinary sense as well as for

dpiOfio? in the technical sense of the unknown quantity. Nor
is it confined to Diophantus. It appears in more or less

similar forms in the manuscripts of other Greek mathe-

maticians, e.g. in the Bodleian MS. of Euclid (D'Orville 301)

of the ninth century (in the forms 9 99, or as a curved line

similar to the abbreviation for kcli), in the manuscripts of

the Sand-reckoner of Archimedes (in a form approximat-

ing to y), where again there is confusion caused by the

similarity of the signs for dpi6p.6$ and koll> in a manuscript

of the Geodaesia included in the Heronian collections edited

by Hultsch (where it appears in various forms resembling

sometimes £ sometimes p, sometimes o, and once £, with

case-endings superposed) and in a manuscript of Theon of

Smyrna.

What is the origin of the sign? It is certainly not the

final sigma, as is proved by several of the forms which it

takes. I found that in the Bodleian manuscript of Diophantus

it is written in the form '$%, larger than and quite unlike the

final sigma. This form, combined with the fact that in one

place Xylander's manuscript read ap for the full word, suggested

to me that the sign might be a simple contraction of the first

two letters of dpiBfios. This seemed to be confirmed by
Gardthausen's mention of a contraction for ap, in the form up

occurring in a papyrus of a.d. 154, since the transition to the

form found in the manuscripts of Diophantus might easily

have been made through an intermediate form c
p. The loss of

the downward stroke, or of the loop, would give a close

approximation to the forms which we know. This hypothesis

as to the origin of the sign has not, so far as. I know, been

improved upon. It has the immense advantage that it makes
the sign for dpid/ios similar to the signs for the powers of

the unknown, e.g. AY
for Svvafxis, K

Y
for kv(3os, and to the

o

sign M for the unit, the sole difference being that the two
letters coalesce into one instead of being separate.
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Signs for the powers of the unknown and their reciprocals.

The powers of the unknown, corresponding to our x2
,
x^ ... x6

,

are defined and denoted as follows

:

x2
is Svva/xi? and is denoted by A\

X?J

„ Kvftos „ )5 55 K ,

x4
„ SwauoSuvafjus 55 „ AY

A,

x5
„ SvvafJLOKvfios 55 „ AK Y

,

XG
„ Kv(3oKvfioS „ 55 „ K

Y
K.

Beyond the sixth power Diophantus does not go. It should

be noted that, while the terms from Kvfios onwards may be

used for the powers of any ordinary known number as welLas

for the powers of the unknown, Svvajxis is restricted to the

square of the unknown ; wherever a particular square number
is spoken of, the term is rtTpdycovos dpi6[i6s. The term

SvvauoSvvajiis occurs once in another author, namely in the

Metrica of Heron, 1 where it is used for the fourth power of

the side of a triangle.

Diophantus has also terms and signs for the reciprocals of

the various powers of the unknown, i.e. for l/x, l/x2
....

As an aliquot part was ordinarily denoted by the corresponding

numeral sign with an accent, e.g. y — \, ia= yy, Diophantus

has a mark appended to the symbols for x, x2
... to denote the

reciprocals; this, which is used for aliquot parts as well, is

printed by Tannery thus, *. With Diophantus then

dpiOfiocTTou, denoted by y?, is equivalent to l/x,

SvvafAoo-TOv, „ A „ ,, 1 /x2
,

and so on.

The coefficient of the term in x, x2
... or l/x, \/x2

... is

expressed by the ordinary numeral immediately following,

e.g. AK Y
Kq = 26a;5 , A

Y* <rv = 2b0/x2
.

Diophantus does not need any signs for the operations of

multiplication and division. Addition is indicated by mere

juxtaposition ; thus K
Y
a AY

iy ? e corresponds to x?
' + 13a;2 + 5x.

1 Heron, Metrica, p. 48. 11, 19, Schone.
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When there are units in addition, the units are indicated by
o o

the abbreviation M ; thus K
Y

oc AY ty s e M (3 corresponds to

The sign (A) for minus and its meaning.

For subtraction alone is a sign used. The full term for

wanting is Xelyjns, as opposed to {jwapgi.9, a forthcoming,

which denotes a positive term. The symbol used to indicate

a ivanting, corresponding to bur sign for minus, is A, which

is described in the text as a '| turned downwards and

truncated ' (W eXXnres Karon vevov). The description is evidently

interpolated, and it is now certain that the sign has nothing

to do with y\r. Nor is it confined to Diophantus, for it appears

in practically the same form in Heron's Metrical where in one

place the reading of the manuscript is \xovd8<£>v 08 T 18',

74 — y
1
^. In the manuscripts of Diophantus, when the sign

is resolved by writing the full word instead of it, it is

generally resolved into Xeiyjrei, the dative of Xei\jrL$, but in

other places the symbol is used instead of parts of the verb

Xeiweiv, namely A*7tw or Aen/m? and once even Xittgxti
;

sometimes Xeiyfrei in the manuscripts is followed by the

accusative, which shows that in these cases the sign was
wrongly resolved. It is therefore a question whether Dio-

phantus himself ever used the dative Aen/z-ei for minus at all.

The use is certainly foreign to classical Greek. Ptolemy has

in two places Xefyav and Xdirovcrav respectively followed,

properly, by the accusative, and in one case he has to dnb

ttjs TA XeKpOev imb tov dnb Tr]s ZF (where the meaning is

ZT^—TA2
). Hence Heron would probably have written a

participle where the T occurs in the expression quoted above,

say jjLovd8(t)v 08 Xeiyfraarooy T^d(japaKai8kKaTov. On the whole,

therefore, it is probable that in Diophantus, and wherever else

it occurred, A is a compendium for the root of*the verb Xdiretv,

in fact a A with I placed in the middle (cf. A, an abbreviation

for rdXavTov). This is the hypothesis which I put forward

in 1885, and it seems to be confirmed by the fresh evidence

now available as shown above.

1 Heron, Metrica, p. 156. 8, 10.
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Attached to the definition of minus is the statement that

'a 'wanting (i.e. a minus) multiplied by a 'wanting makes
& forthcoming (i.e. a plus); and a wanting (a minus) multi-

plied by & forthcoming (a plus) makes a wanting (a minus) '.

Since Diophantus uses no sign for plus, he has to put all

the positive terms in an expression together and write all the

negative terms together after the sign for minus: e.g. for
o

xz— 5x2 -\-Sx— 1 he necessarily writes K
Y
a y 77 A AY

e M a.

The Diophantine notation for fractions as well as for large

numbers has been fully explained with many illustrations

in Chapter II above. It is only necessary to add here that,

when the numerator and denominator consist of composite

expressions in terms of the unknown and its powers, he puts

the numerator first followed by kv /xopico or fiopiov and the

denominator.

Thus AY i M fi(f>K kv uopicp AYA oc M ^ A AY
£

= (60x2 + 2520) /(x* + 900 -60x2
),

[VI. 12]

O o

and A u A M A<r kv uopicp AYA ol M A9 A AY i/3

= (15x2 -3Q)/(xi + 3e>-l2x2
)

[VI. 14].

For a term in an algebraical expression, i.e. a power of x

with a certain coefficient, and the term containing a certain

number of units, Diophantus uses the word dSos, 'species',

which primarily means the particular power of the variable

without the coefficient. At the end of the definitions he gives

directions for simplifying equations until each side contains

positive terms only, by the addition or subtraction of coeffi-

cients, and by getting rid of the negative terms (which is done

by adding the necessary quantities to both sides) ; the object,

he says, is to reduce the equation until one term only is left

on each side ;
' but ', he adds, ' I will show you later how, in

the case also where two terms are left equal to one term,

such a problem is solved '. We find in fact that, when he has

to solve a quadratic equation, he endeavours by means of

suitable assumptions to reduce it either to a simple equation

or a 'pure quadratic. The solution of the mixed quadratic
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in three terms is clearly assumed in several places of the

Arithmetica, but Diophantus never gives the necessary ex-

planation of this case as promised in the preface.

Before leaving the notation of Diophantus, we may observe

that the form of it limits him to the use of one unknown at

a time. The disadvantage is obvious. For example, where
we can begin with any number of unknown quantities and
gradually eliminate all but one, Diophantus has practically to

perform his eliminations beforehand so as to express every

quantity occurring in the problem in terms of only one

unknown. When he handles problems which are by nature

indeterminate and would lead in our notation to an inde-

terminate equation containing two or three unknowns, he has

to assume for one or other of these some particular number
arbitrarily chosen, the effect being to make the problem

determinate. However, in doing so, Diophantus is careful

to say that we may for such and such a quantity put any

number whatever, say such and such a number; there is

therefore (as a rule) no real loss of generality. The particular

devices by which he contrives to express all his unknowns
in terms of one unknown are extraordinarily various and

clever. He can, of course, use the same variable y in the

same problem with different significations successively, as

when it is necessary in the course of the problem to solve

a subsidiary problem in order to enable him to make the

coefficients of the different terms of expressions in x such

as will answer his purpose and enable the original problem

to be solved. There are, however, two cases, II. 28, 29, where

for the proper working-out of the problem two unknowns are

imperatively necessary. We should of course use x and y\

Diophantus calls the first y as usual ; the second, for want
of a term, he agrees to call in the first instance ' one unit ',

i.e. 1. Then later, having completed the part of the solution

necessary to find x, he substitutes its value and uses y over

again for what he had originally called 1. That is, he has to

put his finger on the place to which the 1 has passed, so as

to substitute y for it. This is a tour de force in the particular

cases, and would be difficult or impossible in more complicated

problems.
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The methods of Diophantus.

It should be premised that Diophantus will have in his

solutions no numbers whatever except ' rational ' numbers

;

he admits fractional solutions as well as integral, but, he

excludes not only surds and imaginary quantities but also

negative quantities. Of a negative quantity per se, i.e. with-

out some greater positive quantity to subtract it from, he

had apparently no conception. Such equations then as lead

to imaginary or negative roots he regards as useless for his

purpose ; the solution is in these cases dSvvaros, impossible.

So we find him (V. 2) describing the equation 4 = ^x + 20 as

arowos, absurd, because it would give x = — 4. He does, it is

true, make occasional use of a quadratic which would give

a root which is positive but a surd, but only for the purpose

of obtaining limits to the root which are integers or numerical

fractions ; he never uses or tries to express the actual root of

such an equation. When therefore he arrives in the course

of solution at an equation which would give an ' irrational

'

result, he retraces his steps, finds out how his equation has

arisen, and how he may, by altering the previous work,

substitute for it another which shall give a rational result.

This gives rise in general to a subsidiary problem the solution

of which ensures a rational result for the problem itself.

It is difficult to give a complete account of Diophantus's

methods without setting out the whole book,,so great is the

variety of devices and artifices employed in the different

problems. There are, however, a few general methods which

do admit of differentiation and description, and these we pro-

ceed to set out under subjects.

I. Diophantus's treatment of equations.

(A) Determinate equations.

Diophantus solved without difficulty determinate equations

of the first and second degrees ; of a cubic we find only one

example in the Arithmetica, and that is a very special case.

(1) Pure determinate equations.

Diophantus gives a general rule for this case without regard

to degree. We have to take like from like on both sides of an
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equation and neutralize negative terms by adding to both

sides, then take like from like again, until we have one term

left equal to one term. After these operations have been

performed, the equation (after dividing out, if both sides

contain a power of x, by the lesser power) reduces to Axm — B,

and is considered solved. Diophantus regards this as giving

one root only, excluding any negative value as ' impossible \

No equation of the kind is admitted which does not give

a ' rational ' value, integral or fractional. The value x — is

ignored in the case where the degree of the equation is reduced

by dividing out by any power of x.

(2) Mixed quadratic equations.

Diophantus never gives the explanation of the method of

solution which he promises in the preface. That he had

a definite method like that used in the Geometry of Heron
is proved by clear verbal explanations in different propositions.

As he requires the equation to be in the form of two positive

terms being equal to one positive term, the possible forms for

Diophantus are

(a) mx2 +p>x=-q, (b) mx2 = px + q, (c) rnx2 + q=px.

It does not appear that Diophantus divided by m in order to

make the first term a square ; rather he multiplied by m for

this purpose. It is clear that he stated the roots in the above

cases in a form equivalent to

/A ~iP+ ^(ip2 + mq) ,,. ip+ </(ip
2 + mq)

m w m
ip+ */(ip

2— mq)
(c)

7)1

The explanations which show this are to be found in VI. 6,

in IV. 39 and 31, and in V. 10 and VI. 22 respectively. For
example in V. 10 he has the equation 17 a?

2 +17 < 72 x, and he

says ' Multiply half the coefficient of x into itself and we have

1296; subtract the product of the coefficient of x2 and the

term in units, or 289. The remainder is 1007, the square root

of which is not greater than 31. Add half the coefficient of x
and the result is not greater than 67. Divide by the coefficient

of x2
, and x is not greater than ff.' In IV. 39 he has the
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equation 2x2 > 6a? + 18 and says, 'To solve this, take the square

of half the coefficient of x, i.e. 9, and the product of the unit-

term and the coefficient of x2
, i.e. 36. Adding, we have 45,

the square root of which is not less than 7. Add half the

coefficient of x [and divide by the coefficient of x2
] ; whence x

is not less than 5.' In these cases it will be observed that 31

and 7 are not accurate limits, but are the nearest integral

limits which will serve his purpose.

Diophantus always uses the positive sign with the radical,

and there has been much discussion as to whether he knew
that a quadratic equation has tivo roots. The evidence of the

text is inconclusive because his only object, in every case, is to

get one solution ; in some cases the other root would be

negative, and would therefore naturally be ignored as 'absurd'

or ' impossible '. In yet other cases where the second root is

possible it can be shown to be useless from Diophantus's point

of view. For my part, I find it difficult or impossible to

believe that Diophantus was unaware of the existence of two
real roots in such cases. It is so obvious from the geometrical

form of solution based on Eucl. II. 5, 6 and that contained in

Eucl. VI. 27-9 ; the construction of VI. 28, too, corresponds

in fact to the negative sign before the radical in the case of the

particular equation there solved, while a quite obvious and

slight variation of the construction would give the solution

corresponding to the 'positive sign.

The following particular cases of quadratics occurring in

the Arithmetica may be quoted, with the results stated by

Diophantus.

x2 = 4ic — 4 therefore x = 2. (IV. 22

325a;2 = 3#+ 18 *" — 32 5 u 25* (IV. 31

84x2 + 7x = 7 (VI. 6

S4x2-7x = 7 X — 3. (VI. 7

630&2 -73o; = 6 T — -6-^ — 35 ' (VI. 9
;

630a 2 + 73a: = 6 ; x is rational. (VI. 8]

5x < a;
2 -60 < 8x; x not < 11 and not > 12. (V. 30

17a2 +17 < 72^<19£2 +19; x not >f£ and not <f|. (V. 10

22a; < x2 + 60 < 24a; ; x not < 19 but < 21. (V. 30
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In the first and third of the last three cases the limits are not

accurate, but are integral limits which are a fortiori safe.

In the second f§ should have been fJ, and it would have been

more correct to say that, if x is not greater than fy and not

less than }|, the given conditions are a fortiori satisfied.

For comparison with Diophantus's solutions of quadratic

equations we may refer to a few of his solutions of

(3) Simultaneous equations involving quadratics.

In I. 27, 28, and 30 we have the following pairs of equations.

(a) i + v = 2a} (p) £ + v = 2a) (y) £-17 = 2a)

I use the Greek letters for the numbers required to be found

as distinct from the one unknown which Diophantus uses, and

which I shall call x.

In (a), he says, let £ — 77 = 2x (£ > 7/).

It follows, by addition and subtraction, that £ = a + x,

r] = a — x\

therefore £rj — (a + x) (a — x) = a2—x2 = B,

and x is found from the pure quadratic equation.

In (/?) similarly he assumes £ — rj = 2x, and the resulting

equation is £
2 + rj

2 = (a + x) 2 + (a— x) 2 — 2 (a2 + x2
) = B.

In (y) he puts £ + rj = 2 x and solves as in the case of (a)

.

(4) Cubic equation.

Only one very particular case occurs. In VI. 17 the problem

leads to the equation

x2 + 2x + 3 — x3 + 3x— 3x2— 1.

Diophantus says simply ' whence x is found to be 4 '. In fact

the equation reduces to

xz + x = 4a;2 + 4.

Diophantus no doubt detected, and divided out by, the common
factor x2 + 1 -, leaving x = 4.

1523.2 H ll
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(B) Indeterminate equations.

Diophantus says nothing of indeterminate equations of the

first degree. The reason is perhaps that it is a principle with

him to admit rational fractional as well as integral solutions,

whereas the whole point of indeterminate equations of the

first degree is to obtain a solution in integral numbers.

Without this limitation (foreign to Diophantus) such equa-

tions have no significance.

(a) Indeterminate equations of the second degree.

The form in which these equations occur is invariably this

:

one or two (but never more) functions of x of the form

Ax2
-f Bx + G or simpler forms are to be made rational square

numbers by finding a suitable value for x. That is, we have

to solve, in the most general case, one or two equations of the

form Ax2 + Bx + C = y
2

.

(1) Single equation.

The solutions take different forms according to the particular

values of the coefficients. Special cases arise when one or

more of them vanish or they satisfy certain conditions.

1. When A or G or both vanish, the equation can always

be solved rationally.

Form Bx = y
2

.

Form Bx -\-G — y
2

.

Diophantus puts for y
2 any determinate square m2

, and x is

immediately found.

Form Ax2 + Bx = y
2

.

m
Diophantus puts for y any multiple of x, as — x.

n

2. The equation Ax2 + G = y
2 can be rationally solved accord-

ing to Diophantus

:

(a) when A is positive and a square, say a2
;

in this case we put a2x2 + G = (ax ± m) 2
, whence

C—m2

x = -f~ 2ma

(m and the sign being so chosen as to give x a positive value)

;



INDETERMINATE EQUATIONS 467

(ft) when G is positive and a square, say c
2

;

in this case Diophantus puts Ax2 + c
2 — (mx±c)2

, and obtains

2mc
x = -f A —m2

(y) When one solution is known, any number of other

solutions can be found. This is stated in the Lemma to

VI. 15. It would be true not only of the cases + Ax2 + C = y
2

,

but of the general case Ax2 + Bx + G — y
2
. Diophantus, how-

ever, only states it of the case Ax2— C = y
2

.

His method of finding other (greater) values of x satisfy-

ing the equation when one (x ) is known is as follows. If

A x 2— G = q
2
, he substitutes in the original equation (x + x)

for x and (q— lcx) for y, where k is some integer.

Then, since A (x + x) 2 — G = (q— kx)2
, while Ax 2— G = q

2
,

it follows by subtraction that

2 x (Ax + kq) — x2 (Ir— A),

whence x = 2 (Ax + kq) / (k2 — A),

, , . . „ . 2(Ax + hq)
and the new value ot x is xQ

-\ -j* ~r •

Form Ax2 — c
2 = y

2
.

Diophantus says (VI. 14) that a rational solution of this

case is only possible when A is the sum of two squares.

[In fact, if x = p/q satisfies the equation, and Ax2— c
2 = k2

,

we have Ap2 = c
2
q
2 + k2

q
2

,

M?r+(f)-]
Form Ax2 + G = y

2
.

Diophantus proves in the Lemma to VI. 12 that this equa-

tion has an infinite number of solutions when A + Gis a square,

i.e. in the particular case where x = 1 is a solution. (He does

not, however, always bear this in mind, for in III. 10 he

regards the equation 52x2 +l2 = y
2 as impossible though

52 + 12 = 64 is a square, just as, in III. 11, 266a;2- 10 = y
2

is regarded as impossible.)

Suppose that A + C = q
2

; the equation is then solved by
H h 2
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substituting in the original equation 1 + x for x and (q — kx)

for y, where h is some integer.

3. Form Ax*1 + Bx + G — y
2

.

This can be reduced to the form in which the second term is

wanting by replacing x by z — —j •

Diophantus, however, treats this case separately and less

fully. According to him, a rational solution of the equation

Ax2 + Bx + C,= y
2

is only possible

(a) when A is positive and a square, say a2
;

(/?) when C is positive and a square, say c
2

;

(y) when %B2—AC is positive and a square.

In case (a) y is put equal to (ax— m), and in case (ft) y is put

equal to (mx— c).

Case (y) is not expressly enunciated, but occurs, as it

were, accidentally (IV. 31). The equation to be solved is

3 x + 1 8 — x2 = y
2

. Diophantus first assumes 3 x + 1 8 — x2= 4 x2
,

which gives the quadratic 3^+18 = 5^c2 ; but this 'is not

rational '. Therefore the assumption of 4 x2 for y
2 will not do,

' and we must find a square [to replace 4] such that 1 8 times

(this square + 1) + (f)
2 may be a square'. The auxiliary

equation is therefore 18(m2 + 1) +f = y
2

, or 72m2 + 81= a

square, and Diophantus assumes 72m8 + 8 1 = (8m + 9)
2

, whence

m= 1 8. Then, assuming 3 x + 1 8 — x2 = (1 S)
2x2

, he obtains the

equation 325a;2— 3x— 18 = 0, whence x = /2\, that is, -^V

(2) Double equation.

The Greek term is SLTrXota-oTrjs, SnrXi] 1(t6tt}s or 8nr\rj lo-cocris.

Two different functions of the unknown have to be made
simultaneously squares. The general case is to solve in

rational numbers the equations

mx2 + a x + a = u2

)

rac2 + /?#+ 6 = w2
j

The necessary preliminary condition is that each of the two

expressions can be made a square. This is always possible

when the first term (in x2
) is wanting. We take this simplest

case first.
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1 . Double equation of the first degree.

The equations are

oc x + a = u2
,

fix + b = w2
.

Diophantus has one general method taking slightly different

forms according to the nature of the coefficients.

(a) First method of solution.

This depends upon the identity

{Hp+q)V-ii(p-q)V = M-

If the difference between the two expressions in x can be

separated into two factors p, q, the expressions themselves

are equated to
{ \ (p + q)

}

2 and
{ i (£>— #) }

2 respectively. As
Diophantus himself says in II. 11, we ' equate either the square

of half the difference of the two factors to the lesser of the

expressions, or the square of half the sum to the greater'.

We will consider the general case and investigate to what
particular classes of cases the method is applicable from

Diophantus's point of view, remembering that the final quad-

ratic in x must always reduce to a single equation.

Subtracting, we have (oc — fi)x + (a— b) = u2—w2
.

Separate (ot — l3)x + (a— b) into the factors

p> {(ot-p)x + (a-b)}/p.

We write accordingly

(oi-fi)x + (a-b)
u + iv = — -.

p

u + w = p.

mi o , , ((a—&)x+ (a— b) )
2

Thus u2 = <\x + a — \ V — ' +Ve \

i P s

therefore
f (a - /3) x + a - b +p

2
}

2 = 4p2
(oc x + a).

This reduces to

(oc - f3)
2 x2 + 2x

{ (oc-P) (a - b) -p2
(oc + /3)}

+ {a -b) 2 -2p
2
(a + b)+ p

4 = 0.
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In order that this equation may reduce to a simple equation,

either

(1) the coefficient of x2 must vanish, or <x — ft = 0,

or (2) the absolute term must vanish, that is,

p* - 2p2 (a + b) + (a- b)
2 = 0,

or • {p
2+(a + b)} 2 = 4ab,

so that ab must be a square number.

As regards condition (1) we observe that it is really sufficient

if ocn2 = /3m2
, since, if oc x + a is a square, (oc x + a)

n

2 is equally

a square, and, if ftx + b is a square, so is (fix + b)m2
, and

vice versa.

That is, (1) we can solve any pair of equations of the form

ocm2x + a = u2

ocn2x + b= w2

Multiply by n2
, in2 respectively, and we have to solve the

equations

ocm2n2x + an2 = u'2

ocm2n2 x + bm2= w'2

Separate the difference, an2— bm2
, into two factors p, q and

put u' ± w = p>,

u' + w'=q',

therefore u'2 = J (p + q)
2

, w'2 = \ (p— q)
2

,

and ocm2 n2x + an2 = i(p + q)
2

>

ocm2n2 x + bm2 = i(p— q)
2

',

and from either of these equations we get

i (p
2 + q

2
)
— % (an

2 + bm2
)

ocmzn^

since pq = an2— bm2
.

Any factors p, q can be chosen provided that the resulting

value of x is positive.
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Ex. from Diophantus

:

65- 6x = u2
) /TAr %

65-24a5 = w-

j

'

therefore 260-24 x = u"2

65- 24 &• =w™

The difference = 195 = 15 .13, say

;

therefore J(15 — 13)
2 = 65-24^; that is, 24x = 64, and x = §.

Taking now the condition (2) that ab is a square, we see

that the equations can be solved in the cases where either

a and b are both squares, or the ratio of a to 6 is the ratio of

a square to a square. If the equations are

OLX+ C
2 = U2

,

fix + d2 = w2
,

and factors are taken of the difference between the expressions

as they stand, then, since one factor p, as we saw, satisfies the

equation
{p

2- (c
2 + d2

)

}

2 = 4 c
2cl\

we must have p = c±d.

Ex. from Diophantus:

10x + 9 = u2

)

(III. 15
5x + 4:=w2

\

v '

The difference is 5#+5 = 5(oj+1); the solution is given by
(\x + 3)

2 = 1 Ox + 9, and x = 28.

Another method is to multiply the equations by squares

such that, when the expressions are subtracted, the absolute

term vanishes. The case can be worked out generally, thus.

Multiply by d2 and c
2 respectively, and we have to solve

otd2x + c
2d2 = u2

1

fic
2x + c

2d2 = w2
j

Difference = (ocd
2— /3c

2)x = px .q say.

Then x is found from the equation

ocd2x + c
2d2 — \ (px + q)

2
,

which gives p
2x2 + 2x(pq— 2otd2

) + q
2 -4c2d2 = 0,
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or, since pq = (xd2 — /3c
2

,

p
2x2 - 2x(ocd2 + /3 c

2
) + q

2- 4 c
2d2 = 0.

In order that this may reduce to a simple equation, as

Diophantus requires, the absolute term must vanish, so that

q = 2cd. The method therefore only gives one solution, since

q is restricted to the value 2 cd.

Ex. from Diophantus

:

$X+4:=U2
) /TTr v

oh' (IV. 39)
6aj + 4=w2

J

Difference 2 x
; q necessarily taken to be 2 V^ or 4 ; factors

therefore \x> 4. Therefore Sx + 4 = J (^se + 4)
2

, and aj = 112.

({$) Second method of solution of a double equation of the

first degree.

There is only one case of this in Diophantus, the equations

being of the form

hx + n2 = u2
)

(h+f)x + n2 =w2
\

Suppose hx + n2 = (2/ + n) 2
; therefore hx — y

2 + 2 tit/,

and (//. +/ ) a; + 7i
2 = (2/ + n)2 + y- (y

2 + 2 tm/).

It only remains to make the latter expression a square,

which is done by equating it to (py— n)2
.

The case in Diophantus is the same as that last mentioned

(IV. 39). Where I have used y, Diophantus as usual contrives

to use his one unknown a second time.

2. Double equations of the second degree.

The general form is

Ax2 +Bx +0 = u2 '

A'x* + B'x + C'=w2
\

'

but only three types appear in Diophantus, namely

, s p
2x2 + ocx + a — u2

}
. .

( 1 )

'

„ , „ . where, except in one case, a = o.
S J

p
2x2 + /3x + h = w2

}

F
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(2)

x2 + ocx + a = u 2
)

@x2 + a = iv
2
J

(The case where the absolute terms are in the ratio of a square

to a square reduces to this.)

In all examples of these cases the usual method of solution

applies.

olx2 + ax = u 2
)

^ px2 +bx = w2 }'

The usual method does not here serve, and a special artifice

is required.

Diophantus assumes u2 = m2x2
.

Then x — a/(m2— oc) and, by substitution in the second

equation, we have

2 ba
8 (
—

7> ) + —-= ? which must be made a square,
Vm-— a/ m — a

or a2
/3 + ba(m2— oc) must be a square.

We have therefore to solve the equation

abm2 + a(a,p — ah) = y
2

,

which can or cannot be solved by Diophantus's methods

according to the nature of the coefficients. Thus it can be

solved if (a (3— 0(b)/a is a square, or if <i/b is a square.

Examples in VI. 12, 14.

(b) Indeterminate equations of a degree higher than the

second.

(1) Single equations.

There are two classes, namely those in which expressions

in x have to be made squares or cubes respectively. The
general form is therefore

Axn + Bxn ~ l + ... + Kx- L = y
2 or y

?\

In Diophantus n does not exceed 6, and in the second class

of cases, where the expression has to be made a cube, n does

not generally exceed 3.
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The species of the first class found in the Arithmetica are

as follows.

1. Equation Ax* + Bx2 + Cx + d 2 = y
2

.

As the absolute term is a square, we can assume

G
y = 2d

x+<l

or we,might assume y = m2x2
4- nx + d and determine m, n so

that the coefficients of x, x2 in the resulting equation both

vanish.

Diophantus has only one case, x3— 3x2 -\-3x+l — y
2 (VI. 1 8),

and uses the first method.

2. Equation A cc
4 + Bxz + Cx2 + Dx + E = y

2
, where either A or

E is a square.

If J. is a square (= a 2
), we may assume y = ax2

H x + n,

determining n so that the term in x2 in the resulting equa-

tion may vanish. If E is a square (= e
2
), we may assume

D
2e

resulting equation may vanish. We shall then, in either case,

obtain a simple equation in x.

3. Equation Ax4
" + Cx2 + E = y

2
, but in special cases only where

all the coefficients are squares.

4. Equation Axi -\-E=y2
.

The case occurring in Diophantus is #4 + 97 — y
2 (V. 29).

Diophantus tries one assumption, y = x2 — 1 0, and finds that

this gives x2 = £$, which leads to no rational result. He
therefore goes back and alters his assumptions so that he

is able to replace the refractory equation by x4: + 337 = y
2
,

and at the same time to find a suitable value for y, namely

y = x2— 25, which produces a rational result, x — -f-.

5. Equation of sixth degree in the special form

x6— Axz + Bx + c
2 -— y\

Putting y = x3 + c, we have — Ax2A-B = 2cx2
,

and

B B
x2 = —. , which gives a rational solution if ~.—— is

A + 2c s ^l + 2c

y = mx2 + - x + e, determining m so that the term in x2 in the



INDETERMINATE EQUATIONS 475

a square. Where this does not hold (in IV. 18) Diophantus

harks back and replaces the equation xG— I6x3 + X + 64 — y
2

by another, x6— 1 2 8 x3 + x + 4 09 6 = y
2

.

Of expressions which have to be made cubes, we have the

following cases.

1. Ax2 + Bx + C = y
3

.

There are only two cases of this. First, in VI. 1, x2— 4x + 4

has to be made a cube, being already a square. Diophantus

naturally makes x— 2 a cube.

Secondly, a peculiar case occurs in VI. 1 7, where a cube has

to be found exceeding a square by 2. Diophantus assumes

(x— l) 3 for the cube and (x+ l) 2 for the square. This gives

x3 - 3 x1 + 3x - 1 = x2 + 2x + 3,

or x' + x = 4ic
2 + 4. We divide out by x2 +l, and x = 4. It

seems evident that the assumptions were made with knowledge

and intention. That is, Diophantus knew of the solution 27

and 25 and deliberately led up to it. It is unlikely that he was
aware of the fact, observed by Fermat, that 27 and 25 are the

only integral numbers satisfying the condition.

2. Ax3 + Bx2 + Gx + D = y
3

, where either A or D is a cube

number, or both are cube numbers. Where A is a cube (a3),

we have only to assume y = ax+ -^—^ , and where D is a cube

G
(d3

), y— —-u^x + d. Where A = a3 and D = d3
, we can use

either assumption, or put y = ax + d. Apparently Diophantus

used the last assumption only in this case, for in IV. 27 he

rejects as impossible the equation Sx3— x2 + 8x— 1 = y
3

,

because the assumption y = 2x— 1 gives a negative value

x = — yx, whereas either of the above assumptions gives

a rational value.

(2) Double equations.

Here one expression has to be made a square and another

a cube. The cases are mostly very simple, e.g. (VI. 19)

4# + 2 = y
3 '

2x + \ = z 2
\

'

thus y
3 .= 232

, and z = 2.
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More complicated is the case in VI. 21 :

2xl + 2x = y
2 '

x3 + 2x2 + x= z*
t

Diophantus assumes y = mx, whence x = 2/(m2 — 2), and

/ 2 y / 2 \
a 2W ~2/ + \m^2/ + m^2 ~ *"'

2m4
Q

or = 2 .

(m2 -2)3

We have only to make 2m4
, or 2 m, a cube.

II. Method of Limits.

As Diophantus often has to find a series of numbers in

order of magnitude, and as he does not admit negative

solutions, it is often necessary for him to reject a solution

found in the usual course because it does not satisfy the

necessary conditions ; he is then obliged, in many cases, to

find solutions lying within certain limits in place of those

rejected. For example

:

1. It is required to find a value of x such that some power of

it, xn , shall lie between two given numbers, say a and b.

Diophantus multiplies both a and b by 2 n , 3n, and so on,

successively, until some nth power is seen which lies between

the two products. Suppose that cn lies between apn and bp11

;

then we can put x = c/jj, for (e/p) n lies between a and b.

Ex. To find a square between 1^ and 2. Diophantus

multiplies by a square 64; this gives 80 and 128, between

which lies 100. Therefore (V)
2 or ff solves the problem

(IV. 31 (2)).

To find a sixth power between 8 and 16. The sixth powers

of 1, 2, 3, 4 are 1, 64, 729, 4096. Multiply 8 and 16 by 64

and we have 512 and 1024, between which 729 lies; --££- is

therefore a solution (VI. 21).

2. Sometimes a value of x has to be found which will give
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some function of x a value intermediate between the values

of two other functions of x.

Ex. 1. In IV. 25 a value of x is required such that 8/(x2 + x)

shall lie between x and x + 1

.

One part of the condition gives 8 > x'
d + x2

. Diophantus

accordingly assumes 8 = (x + -§)
:j = x ?> + x2 + ^x + ^, which is

> #3 + &2
. Thus *£ + § = 2 or sc = •§ satisfies one part of

the condition. Incidentally it satisfies the other, namely

8/(x2 + x) < x+l. This is a piece of luck, and Diophantus

is satisfied with it, saying nothing more.

Ex. 2. We have seen how Diophantus concludes that, if

i(a;2-_ 60) > x> 1(^-60),

then x is not less than 11 and not greater than 12 (V. 30).

The problem further requires that x2 — 60 shall be a square.

Assuming x2— 60 = (x—m)2
, we find x — (m2 + 60)/ 2m.

Since x > 11 and < 12, says Diophantus, it follows that

24m > m2 + 60 > 22 m;

from which he concludes that m lies between 19 and 21.

Putting m =20, he finds x— \\\.

III. Method of approximation to Limits.

Here we have a very distinctive method called by Diophantus

TrapiaroT-qs or 7rapL(r6Tr]T0? dyooyrj. The object is to solve such

problems as that of finding two or three square numbers the

sum of which is a given number, while each of them either

approximates to one and the same number, or is subject to

limits which may be the same or different.

Two examples will best show the method.

Ex. 1. Divide 13 into two squares each of which > 6 (V. 9).

Take half of 13, i.e. 6^, and find what small fraction 1 /x2

added to it will give a square

;

1 1

thus 6h H

—

r,> or 26 H > must be a square.
x2 y
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Diophantus assumes

26+ y
=

(
5+ ^)'' or 26 ^-+1 = (

By+ 1f>

whence

2/= 10, and 1 /if = T§n

;

i.e. 1 /x2 = ^ 5
and 6£ +^= (j$)».

[The assumption of 5 H— as the side is not haphazard : 5 is

chosen because it is the most suitable as giving the largest

rational value for y.]

We have now, says Diophantus, to divide 13 into two
squares each of which is as nearly as possible equal to (f^)

2
.

Now 13 = 3 2
-f*2

2
[it is necessary that the original number

shall be capable of being expressed as the sum of two squares]
;

and 3 > f£ by 2
9
o,

while 2<f£byf£.
But if we took 3— ^%, 2 +-JJ as the sides of two squares,

their sum would be 2(f£)
2 = -5

3
2
o°o

2
-> which is > 13.

Accordingly we assume 3 — 9#, 2 + 11a? as the sides of the

required squares (so that x is not exactly ^ but near it).

Thus (3-9ic)2 + (2 + ll^)'2 = 13,

and we find x = T|T .

The sides of the required squares are f£y, fff

.

Ex. 2. Divide 10 into three squares each of which > 3

(V.ll).

[The original number, here 1 0, must of course be expressible

as the sum of three squares.]

Take one-third of 10, i.e. 3J, and find what small fraction

\/

x

1 added to it will make a square; i.e. we have to make

1 9 1

3§+ ~2 a square >
i- e - 30 + -pi

must be a square, or 30 H gx x -1

y

= a square, where 3 /x = 1 / y.

Diophantus assumes

30y*+l =(52/+l) 2
,

the coefficient of y, i.e. 5, being so chosen as to make l/y as

small as possible

;
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therefore y = 2, and 1 /x2 = ^ ; and 3| + 3^ = ~W~> a square.

We have now, says Diophantus, to divide 10 into three

squares with sides as near as may be to -^.

Now 10 = 9 + 1 = 3 2 + (f)
2 + (f)

2
.

Bringing 3, § , § and -^ to a common denominator, we have
9 18 2 4 orwl 5 5
30) 3~0> '3 0' clllU 3"0 '

and 3 > |§ by |f ,

a < 1 5 Uv 3 7
5 ^ 3 u

«7 3 0'

5 ^ 3 UJ 30"

If now we took 3 — •§§ , f + -§£ , f + §£ as the sides of squares,

the sum of the squares would be 3 (V)
2 or Vw~> which is > 10.

Accordingly we assume as the sides 3 — 35 #, § + 3 7 a:, f + 3 1 sc,

where # must therefore be not exactly ^ but near it.

Solving (3 - 35 x)2 + (§ + 37a;)
2 + (f + 31 x) 2 = 10,

or 10-116^ + 3555a;2 = 10,

we find x = ^A 5

thus the sides of the required squares are VtiS Vtt
5
"* VttS

the squares themselves are VoW/iS VoWinS VoWA4
-

Other instances of the application of the method will be

found in V. 10, 12, 13, 14.

Porisms and propositions in the Theory of Numbers.

I. Three propositions are quoted as occurring in the Porisms
(' We have it in the Porisms that ...'); and some other pro-

positions assumed without proof may very likely have come

from the same collection. The three propositions from the

Porisms are to the following effect.

1. If a is a given number and x, y numbers such that

x + a = m2
, y + a = n2

, then, if xy + a is also a square, m and n
differ by unity (V. 3).

[From the first two equations we obtain easily

xy + a = m 2n2 — a (m2 + n2— 1) + a2
,

and this is obviously a square if m2 + n2 — 1 = 2mn, or

m — n = + 1.]
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2. If m2
,
(m+ l)

2 be consecutive squares and a third number
be taken equal to 2{m2 + (m+ l)2 } +2, or 4(m2 + m+l), the

three numbers have the property that the product of any two

plus either the sum of those two or the remaining number
gives a square (V. 5).

[In fact, if X, Y, Z denote the numbers respectively,

XY+X+Y= (m2 + m+l)2
, XY+ Z = (m2 +m + 2)

2
,

YZ + F+ Z = (2m- + 39?i. + 3)
2

, YZ+ X = (2??^
2 + 3m + 2)

2
,

£X + Z +X = (2m2 +m + 2)
2

, ^Z + Y = (2m2 +m + l) 2
.]

3. The difference of any two cubes is also the sum of two

cubes, i.e. can be transformed into the sum of two cubes

(V. 16).

[Diophantus merely states this without proving it or show-

ing how to make the transformation. The subject of the

transformation of sums and differences of cubes was investi-

gated by Vieta, Bachet and Fermat.]

II. Of the many other propositions assumed or implied by

Diophantus which are not referred to the Porisms we may
distinguish two classes.

1. The first class are of two sorts; some are more or less

of the nature of identical formulae, e.g. the facts that the

expressions {%(a + b)} 2 — ab and a2 (a+ l)2 + a2 + (<x+ l)
2 are

respectively squares, that a (a2— a) + a + (a2— a) is always a

cube, and that 8 times a triangular number ^its 1 gives

a square, i.e. 8 . Jo; (#:+ 1) + 1 = (2&+1) 2
. Others are of the

same kind as the first two propositions quoted from the

Porisms, e.g.

(1) If X =a2x + 2a, Y= (a+l)2x+2(a+l) or, in other

words, if xX+l = (ax+l)'~ and xY+ 1 = {(a+ l)x+ 1 }
2

,

then Z7+1 is a square (IV. 20). In fact

ZF+1 = {a(a+l)x + (2a+l)} 2
.

(2) If X±a = m2
, Y±a= (m+l) 2,and Z = 2(X+ F)-l

3

then YZ±a, ZX±a, XY±a are all squares (V, 3, 4).
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In fact YZ±a — {(m+l)(2m+l)+ 2a} 2
,

ZX±a= {m(2m+l) + 2a} 2
,

XY±a= {m(m + 1) + a }
2

.

(3) If

X = m2 + 2, Y = (m + 1)
2 + 2, if = 2 {m2 + (m + l)

2 + 1 } + 2,

then the six expressions

7Z-(Y+Z), ZX-(Z + X), XY-(X+Y),

YZ-X, ZX-Y, XY-Z

are all squares (V. 6).

In fact

YZ- (Y+ Z) = (2m2 + 3m + 3)
2

, FZ-Z=(2m2+ 3m + 4)
2

, &c.

2. The second class is much more important, consisting of

propositions in the Theory of Numbers which we find first

stated or assumed in the Arithmetica. It was in explana-

tion or extension of these that Fermat's most famous notes

were written. How far Diophantus possessed scientific proofs

of the theorems which he assumes must remain largely a

matter of speculation.

(a) Theorems on the composition of numbers as the sum
of two squares.

(1) Any square number can be resolved into two squares in

any number of ways (II. 8).

(2) Any number which is the sum of two squares can be

resolved into two other squares in any number of ways (II. 9).

(It is implied throughout that the squares may be fractional

as well as integral.)

(3) If there are two whole numbers each of which is the

sum of two squares, the product of the numbers can be

resolved into the sum of two squares in two ways.

In fact (a2 + b 2
)
(c

2 + d2
) = (ac± bdf + (ad + be)

2
.

This proposition is used in III. 19, where the problem is

to find four rational right-angled triangles with the same
1523.2 J j
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hypotenuse. The method is this. Form two right-angled

triangles from (a, b) and (c, d) respectively, by which Dio-

phantus means, form the right-angled triangles

(a2 + b 2
, a 2 -b2

, 2ab) and (c
2 + d2

, c
2-d2

, 2cd).

Multiply all the sides in each triangle by the hypotenuse of

the other; we have then two rational right-angled triangles

with the same hypotenuse (a2 + b2
)
(c

2 + d2
).

Two others are furnished by the formula above; for we
have only to ' form two right-angled triangles ' from (ac + bd,

ad— be) and from (ac — bd, ad + bc) respectively. The method
fails if certain relations hold between a, b, c, d. They must
not be such that one number of either pair vanishes, i.e. such

that ad = be or ac = bd, or such that the numbers in either

pair are equal to one another, for then the triangles are

illusory.

In the case taken by Diophantus a2 + b2 = 2 2 + l
2 = 5,

c
2 + d2 = S 2 + 2 2 = 1 3, and the four right-angled triangles are

(65, 52, 39), (65, 60, 25), (65, 63, 16) and (65, 56, 33).

On this proposition Fermat has a long and interesting note

as to the number of ways in which a prime number of the

form 4 n + 1 and its powers can be (a) the hypotenuse of

a rational right-angled triangle, (b) the sum of two squares.

He also extends theorem (3) above :
' If a prime number which

is the sum of two squares be multiplied by another prime

number which is also the sum of two squares, the product

will be the sum of two squares in two ways ; if the first prime

be multiplied by the square of the second, the product will be

the sum of two squares in three ways ; the product of the first

and the cube of the second will be the sum of two squares

in four ways, and so on ad infinitum!

Although the hypotenuses selected by Diophantus, 5 and 1 3,

are prime numbers of the form 4^+ 1, it is unlikely that he

was aware that prime numbers of the form 4^+1 and

numbers arising from the multiplication of such numbers are

the only classes of numbers which are always the sum of two
squares ; this was first proved by Euler.

(4) More remarkable is a condition of possibility of solution

prefixed to V. 9, 'To divide 1 into two parts such that, if
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a given number is added to either part, the result will be a

square.' The condition is in two parts. There is no doubt as

to the first, ' The given number must not be odd ' [i.e. no

number of the form 4?i + 3 or 4/i— 1 can be the sum of two

squares] ; the text of the second part is corrupt, but the words

actually found in the text make it quite likely that corrections

made by Hankel and Tannery give the real meaning of the

original, ' nor must the double of the given number plus 1 be

measured by any prime number which is less by 1 than a

multiple of 4
'. This is tolerably near the true condition

stated by Fermat, ' The given number must not be odd, and

the double of it increased by 1, when divided by the greatest

square which measures it, must not be divisible by a prime

number of the form 4?i— 1.'

(/3) On numbers which are the sum of three squares.

In V. 11 the number 3a +1 has to be divisible into three

squares. Diophantus says that a 'must not be 2 or any
multiple of 8 increased by 2

'. That is, ' a number of the

form 24n + 7 cannot be the sum of three squares \ As a matter

of fact, the factor 3 in the 24 is irrelevant here, and Diophantus

might have said that a number of the form 8^+7 cannot be

the sum of three squares. The latter condition is true, but

does not include all the numbers which cannot be the sum of

three squares. Fermat gives the conditions to which a must be

subject, proving that 3a + 1 cannot be of the form 4W (24& + 7)

or 4W (8&+ 7), where k = or any integer.

(y) Composition of numbers as the sum offour squares.

There are three problems, IV. 29, 30 and V. 14, in which it

is required to divide a number into four squares. Diophantus

states no necessary condition in this case, as he does when
it is a question of dividing a number into three or tiuo squares.

Now every number is either a square or the sum of two, three

or four squares (a theorem enunciated by Fermat and proved
by Lagrange who followed up results obtained by Euler), and
this shows that any number can be divided into four squares

(admitting fractional as well as integral squares), since any
square number can be divided into two other squares, integral

ii 2
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or fractional. It is possible, therefore, that Diophantus was
empirically aware of the truth of the theorem of Fermat, but

we cannot be sure of this.

Conspectus of the Arithmetical with typical solutions.

There seems to be no means of conveying an idea of the

extent of the problems solved by Diophantus except by giving

a conspectus of the whole of the six Books. Fortunately this

can be done by the help of modern notation without occupying

too many pages.

It will be best to classify the propositions according to their

character rather than to give them in Diophantus's order. It

should be premised that x, y, z . . . indicating the first, second

and third . . . numbers required do not mean that Diophantus

indicates any of them by his unknown (?) ; he gives his un-

known in each case the signification which is most convenient,

his object being to express all his required numbers at once in

terms of the one unknown (where possible), thereby avoiding the

necessity for eliminations. Where I have occasion to specify

Diophantus's unknown, I shall as a rule call it £, except when
a problem includes a subsidiary problem and it is convenient

to use different letters for the unknown in the original and

subsidiary problems respectively, in order to mark clearly the

distinction between them. When in the equations expressions

are said to be = u2
, v2

, iv
2

, t
2

... this means simply that they

are to be made squares. Given numbers will be indicated by

a, b, c . . . m, n . . . and will take the place of the numbers used

by Diophantus, which are always specific numbers.

Where the solutions, or particular devices employed, are

specially ingenious or interesting, the methods of solution will

be shortly indicated. The character of the book will be best

appreciated by means of such illustrations.

[The problems marked with an asterisk are probably

spurious.]

(i) Equations of the first degree with one unknown.

I. 7. x— a — m(x— b).

I. 8. x + a = m (x + b).
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I. 9. a — x = m(b — x).

I. 10. x + b = m(a— x).

I. 11. x + b = m(x— a).

I. 39. (a + x)b+{b + x)a = 2(a + b)x, t

or (a + b) x + {b + x)a — 2 (a + x) b, L (a > b)

or (a + b) x + (a + x) b = 2 (6 + sc)a.

)

Diophantus states this problem in this form, ' Given

two numbers (a, b), to find a third number (x) such that

the numbers
(a + x)b, (b + x)a, (a + b)x

are in arithmetical progression.'

The result is of course different according to the order

of magnitude of the three expressions. If cob (5 and 3

are the numbers in Diophantus), then (a + x)b < {b+x)a\

there are consequently three alternatives, since (a + x)b

must be either the least or the middle, and (b 4- x) a either

the middle or the greatest of the three products. We may
have

(a + x) b < (a + b) x < (b + x)a,

or (a + b) x < (a + x) b < (b + x)a>

or (a + x) b < (b + x) a < (a + b) x,

and the corresponding equations are as set out above.

(ii) Determinate systems of equations of the first degree.

I. 1. x + y = a, x— y = b.

I. 2. x + y — a, x= my,

I. 4. x— y = a, x = my.

I. 3. x + y = a, x = my + b.

I. 5. x + y = a, —x-\— y=b, subject to necessary condition.

1 1

I. 6. x + y — a, — x y= b
}m n
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I. 12. x
1 + x2= y1 + y2= a,x

1
= my

2,y1
= nx2 (x

1
>x

2,y1 >y2)*

I. 13. x
1
+ x

2
=

7/i + y2
= z

1
-\- z2 — a

'

(x
1
>x

2 , yL >y,, z
x
>z

2).

x
1
= my

2 , y L
= nz

2 , z
x =px2 \

I. 15. x + a = m(y— a), y + b — n{x—b).

[Diophantus puts y = £ + a, where £ is his unknown.]

I. 16. y + = a, z + a; = b, x + 2/ = r . [Dioph. puts g=x + y + z.]

I. 17. ^ + +w= a, 2 +w + a? = b, w + x+ 2/ = c> &.+ 2/ + z = ^«

[x + y + z +w= f.
]

I. 18. i/ + 3— 35 = a, z + x— y = b, x + y — z = c.

[Dioph. puts 2 £ = x + y + z.]

I. 19. ?/ + + w — a; = a, £ + 10 + 05— y = b, w + x + y— z=c,
x + y + z — iv = d.

[2£ = 05 + 2/ + + 10.]

I. 20. 05 + 1/ + = a, 05 + 2/ = m0
> 2/ + = ^^

1.21. 05 = y + — z, y — z + -x, z = a-\— y (where x>y> z),

with necessary condition.

11.18* ^(l a + a
)
+ (I, + c) = 2/

_(L
2/ + 6) + (i a? + a

)

<7.

[Solution wanting.]
^

(iii) Determinate systems of equations reducible to the

first degree.

I. 2G. ao5«= a 2
, bx = a.

I. 29. 05 + 2/ = a, x2— y
2 = b. [Dioph. puts 2^ = 05-?/.]

/I. 31. x — my, x2 + y
2 = n(x + y).

I. 32. 05 = my, x2
-\-y

2 — n(x— y).

I. 33. 05 = m?/, x2— y
2 — n(x-\-y).

I. 34. 03 = my, x2—y2 = n(x — y).

I. 34. Cor. 1. 05 = my, 07/ = n(x + y).

Cor. 2. 03 = my, 0,7/ = n(x — y).
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(I. 35. x — my, y
2 = nx.

I. 36. x = my, y
2 = ny.

I. 37. x — my, y
2 = n(x + y).

I. 38. x = my, y
2 = n(x— y).

I. 38. Cor. x = my, x2 = ny.

„ x = my, x2 = nx.

J}
x = my, x2 = n (x + y).

„ x = my, x2 = n(x— y).

II. 6*. x — y — a, x2— y
2 = x— y + b.

IV. 36. yz = m(y + z), zx = n(z + x), xy = rp(x + y).

[Solved by means of Lemma : see under (vi) Inde-

terminate equations of the first degree.]

(iv) Determinate systems reducible to equations of

second degree.

I. 27. x + y = a, xy = b.

[Dioph. states the necessary condition, namely that

\a2— b must be a square, with the words eVrt 8e tovto

) TrXa&iiaTLKov, which no doubt means 'this is of the

nature of a formula (easily obtained) '. He puts

x~y = 2£]

I. 30. x— y — a, xy = b.

[Necessary condition (with the same words) 4 b + a2 —
a square, x + y is put = 2 £.]

I. 28. x + y = a, x2 + y
2 == b.

[Necessary condition 2 b — a2= a square, x— y = 2 £.]

/'IV. 1. ar + 2/
3 = a, x + y = b.

[Dioph. puts x—y— 2^, whence x= %b + £, y = ib — £.

The numbers a, b are so chosen that (a — ±b3)/3b is

a square.]

IV. 2. x?~ y'* — a, x — y — b.

[x + y = 2£.]
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IV. 15. (y-\-z)x = a, (z + x)y — b, (x + y)z = c.

[Dioph. takes the third number z as his unknown

;

thus x + y = c/z.

Assume x = p/z, y — q/z. Then

pq

vq 7£| + q = b.
zl J

These equations are inconsistent unless p— q = ci — b.

We have therefore to determine p, q by dividing c into

two parts such that their difference = a— b (cf. I. 1).

A very interesting use of the ' false hypothesis

'

(Diophantus first takes two arbitrary numbers for p, q
such that p + q = c, and finds that the values taken have
to be corrected).

pqThe final equation being ~ +p =± a, where p, q are
z

determined in the way described, z2 = pq/(a>—p) or

pq/ (b — q), and the numbers a., b, c have to be such that

either of these expressions gives a square.]

IV. 34. yZ + (y + z)=za2 -l, zx + (z + x) = b'
1 -\,

xy +(x + y) = c
2 — 1

.

[Dioph. states as the necessary condition for a rational

solution that each of the three constants to which the

three expressions are to be equal must be some square

diminished by 1. The true condition is seen in our

notation by transforming the equations yz + (y + z) = a,

zx + (z + x) — /3, xy + (x + y) — y into

i (y+l)(s+
v
l) = a+l,

(s + l)(a>+l) - 0+1,

(« + l)(y + l) = y + l,
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whence »+! = j\(A^ltl±lh &c .
;

>\/ ( a+1 )

and it is only necessary that (a+1) (j8+ 1) (y + 1) should

be a square, not that each of the expressions a + 1 , P + 1

,

y + 1 should be a square.

Dioph. finds in a Lemma (see under (vi) below) a solu-

tion kv dopio-Tco (indeterminately) of xy + (x + y) = lc,

which practically means finding y in terms of #.]

IV. 35. yz-(y + z) - a2 -\, zx-(z + x) = b2 -l,

xy—(x + y) — c
2— 1.

[The remarks on the last proposition apply mutatis

mutandis. The lemma in this case is the indeterminate

solution of xy— (x + y) = &.]

IV. 37. yz = a(x+ y + z), zx = b(x+y + z), xy = c(x + y + z).

[Another interesting case of ' false hypothesis '. Dioph.

first gives x + y + z an arbitrary value, then finds that

the result is not rational, and proceeds to solve the new
problem of finding a value of x + y + z to take the place of

the first value.

If w — x + y +z, we have x == cw/y, z — aiv/y, so that

ac
zx = acw2

/y
2 = bw by hypothesis ; therefore y

2 = -r-w.

For a rational solution this last expression must be

ac
a square. . Suppose, therefore, that w = -=- £

2
, and we have

ac ,9 ac , , j.

x + y + z = -j- 1
2

, y=-rl z = ag, x = cg.

Eliminating #, ?/, 2, we obtain £ = (bc + ca + ab) / ac,

and

# = (6c + ca + ab)/a, y = (bc-\-ca + ab)/b,

z = (6c + ca + a6)/c]

Lemma to V. 8. yz = a2
, so; = & 2

, arc/ = e
2

.
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[a? assumed= 2?/.]

(v) Systems of equations 'apparently indeterminate but

really reduced, by arbitrary assumptions, to deter-

minate equations of the first degree.

I. 14. xy = m(x + y). [Value of y arbitrarily assumed.]

II. 3*. xy = m(x + y), and xy — m(x— y).

II. 1*. (cf. I. 31). x2 + y
2 = <m(x + y).

II. 2*. (cf. I. 34).* x2 ~y 2 = m(x-y).

II. 4*. (cf. I. 32). x2 + y
2 =m(x-y).

II. 5*. (cf. I. 33). x2-y 2 = m(x+ y).

II. 7*. x2 — y
2 = m(x— y) + a. [Diopb. assumes x— y = 2.]

/ T on 1 1 11 11
1.22. x x+ -z = y y -\ x — z— - z + -y.m V n m p n

[Value of y assumed.]

T no 1 1 1 1 1-1
1. 23. x x H— w = y y -\ x = z z-\— y

q n m pm n

— iv w-\— z. r Value of y assumed.]
q P

1.24. x h (y + z) = y + - (z + x) = z+ - (x + ty).m 'j i p

[Value of 2/ + £ assumed.]

1.25. x + — (v + s + w) = y + - (0 +w + a?)m n

= 2 + - (w + # + y) = w + - (x + y + 0).

[Value o£ y + z +w assumed.]

II. 1 7*. (cf. I. 22). x- (—x+ ct\ + (-Z + A

= 2/- (^y + ») + (£« +a)= .-
(J.

+ o) + £* + &>

[Ratio of a; to ?y assumed.]
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IV. 33. x + -y — m Cy — - y) > y + - x — n (x — - x\ •

[Dioph. assumes y = 1.]

(vi) Indeterminate equations of the first degree.

Lemma to IV. 34. xy + (x + y) = a.s [Solutions^^™.
„ ,, IV. 35. jcy—{x + y) = a. y practically found

„ IV. 36. xy = m(x + y). J in terms of »-l

(vii) Indeterminate analysis of the second degree.

(II. 8. x2 + y
2 = a2

.

[y
2 = a2— x2 must be a square = (mx— a) 2

, say.]

II. 9. x2 + y
2 = a2 + b2

. [Put x = g + a, y = mg-b.]

II. .10. x2 — y
2 = a.

[Put x — y + m, choosing m such that m2 < <x.]

II. 11. a; + (i — u2
, x + b = v2

.

II. 12. a— x = u2
, b — x — v2

.

ill. 13. x— a = u 2
, x — b = v2

.

[Dioph. solves II. 11 and 13, (1) by means of the

' double equation ' (see p. 469 above), (2) without a double

equation by putting x — £
2±a and equating (£

2 + a) ± b

to (£— m) 2
. In II. 12 he puts x = a— £

2
.]

II. 14 = III. 21. x + y = a, x + z 2 = u2
, y + z2 = v2

.

[Diophantus takes z as the unknown, and puts

u2 = (z + m) 2
, v2 — (z-{- ri)

2
. Therefore x = 2mz 4-m2

,

y = 2nz + n2
, and z is found, by substitution in the first

ft — innn -1 . 'j'l *

\

equation, to be 7 r-£ • In order that the solution
2 (m + 71)

may be rational, m, 71 must satisfy a certain condition.

Dioph. takes them such that m2 + n2 < a, but it is suffi-

cient, if m > 71, that a + mn should be > n2
.] ,

II. 15 = III. 20. x + y = a, z2— x = u2
, z 2— y = v2

.

[The solution is similar, and a similar remark applies

to Diophantus's implied condition]
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II. 16. x = ray, a2 + x = u2
, a2 + y = v2

.

II. 19. x2—y2 = m(y2-z2
).

(\Y. 20. x2 + y = u2
, y

2 + x — v2
.

[Assume y = 2mx +m2
y
and one condition is satisfied.]

II. 21. x2 — y = u2
, y

2 — x == v2
.

[Assume a; = £ + m, 7/ = 2m^ +m2
, and one condition

\ is satisfied.]

(II. 22. a2 +(&' + 2/) = u2
,

yi + (x + y) = v2 .

-j
[Put x+ y = 2 ma? +m2

.]

II. 23. ic
2— (^ + 2/) = u2

, y
2— (x + y) = v2

.

11.24. (^ + 2/)
2 + ^ = u2

,
(a; + t/)

2 + y = v2
.

[Assume x — (m2 — 1)£
2

, y — (ri
2— 1)£

2
, x + y = £.]

II. 25. (x + y)
2— x — u2

,
(x + y)

2— y = v2
.

(II. 26. xy + x = u2
, xy + y = v*, u+.v = a.

[Put 2/ = m2a?— 1.]

II. 27. xy— x = u2
, xy— y = v2

, u + v = a.

II. 28. x2
y
2 + x2 = u 2

, x2
y
2 + y

2 = v2
.

III. 29. x2
y

2-x2 = u2
, x2

y
2-y2 = v2

.

II. 30. xy+(x + y) = u2
, xy — (x + y) = v2.

[Sincem2 + w2 + 2 m^i is a square, assume

03^/ = (m 2 + n2
)£

2 and # + 2/ = 2ran£ 2
;

put a; = J?£, y — q£, where pq = m2 + n2
; then

{p + q)£ = 2m%f.]

II. 31. xy + (x + y) — u2
, xy — (x + y) = v2

, x + y = w2
.

[Suppose w2 = 2.2m. m, which is a square, and use

formula (2 on)
2 +m2 + 2 . 2m . m = a square.]

/II. 32.
2/
2 + z = u2

, z 2 + a? = v2
, x2 + y — w2

.

[y = g, z = (2ag +a2
), x = 2b(2a£ + a2

) + b2.]

,11. 33. y
2— z — u2

, z2— x = v2
, x2— y — w2

.
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' II. 34. x2 + (x + y + z) — u2
, y

2 + (x + y + z) = v2
,

z2 + (x + y + z) — iv
2

.

[Since {-|(m— 7b)}
2 +mn is a square, take any number

separable into two factors (m, ri) in three ways. This

gives three values, say, p, q, r for i(m— ri). Put

x = £>£, y = qg, z = r£, and a; + 2/ + z = mn£2
; therefore

(p + q + rfi = wing2
, and g is found.]

II. 35. x2— (x + y + z) = u2
, y

2— (x + y + z) = v2
,

z2 — (x + y + z) = w2
.

[Use the formula
{\(m + w)

}

2 — m?i = a square and

proceed similarly.]

III. 1 *. (x + y + z) — x2 = u2
,
(x + y + z) — y

2 = v2
,

(x + y + z) — z2 = tv
2

.

fill. 2*. (x + y + z)2 + x = a 2
,
(x + y + z) 2 + y = v2

,

(x + y + z)
2 + z=>w2

.

III. 3*.
(
x + y + z) 2 -x = u2

,
(x + y + z)

2 -y = v2
,

(x + y + z)
2 — z = w2

.

III. 4*. x— (x + y + z)
2 — u2

,
y-{x + y + z)

2 — v2
,

z — (x + y + z)
2 = %v2 .

III. 5. x + y + z — t
2

, y + z— x = u2
, z + x— y = v2

,

x + y — z = iv
2

.

[The first solution of this problem assumes

t* = x + y + z = (£ + l)
2

, <w
2 = 1, u2 = i\

whence x, y, z are found in terms of £, and z + x — y
is then made a square.

The alternative solution, however, is much more ele-

gant, and can be generalized thus.

We have to find x, y, z so that

— x + y + z = a square

x— y + z — a square

x + y— z — a square

x + y + z — a square

Equate the first three expressions to a2
, b2 , c

2
, being

squares such that their sum is also a square = k2
, say.
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Then, since the sum of the first three expressions is

itself equal to as + y + z, we have

x = i (b
2 + c

2
), y = i (c

2 + a2
), z = J (a2 + 62

).]

III. 6. x + y + z = t
2

, y + z = u2
, z + x = v2

, x + y = w2
.

III. 7. a?— ?/ == y — z, y + z = u2
, £ + as = v2

, as + 2/ — w2 -

1 III. 8. as + ?/ + 3 + a = t
2
, y + z + a = u2

, z + x + a = v2
,

x + y + a = iv
2

.

III. 9. x+y+z— a = t
2
, y + z — a = u2

, z + x— a = v2
,

x + y— a = w2
.

III. 10. yz + a = u2
, £as + a = v2

, xy + a = w2
.

[Suppose yz + a = m2
, and let y = (m2— a)£, z = 1 /£:

also let zx + <x = ?i
2

; therefore as = (n2— a)£.

We have therefore to make

(m2— a) (n2— a) £
2

-f- a a square.

Diophantus takes m 2 =25, a =12, n2 = 16, and

arrives at 52£2 +12, which is to be made a square.

Although 52. I
2 +12 is a square, and it follows that any

number of other solutions giving a square are possible

by substituting 1 + 77 for £ in the expression, and so on,

Diophantus says that the equation could easily be solved

if 52 was a square, and proceeds to solve the problem of

finding two squares such that each increased by 12 will

give a square, in which case their product also will be

a square. In other words, we have to find m2 and n2

such that m2— a, n 2 — a are both squares, which, as he

says, is easy. We have to find two pairs of squares

differing by a. If

a = pq=p'q', {i(p-q)}
2 + a = ii(P + q)}

2
,

and
, {\W-<()}

% +*={W+ f)}*\

let, then, m2 = {* (p + q)

}

2
, <n? = {\ (p' + q')

}

2
.]

III. 11. yz— a = u2
, zx— a = v2

, xy — a = w2
,

[The solution is like that of III. 1 mutatis mutandis.]

III. 12. yz-\-x = u2
, zx + y = v2

, xy + z = %v
2

.

III. 13. yz — x — u 2
, zx — y — v2

, xy — z = w2
.
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III. 14. yz + x2 — u 2
, zx + y

2 = v2
, xy + z

2 = w2
.

III. 15. yz + (y + z) = u 2
, zx + (z + x) = v2

, xy + (x + y) = w2
.

[Lemma. If a, a+1 be two consecutive numbers,

a2 (a + 1
)

2 + a2 + (a + 1
)

2
is a square. Let

y = m2
, z = (m + 1

)-.

Therefore (m2 +2m + 2)x + (m + 1)
2

|

and (m2 +l)aj +m2
i

have to be made squares. This is solved as a double-

equation ; in Diophantus's problem m = 2.

Second solution. Let £e be the first number, m the

second; then (m+l)x +m is a square = n2
, say; there-

fore a? = (n2 — m)/(m+ 1), while y = m. We have then

(7?i"+ l)z +m = a square

. /w2 +l\ ?i
2—

m

and ( )z-\ = a square
V 971+1/ m + 1

Diophantus has m = 3, n = 5, so that the expressions

to be made squares are with him

4z + 3
|

6i0+5ij

This is not possible because, of the corresponding coeffi-

cients, neither pair are in the ratio of squares. In order to

substitute, for 6J, 4, coefficients which are in the ratio

of a square to a square he then finds two numbers, say,

p, q to replace 5J, 3 such that pq+p + q = a square, and

(p + l)/(g+ 1) = a square. He assumes £ and 4 £ + 3,

which satisfies the second condition, and then solves for £,

which must satisfy

4 £
2 + 8 £ + 3 = a square = (2 £- 3)

2
, say,

which gives | = t
3
q, 4£ + 3 — 4J.

He then solves, for z, the third number, the double-

equation
5i^ + 4i = square]

t^+to = square)
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after multiplying by 25 and 100 respectively, making
expressions

130^+105)

130ii'+ 30)

In the above equations we should only have to make
n2 + 1 a square, and then multiply the first by n2 + 1 and

the second by (m+ l)
2

.

Diophantus, with his notation, was hardly in a position

to solve, as we should, by writing

(y+ 1)^ + 1) = aa +l,

(z + l)(x+l) = b2 + l,

(
x + l)(y+l) = c

2 +l,

which gives x + 1 = V {
(b

2 + 1) (c
2 + 1)

/

' (u
2 + 1) }, &c]

III. 16. yz—(y + z) — u2
, zx— (z + x)'— v2

, xy—(x + y) = w2
.

[The method is the same mutatis mutandis as the

second of the above solutions.]

III. 17. xy+ (x+ y) = u2
, xy + x = v2

, xy + y = w2
.

III. 18. xy— (x + y) — u2
, xy — x = v2

,
xy— y = w2

.

a 2

III. 19. (x
1 + x1 + xz +xtf±xl

= \

f2

(u2

\u'2
\Xi ~y Jbn ~l Xn ~t~ X a) _F_ Xn

\X^ -f- Xn ~r X.) -j- Xa) ^ jr Xn — -j

\X^ -J- X^ ~r X.^ -r X^
)

" + X^ — -j

v
v'

2

iv'
2

[Diophantus finds, in the way we have seen (p. 482),

four different rational right-angled triangles with the

same hypotenuse, namely (65, 52, 39), (65, 60, 25), (65,

56, 33), (65, 63, 16), or, what is the same thing, a square

which is divisible into two squares in four different ways

;

this will solve the problem, since, if h, £>, b be the three

sides of a right-angled triangle, h2 ±2pb are both squares.
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Put .therefore x
l
+ x

2 + x
3 + a?4

= 6 5 £.

and #! = 2.39.52£ 2
,
£
2
= 2 . 25.60£2

,
x
z
= 2.33. 56£2

,

#
4
= 2.16.63£2

;

this gives 12768f = 65£, and £ = yAW]
IV. 4. x2 + y = w2

, x + y = u.

IV. 5. aj
2 + 2/ = u, x + y — u 1

.

IV. 13. o? + 1 = £
2

, y+ 1 = ^2
, it' + 2/+ 1 = f2

, y— x+1 = w2
'

[Put 03 = (m£ + l)
2— 1 = m2

£
2 + 2m£ ; the second and

third conditions require us to find two squares with x as

difference. The difference m2
£
2 + 2m £ is separated into

the factors m2
£ + 2m, £; the square of half the differ-

ence = {^(m2—*l)| + m} 2
. Put this equal to y+l, so

that 2/ = i(m2 -;)2
£
2 +m(m2-l)£ +m2 -l, and the

first three conditions are satisfied. The fourth gives

J(m
4-6m2 +l)f + (m3— 3 m) £ +m2 = a square, which

we can equate to (n£— m) 2
.]

IV. 1 4. x2 + 2/

2 + z2 = (it
2-

y
2
) + (2/

2- 2
) + (x

2 ~z 2
). (x>y> z)

IV. 16. x + 2/ + z = t
2

, x2 + y = u2
, y

2 + z = v2
, s2 + a; = w2

.

[Put 4m£ for 2/, and by means of the factors 2m^,2
we can satisfy the second condition by making x equal

to half the difference, or m£— 1. The third condition

is satisfied by subtracting (4m£) 2 from some square, say

(4m£+l) 2
; therefore s = 8m£+l. By the first con-

dition 13m£ must be a square. Let it be 169 77
s

; the

numbers are therefore 13?;
2 — 1, 52?7 2

, 104i; 2 +l, and

the last condition gives 10816r; 4 + 221 t;
2 = a square,

i.e. 10816?? 2 +221 = a square = (104?; + l)
2

, say. This

gives the value of r]
)
and solves the problem.]

IV. 17. x + y + z = t
2

, xL— y — u2
, y

2— z = v2
, z2— x — w2

.

IV. 19. yz+l = u2
, zx + 1 = v2

, xy+1 = w2
.

[We are asked to solve this indeterminately {kv tg>

dopl(TT(o). Put for yz some square minus 1, say m2
£
2

+ 2m£; one condition is now satisfied. Put z = £, so

thatj^/ = ™>2i + 2 m.
1523.2 K k
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Similarly we satisfy the second condition by assuming

zx = n2
g
2 + 2ng ; therefore x = n2

g + 2n. To satisfy the

third condition, we must have

(m2 n2
g
2 + 2mn . m + n £ + 4 mw) + 1 a square.

We must therefore have 4 m?i + 1 a square and also

mn(m + n) = mn V(4:mn + 1). The first condition is

satisfied by n = m + 1 , which incidentally satisfies the

second condition also. We put therefore yz= (m£ + l) 2— 1

and zx—
{ (m + 1 ) £ + 1

}

2— 1 , and assume that z= £, so that

y = m2
£ + 2m, a; = (m+ l)2 £ + 2(m + 1), and we have

shown that the third condition is also satisfied. Thus we
have a solution in terms of the undetermined unknown £.

The above is only slightly generalized from Diophantus.]

IV. 20. x
2
x
3 + 1 = r2

, x
z
x

x
+ 1 = s

2
, x

1
x
2 + 1 = t

2
,

x
x
x% +1 = u2

, x2
x± +1 = v2

, x
z
x± + 1 = w2

.

[This proposition depends on the last, x
Y , x2 , xz

being

determined as in that proposition. If x
z
corresponds to z

in that proposition, we satisfy the condition x
z
x±+\ = w2

by putting x
z
x± — {(m + 2)£ + l} 2 — 1, and so find x± in

terms of £, after which we have only two conditions more
to satisfy. The condition #

1
a?
4 + 1 = square is auto-

matically satisfied, since

{(m+l) 2
£ + 2(m+l)} {(ra + 2)

2
| + 2(m + 2)J- + 1

is a square, and it only remains to satisfy x
2
x

i
+l= square.

That is,

(m2
£ + 2m)

{
(m + 2)

2
£ + 2 (m + 2) } + 1

= m2 (m^t 2)
2
£
2 + 2m(ra + 2)(2m + 2)£ + 4m(m + 2) + 1

«

has to be made a square, which is easy, since the coefficient

of £
2
is a square.

With Diophantus m = 1, so that x
x
= 4£ + 4, x

2
= £ + 2,

x
?j
= £, x± = 9£ + 6, and 9£2 + 24£+13 has to be made

a square. He equates this to (S£— 4)
2

,
giving £ — y

1
^.]

IV
'

4 21. xz — y
2

, x — y = u2
, x— z = v2

, y— z = w2
. (x>y>z)

(IV. 22. xyz + x = u2
, xyz + y — v2

, xyz + z = w2
.

lIV. 23. xyz — x = u2
, xyz — y = v2

,
xyz — z = w2

.
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/ IV. 29. x2 + y
2 + z2 + iv

2 + x + y + + w = «.

[Since x2 + x + J is a square,

(#
2 + ;r) + (y

2 + y) + {z
2 + z) + (w2 + w) + 1

is the sum of four squares, and we only have to separate

a + 1 into four squares.]

IV. 30. x2 + y
2 + z2 + iv

2— (x + y + z + iv) = a.

IV. 31. x + y — 1, (x + a) (y + b) = u2
.

IV. 3 2. x + y + z = a, xy + z = u2
, xy— z = v2

.

IV. 39. x — y = m(y— z), y + z = u2
, z + x = v2

, x + y = iv
2

.

IV. 40. x2 — y
2 = m(y— z), y + z = vl

2
, z + x = v2

, x + y = iv
2

.

V. 1 . xz — y
2

, x — a = u 2
, y— a = v2

, z— a — w2
.

V. 2. iC3 = y
2

, x + a = u2
, y + a = v2

, z+a= w2
.

V. 3. x + a = v2
, y + a = s

2
, z + a = t

2
,

yz + a — lb
2

, zx + a = v2
, xy + a = iv

2
.

V. 4. x — a = r2
, y— a = s

2
, z— a = t

2
,

yz — a — u2
, zx —a=v2

, xy— a = iv
2

.

[Solved by means of the Porisms that, if a be the

given number, the numbers m2 — a, {m+\) 2 — a satisfy

the conditions of V. 3, and the numbers m2 + a,

(m + l)
2 + « the conditions of V. 4 (see p. 479 above). The

third number is taken to be 2 {m2 + a + (m 4- \)
2 + a) — 1,

and the three numbers automatically satisfy two more

conditions (see p. 480 above). It only remains to make

2 {

m

2 T a + (m + l)
2 T a } — 1 + a a square,

or 4m2 + 4m + 3 a + 1 = a square,

which is easily solved.

With Diophantus £ + 3 takes the place of m in V. 3

and £ takes its place in V. 4, while a is 5 in V. 3 and 6

in V. 4.]

V. 5. y
2 z2 + x2 = r2

, z 2x2 + y
2 = s

2
, x2

y
2 + z2 = t

2
,

y
2z2 + y

2 + z2=u2
, z

2x2 + z2 + x2=

v

2
, x2

y
2 + x2 + y

2— iv
2

[Solved by means of the Porism numbered 2 on p. 480.

K k 2 *
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V. 6. x-2 = r2
,
y-2 = s

2
, z-2 = t

2
,

yz — y— z = u2
, zx— z— x = v2

, xy — x— y = tv
2

,

yz— x = v/2
, zx — y = v'

2
, xy— z — %v'

2
.

[Solved by means of the proposition numbered (3) on

p. 481.]

Lemma 1 to V. 7. xy + x2 + y
2 = u2

.

IT ., / x
(U2

„ ,
(V2

V. 7. x2±(x+ y + z) = , y
2 ±{x + y + z) = ,

(w2

z2 ±(x + y + z) = •

[iv
l

[Solved by means of the subsidiary problem (Lemma 2)

of finding three rational right-angled triangles with

equal area. If m, n satisfy the condition in Lemma 1,

i.e. if mn +"m2 + n2 = p
2

, the triangles are ' formed ' from

the pairs of numbers (py
m), (p, n), (p, m + w) respec-

tively. Diophantus assumes this, but it is easy to prove.

In his case m = 3, n = 5, so that p — 7. Now, in

a right-angled triangle, (hypotenuse) 2 + four times area

is a square. We equate, therefore, x + y + z to four

times the common area multiplied by £
2

, and the several

numbers x, y, z to the three hypotenuses multiplied by £,

and equate the two values. In Diophantus's case the

triangles are (40, 42, 58), (24, 70, 74) and (15, 112, 113),

and 245£ = 3360£2
.]

iu
2

(v

,2
j zx±(x + y + z) =

j

2

'L
xy±(x + y + z) =

[Solved by means of the same three rational right-

angled triangles found in the Lemma to V. 7, together

with the Lemma that we can solve the equations yz=a2
,

zx = b2, xy = c
2
.]

V. 9. (Cf. II. 11). x + y = 1, x+ a = u2
, y + a — v

2
.

V. 1 1 . x + y + z = 1 , x + a = u2
, y +a= v2

, z + a — w2
.

[These are the problems of napicr6Tr)To$ dycoyrj
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described above (pp. 477-9). The problem is 'to divide

unity into two (or three) parts such that, if one and the

same given number be added to each part, the results are

all squares '.]

( V. 10. x + y = 1 , x + a = it
2

, y + b = v2
.

[V. 12. x + y + z = 1, x + a = a2
, y + b = v2

, z + c — w2
.

[These problems are like the preceding except that

different given numbers are added. The second of the

two problems is not worked out, but the first is wortli

reproducing. We must take the particular figures used

by Diophantus, namely a — 2, b = 6. We have then to

divide 9 into two squares such that one of them lies

between 2 and 3. Take two squares lying between 2

and 3, say fff , fff . We have then to find a square £
2

lying between them ; if we can do this, we can make
9 — £

2 a square, and so solve the problem.

Put 9-£2 = (3—m£)
2
, say, so that £ = 6m/(w2 +l)

;

and m has to be determined so that £ lies between

\\ and \%

rp , , 17 6m 19
lheretore — < —

z < — •

12 m2 +l 12

Diophantus, as we have seen, finds a fortiori integral

limits for m by solving these inequalities, making m not

greater than f^ and not less than f§ (see pp. 463-5 above).

He then takes m = 3J and puts 9-£2 = (3-3i£) 2
,

which gives £ = §§.]

V. 13. -x + y + z = a, y + z = it
2

, z + x — v2
, x + y = w2

.

V. 14. x+y + z +w = a, x+y + z = s
2

, y + z +w = t
2

,

z+w + x — n2
, w + x + y = v2

.

[The method is the same.]

V. 21. x2

y
2z2 + x2 = u2

, x2
y

2 z 2 + y
2 = v2

, x2
y
2z2 + z2 = iv

2
.

V. 22. x2
y

2z 2-x2 = u2
, x2

y
2 z2-y2 = v2

y
x2
y
2z2 -z2 = to

2
.

V. 23. x2-x2
y

2 z 2 = u2
, y

2-x2
y

2z2 = v2
, z2-x2

y
2z2 = %v

2
.

[Solved by means of right-angled triangles in rational

numbers.]
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/V. 24. y
2z2 + 1 = ^2

, z
2x2 + 1 - ^ ^2^2 + ! _ ^2_

- V. 25.
2/

2 ^ 2 - 1 = u2
, z

2 x2 -\ = v2 , x2
y
2 -\ = iv

2
.

J. 26. 1-#V = ^2
, l-02^2 = v2

, l-#V = w2
.

[These reduce to the preceding set of three problems.]

IV. 27. y
2 + z 2 + a = u2

, z2 + x2 + a = v2
, x2 + y

2 + a = iv
2

.

(V. 28. y
2 + z 2~a = u2

, z
2 + x2-a = v2

, x2 + y
2 -a = w\

V. 30. mx + ny = u2
, %i

2 + a= (x-\-y) 2
.

[This problem is enunciated thus. ' A man buys a

certain number of measures of wine, some at 8 drachmas,

some at 5 drachmas each. He pays for them a square

number of drachmas; and if 60 is added to this number,

the result is a square, the side of which is equal to the

whole number of measures. Find the number bought at

each price.'

Let £ = the whole number of measures ; therefore

£
2 — 60 was the number of drachmas paid, and £

2 — 60

— a square, say (£ — m) 2
; hence £ = (m2 + 60)/2m.

Now \ of the price of the five-drachma measures + \

of that of the eight-drachma measures = £ ; therefore

£
2— 60, the total price, has to be divided into two parts

such that
-J

of one + § of the other — £.

We cannot have a real solution of this unless

£>i(f-60) and <i(£2 -60);

therefore 5£ < £
2 -60 < 8£.

Diophantus concludes, as we have seen (p. 464 above),

that £ is not less than 1 1 and not greater than 12.

Therefore, from above, since £ = (m2 + 60)/2m,

22m < m2 + 60 < 24m;

and Diophantus concludes that m is not less than 19 and

not greater than 21. He therefore puts m =20.
Therefore £ = (m2 + 60)/2m = 11^, g

2 = 132J, and

|
2— 60 = 72J.
We have now to divide 72^ into two parts such that

-|- of one part + J of the other = 1 1 \ .
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Let the first part = 5z; therefore § (second part)

= \\\ — z
y
or second part = 92 — 80.

Therefore 5z + 92 - 8z = 72J, and z-\\\

therefore the number of five-drachma measures is J§ and

the number of eight-drachma measures §§.]

Lemma 2 to VI. 12. ax2 + b = u2 (where a + b == c
2
).

| (
see p. 467

Lemma to VI. 15. ax2 -b=u2 (where ad2 -b = c
2
).)

above.)

v2

[III. 15]. xy + x + y = u2
, x + 1 = —-

2 (y + 1).

[III. 16]. xy-(x + y) — u2
, x—l = —

2
(y-l).

[IV. 32]. x+l = ^(x-l).

[V. 21]. x2 + 1 = it
2

, 2/
2+l = v2

, s2 + 1 = ™2
.

(viii) Indeterminate analysis of the third degree.

IV. 3. x2
y — u, xy — uz

.

(IV. 6. x* + y
2 = us

, z
2 + y

2 = v\

[TV. 7. x3 + y
2 = u2

, z
2
-\-y2 — i>

3
.

TV. 8. x + y'6 = u3
, x + y = u. \

IV. 9. x + y
3 = u, x + y = u*.

\

(really reducible

(IV. 10. x* + y
z = 05 + 2/- f

to the second
I degree.)

IV. 11. xz-f =x-y.) 6

h the same problem.
IV.. 12. x'^ + y = 2/

3 + ^-i I

[We may give as examples the solutions of IV. 7,

IV. 8, IV. 11.

IV. 7. Since z2 + y
2 = a, cube, suppose z 2 + y

2 = xz
.

To make x3 + y
2 a square, put x3 = a2 + &2

, 2/
2 = 2 «^

5

which also satisfies x3— y
2 = z2

. We have then to make
2ab & square. Let a = g, b= 2g) therefore a2 + b2 = 5 £

2
,

2a& = 4£
2

, y = 2£, = £, and we have only to make

5£
2 a cube. £ = 5, and x3 = 125, 2/

2 = 100, z 2 = 25.
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IV. 8. Suppose x= g,y
3=m3

£
3

; therefore u=(m+ 1)£

must be the side of the cube m3
£
3 + £, and

m3
£
2 +l = (m3 + 3m2+ 3m + l)f.

To solve this, we must have 3m2 + 3m + 1 (the difference

between consecutive cubes) a square. Put

3m2 + 3m+l = (1— Tim) 2
, and m= (3 + 2^)/(%2— 3).

IV. 11. Assume # = (m+l)£, y = m£, and we have

to make (3m3+3m2 +l)f equal to 1, i.e. we have

only to make 3m2
4- 3m + 1 a square.]

IV. 18. x3
-\-y = u3

, 2/
2 + ^ — ^2«

IV. 24. # + 2/ = a, xy = u3 — u.

[2/ = a— a;; therefore ax— x2 has to be made a cube

minus its side, say (mx— l) 3— (m«- 1).

Therefore ase — x2 = m3
as
3— 3 m*2x2 + 2 mo;.

To reduce this to a simple equation, we have only to

put m = %a.]

IV. 25. x + y + z = a, xyz = {{x—y) + {x—z) + (y—z)} z
.

(x > y > z)

[The cube = S(x— z)
3
. Let x — (m + 1)£, z — m£, so

that y = 8£/(m2 + m), and we have only to contrive that

8/(m2 + m) lies between m and 971+ 1. Dioph. takes the

first limit 8 > m3 +m2
, and puts

8 = (m + §)
3 or m3 +m2 +§m + ^

1
T ,

whence m = § ; therefore #:=:§£, y = ^£, 2 = §£. Or,

multiplying by 15, we have a; = 40 £, y = 27 g, z = 25 £.

The first equation then gives £.]

IV. 26. xy-\-x = u3
, xy-\-y = i?

3
.

IV. 27. xy— x = u3
, xy— y = v3

.

IV. 28. xy+(x + y) = u3
, xy—(x + y) = i>

3
.

[oj + 2/ = i(^
3—

^

3
)> ^2/ = i(w3 + v*) ;

therefore

(x—y) 2 = %(u3— v3
)

2— 2(u3 + v3
),

which latter expression has to be made a square.
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Diophantus assumes u — £ + l,v = £— 1, whence

.

i(6^ + 2)
2 -2(2£3 + 6£)

must be a square, or

9£4 -4£3 + 6£
2 -12£ + l=a Square=(3£ 2 -6£+l) 2

, say;

therefore 32£ 3 = 36 £
2

, and £ = § . Thus u, v are found,

and then x, y.

The second (alternative) solution uses the formula that

£(?-& + <jP-& +£ = a
.

cube
-

Put * = £ y = £*-£>

and one condition is satisfied. We then only have to

make i(i
2 -£) — g-(g2— £) or £

s-2g2 a cube (less than

a>i.e.£3-2|2
=(i£)

3,say.]

IV. 38. (x + y + z)x = iu(u+l), (x + y + z)y — v2
,

(x + y + z)z = w3
, [# + 2/ + £ = £

2
].

[Suppose a + 7/ + 2 = £
2

; then

_ u (u + 1

)

v2 w3

therefore |
4 = %u(u + 1) + v2 + w3

.

Diophantus puts 8 for u>
3

, but we may take any cube, as

m3
; and he assumes v2 = (£

2— l)
2

, for which we migfrjb

* substitute (|
a—

w

2
)
2

. We then have the triangular

number -|u(u+ 1) = 2n2

£
2 — n*—m3

. Since 8 times a

triangular number plus 1 gives a square,

1 6 n2
£
2— 8 w4— 8m3 + 1 = a square = (4 n g — k)

2
, say,

and the problem is solved.]

V. 15. (x + y + z)
z + x = u 3

,
(tc + 2/ + z)

3 + 2/ = v^

(# + 2/ + £)
3 + £ = w3

.

[Let a; + 2/ + 5; = £, ii
z = m3

f
3

, v3 = 7i
3
£
3

, w3 = p
3
£
3

;

therefore £ = { (m
3 — 1 ) + (w3— 1 ) + (p

8— 1) } £
3

;

and we have to find three cubes m\ ri\ p
3 such that

m3 + 7i
3
+_p

3 — 3 = a square. Diophantus assumes as

the sides of the cubes (Jc+l), (2— &), 2; this gives
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9 k2— 9&+ 14 = a square = (3k— I)
2

, say; and k is found.

Retracing our steps, we find £ and therefore x, y, £.]

V. 16. (x + y + z)
3— x — u3

,
(x + y + z)

3—y = v3
,

(x + y + z)
3— z = iv

3
.

V. 17. x— (x + ?/ + s)" = i6
3

, y — (x + y + z)3 = v3
,

z- (x + y + z)
3 = w3

.

V. 18. re + ?/ + s = £
2

,
(x + y + z)

3 + x = u 2
,
(x + y + z)

3 + y= v2
,

(x + y + zf + z — tv2 .

[Put x + y + z = p, x = (p
2
-\)i

G
, y = (q

2-l)i\
z = (r2 -\)^, whence £

2 = (p
2- 1 + <f- 1 + r2 - 1)£

6
,
so

that
jp

2 — 1 +5 2 — 1 + r2— 1 must be made a fourth

power. Diophantus assumes £>
2= (m2 — 1

)

2
, <?

2= (m + 1
)

2
,

r2 = (m— 1
)

2
, since m4— 2m2 +m2 + 2m +m2 — 2m=m4

.]

V. 19. x + y + z = t
2

,
(x + y + z)

3— x = u2
,

(x + y + z)
3— y = v2

,
(x + y + z)

3— z = w2
.

V. 19a. x + y + z = t
2

, x— (x + y + z)
3 = u2

,

y- (x + y + z)
3 = v2 , z— (x + y + zf = w2

.

V. 1 9. b, c. x + y + z — a, (x + y + z)
3 + x = u2

,

(x + y + z)3±y = v2
,
(x + y + z)

3 ±z = tv
2
.

V. 20. x + y + z — — » x— (x + y + z)
3 = u2

,

y— (x + y + z)
3 = v2

, z— (x + y + z)
3 — w2

.

[IV. 8]. x—y— 1, x3 — y
3 — u2

.

u
[IV. 9, 10]. x3 + y

3 = -t(x + y).w

[lV.ll].x3 -y3 = ^(x-y).

[V. 15]. x3 + y
3 + z3 -3 = u2

.

[V. 16]. 3-(x3 + y
3 + z3

) =u 2

[V. 1 7]. a3 + 2/
3 + s

3 + 3 = u2 -
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(ix) Indeterminate analysis of the fourth degree.

V. 29. oj
4 + 7/

4 + 54 = u2
.

[' Why ', says Fermat, ' did not Diophantus seek tivo

fourth powers such that their sum is a square. This

problem is, in fact, impossible, as fyy my method I am
able to prove with all rigour.' No doubt Diophantus

knew this truth empirically. Let x2 — £
2

, y
2 = p

2
,

z2 = q
2

. Therefore £
4 +£>

4 + q* = a square = (£
2— r)

2
, say ;

therefore |
2 = (r

2— ^>
4 — q*)/2r, and we have to make

this expression a square.

Diophantus puts r = p
l + 4, q

2 = 4, so that the expres-

sion reduces to Sp2
/(2p

2 + 8) or 4p2
/(p

2 + 4). To make
this a square, let p

2 + 4 = (p+ l)
2
, say ; therefore p = 1-J,

and p
2 = 2J, q

2 = 4, r — 6j; or (multiplying by 4)

p
2 = 9, q

2 = 16, r = 25, which solves the problem.]

[V. 18} x2 + y
2 + z2 -3 = u\

(See above under V. 18.)

(x) Problems of constructing right-angled triangles witli

sides in rational numbers and satisfying various

other conditions.

[I shall in all cases call the hypotenuse z, and the

other two sides x, y, so that the condition x2 + y
2 = z 2

applies in all cases, in addition to the other conditions

specified.]

[Lemma to V. 7]. xy = x
l y l

= x
2y2

.

'VI. 1. z— x = u3
, z — y = v3

.

[Form a right-angled triangle from £, m, so that

z — £
2 +m2

, x = 2mg, y = £
2—m2

; thus z — y — 2m2
,

and, as this must be a cube, we put m = 2 ; therefore

£— x = £
2— 4£ + 4 must be a cube, or £ — 2 = a cube,

say n?, and £ = ti
3 + 2.]

VI. 2. s + a? = u3
, z + y = v\
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VI. 3. \xy + a = u2
.

[Suppose the required triangle to be h£, pi, b£
;
there-

fore \pbf 4- a = a square = n2
£
2

, say, and the ratio of a

to n2 -\pb must be the ratio of a square to a square.

To find n, p, b so as to satisfy this condition, form

a right-angled, triangle trom m, — >

i 1 \
*

i.e. Cm2 +—5, 2, m2
5);

V m2 mv
1 9

/ 2a\ 2

therefore ±pb = m2
5

• Assume w =
(
m + -—

•
) ;2

-z
977/ \ 771/

therefore n2 —£»&= 4a + -
., • and (4 a H —

) / a,

or 4a2 + -

a
9
—-3 has to be made a square. Put

m2

4a2m2 + a (4a2 + 1) = (2am + k)2, and we have a solution.

Diophantus has a =5, leading to 100m2 + 505 = a square

= (10m + 5)
2

, say, which gives m = -2/- and n = *$£-.

h, p, b are thus determined in such a way that

ipb£2 + a = n2
£
2 gives a rational solution.]

VI. 4. \xy~a = u2
.

VI. 5. a— Jarc/ = u2
.

" VI. 6. \xy + x = a.

[Assume the triangle to be h£, p£, b£, so that

ipb£2 +p£ = a, and for a rational solution of this equa-

tion we must have (^p)
2 + a(ipb) a square. Diophantus

assumes p'= 1, b = m, whence -law^;! or 2am+l
= a square.

But, since the triangle is rational,^?!2 + 1 = a square.

That is, we have a double equation. Difference

= m2— 2am = m(m — 2a). Put

2am+ l = {i(m—m — 2a)} 2 = a2
, and,m= (a2— l)/2a.

The sides of the auxiliary triangle are thus determined

in such a way that the original equation in £ is solved

rationally.]

VI. 7. \xy— x — a.
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(VI. 8. %xy + (x + y) = a.

IVI. 9. \xy— (x + y)= a.

[With the same assumptions we have in these cases

to make {i(p + b)} 2 + a(ipb) a square. Diophantus

assumes as before 1 , m for the values of p, b, and obtains

the double equation

J (ra + 1
)

2 + Jam = square
|

-m^
2 + 1 = square;

m2 + (2a + 2)m + 1 = square)
or

f

'

m2
-f 1 = square J

solving in the usual way.]

VI. 10. ^xy + x + z — a.

k
VI. 11. %xy— (x + z) = a.

[In these cases the auxiliary right-angled triangle has

to be found such that

{ \ d1 +P) }
2 + a (i #&) = a square.

Diophantus assumes it formed from 1, m + 1 ; thus

J (& +p)
2 = J {m2 + 2m + 2 +m2 + 2m} 2 = (m2 + 2m + l)

2
,

and • a (-| £$) = a (m + 1 )
(m2 + 2m)

.

Therefore

m4 + (a + 4)m3 + (3a + 6)m2 + (2a + 4)m-f-l

= a square

= { 1 + (a + 2)]m—m2
}

2
, say

;

and m is found.]

Lemma 1 to VI. 12. x = u2
, x— y = v 2

,
\xy + y = iv

2
.

(VI. 12. %xy + x = u2
,
^xy + y = v2

.

I VI. 13. \xy— x = u2
,
\xy— y = v2

.

[These problems and the two following are interesting,

but their solutions run to some length ; therefore only

one case can here be given. We will take VI. 1 2 with

its Lemma 1.
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Lemma 1 . If a rational right-angled triangle be formed

from m, n, the perpendicular sides are 2 mn, m2 — n2
.

We will suppose the greater of the two to be 2mn.
The first two relations are satisfied by making m = 2 n.

Form, therefore, a triangle from £, 2£. The third con-

dition then gives 6 £
4 + 3 £

2 = a square or 6 £
2 + 3 = a

square. One solution is £ = 1 (and there are an infinite

number of others to be found by means of it). If £ = 1,

the triangle is formed from 1,2.

VI. 12. Suppose the triangle to be (h£, b£,p£). Then

(%2tyi
2

+Pi= & square= (&g)
2

,
say, and i~p/(fc2—ipb).

This value must be such as to make (^pb)£2 + b£ a square

also. By substitution of the value of £ we get

{bpk2+ %p2b(p-b)}/(k2-ipb)2
;

so that bpk 2 + ^2)2b(z)—b) must be a square; or, if p,

the greater perpendicular, is made a square number,

bk2 + %pb(p— b) has to be made a square. This by
Lemma 2 (see p. 467 above) can be made a square if

b + ^p*b(p— b) is a square. How to solve these problems,

says Diophantus, is shoivn in the Lemmas. It is not

clear how they were applied, but, in fact, his solution

is such as to make p, p— b, and b + \ pb all squares,

namely b — 3, p =. 4, h — 5.

Accordingly, putting for the original triangle 3£, 4£, 5£,

we have
6 i

2 + 4 £ = a square

)

6 £
2 + 3 £ — a square)

Assuming 6£2 + 4£ = m2
£
2

, we have £ = 4/(m2— 6), and

the second condition gives

96 12
—z

—

t^—5—^ + ~^

—

7. — a square,m4-12m2 + 36 m2 -6 4

or 12m2 + 24 = a square.

This can be solved, since m = 1 satisfies it (Lemma 2).

A solution is m2 = 25, whence £ = T
4
g.]

(VI. 14. \xy— z = u2
,
\xy — x — v2

.

I VI. 15. \xy + z = ii
2

, \xy + x = v2
.
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[The auxiliary right-angled triangle in this case must
be such that

m2 lip— \pb . p(h—p) is a square.

If, says Diophantus (VI. 14), we form a triangle from

the numbers X
x ; X2

and suppose that p = 2X
X
X

2 , and if

we then divide out by (X
1
— X

2)
2

, which is equal to h—p,
we must find a square A;

2 [= wi2/(X
1
—X

2 )

2
] such that

lz
l
lip— \pb .p is a square.

The problem, says Diophantus, can be solved if Xv X2

are ' similar plane numbers ' (numbers such as ab,— ab).
n2

'

This is stated without proof, but it can easily be verified

that, if k2 — X
Y
X

2 , the expression is a square. Dioph.

takes 4, 1 as the numbers, so that k2 = 4. The equation

for m becomes

8.17m2— 4 . 1 5 . 8 . 9 = a square,

or 136m 2 — 4320 = a square.

The solution m2 = 36 (derived from the fact that

k2 = m2/(X
x
-X

2 )

2
, or 4 = m2 /3 2

)

satisfies the condition that

m2hp—%pb . p{h—p) is a square.]

vi. i6. £ + v = x> i/v = y/*-

[To find a rational right-angled triangle such that the

number representing the (portion intercepted within

the triangle of the) bisector of an acute angle is rational.

Let the bisector be 5 £, the segment BD of the base 3 £,

so that the perpendicular is 4£.

Let CB = 3 n. Then AC : AB = CD : DB,
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so that AG = 4(n-£). Therefore (Eucl. I. 47)

lQ(n2-2ng + g
2
) = 16£2 + 9rt2

,

so that £ = 7 n2/S2 n = -^n. [Dioph. has n = 1.]

" VI. 17. -J^t/h-^ = u2
, x + y +z= v3

.

[Let £ be the area \xy, and let z = h2 ~£. Since

xy = 2£, suppose x = 2, y = £. Therefore 2 + &2 must
be a cube. As we have seen (p. 475), Diophantus

takes (on— l)
3 for the cube and (m+1)2 for &2

,
giving

m3— 3m2 + 3m— 1 =m2 + 2m -f- 3, whence m= 4. There-

fore A; = 5, and we assume \xy — £, z = 25— £, with

o? = 2, y = £ as before. Then we have to make
(25-!)* = 4 + |

2
, and£ = J&1--]

VI. 1 8. -Jo;?/ + z = u3
, a; + y + z = v2

.

VI. 19. ^xy + x = u2
, x + y + z = v*.

[Here a right-angled triangle is formed from one odd

number, say 2 £ + 1 , according to the Pythagorean for-

mula m2 + {-§(m2— l)} 2 = {4(wia + l)}*, where m is an

odd number. The sides are therefore 2£+l, 2£ 2 +2£,
2 £

2
-|- 2 £ + 1 . Since the perimeter = a cube,

4 £
2 + 6 £ + 2 = (

4 £ + 2)(£+ !
) = a cube.

Or, if we divide the sides by £+1, 4£ + 2 has to be

made a cube.

a •
i 2£3 + 3ga +£ 2£+l

Again |o?2/ + a; = ,A +1 y
+ "^pj = a square,

which reduces to 2£+ 1 = a square.

But 4 £ + 2 is a cube. We therefore put 8 for the cube,

and £= lj.]

^ VI. 20. \xy + x = u3
, as + 2/ + z — v2

.

VI. 21. x + y + z — u2
,
^xy + (x + y + z) == i>

3
.

[Form a right-angled triangle from £, 1, i.e. (2£, £
2— 1,

g
2 + 1). Then 2£

2 + 2 £ must be a square, and £
3 + 2 £

2 + £
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a cube. Put 2£a + 2£ = m2
£
2

, so that £ = 2/(m2 -2),

and we have to make

8 8 2 2 m,4

-, + ,—o—rto H ^7—— » or —5—— , a cube.
(m2 —

2)
a (m2—

2)
2 m2—

2

(ra2— 2)
a

Make 2m a cube = n3
, so that 2m4 = m3w3

, and

gm = 4w3
; therefore £ = —

y and £ must be made

greater than 1 , in order that £
2 — 1 may be positive.

Therefore . 8 < n* < 1 6

;

this is satisfied by n G = 7
¥\

9
- or n3 = -2

g
7
-, and m = fJ.]

VI. 22. x + y + z = u3
, ^xy + (x + y + z) — v2

.

[(1) First seek a rational right-angled triangle such

that * its perimeter and its area are given numbers,

say p, m.

Let the perpendiculars be -, 2m £; therefore the hypo-

tenuse = p— - — 2m^, and (Eucl. I. 47)

1 2 fl? 1
-2 + 4m2

£
2 + (p

2 + 4m) - -^- - 4mp£ = — + 4m2

£
2

,

s s s

2x>
or p

2 + 4m = 4 mp£ -f- -j- ?

that is, (^>
2 + 4 m) £ = 4 m#> £

2 + 2^>.

(2) In order that this may have a rational solution,

{ i (l
)2 + 4 m) }

2— 8p2m must be a square,

i.e. 4m2— 6p2m + \p* = a square.

or m2— §p2m, + y
1^4 = a square]

Also, by the second condition, m + £) = a square)

To solve this, we must take for p some number which

is both a square and a cube (in order that it may be

possible, by multiplying the second equation by some

square, to make the constant term equal to the constant

1523.2 Xi 1
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term in the first). Diophantus takes p = 64, making
the equations

m2— 61 44m + 1048576 = a square]

m + 64 = a square)

Multiplying the second by 16384, and subtracting the two

expressions, we have as the difference m2— 22528?7i.

Diophantus observes that, if we take m, 791 — 22528 as

the factors, we obtain m = 7680, an impossible value for

the area of a right-angled triangle of perimeter p = 64.

We therefore take as factors 11m, y^m- 2048, and,

equating the square of half the difference (=ffm+ 1024)

to 16384m + 1048576, we have m = ?
§ff*.

(3) Returning to the original problem, we have to

substitute this value for m in

(64-i-2m£)2 = -i+4m2
£
2
,

and we obtain

78848^2— 8432^ + 225 = 0,

the solution of which is rational, namely £ = ££% (or Tf e)-

Diophantus naturally takes the first value, though the

second gives the same triangle.]

VI. 23. z2 = u2 + u, z 2 1 x — v3 + v.

VI. 24. z = u? + u, x = v^— v, y = w\

[VI. 6, 7]. (± x
)

2 + ±mxy = u2
.

[VI. 8, 9]. {i(x + y)}
2 + ±mxy = u2

.

[VI. 10, 11]. {±(z + x)} 2 + ±mxy = u 2
.

[VI. 12.] y + (x— y).^xy = u2
, x = v2

. (x > y.)

[VI. 14, 15]. u2zx— \xy . x(z— x) = v2
. (u2 < or > %xy.)

The treatise on Polygonal Numbers.

The subject of Polygonal Numbers on which Diophantus

also wrote is, as we have seen, an old one, going back to the
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Pythagoreans, while Philippus of Opus and Speusippus carried

on the tradition. Hypsicles (about 170 B.C.) is twice men-

tioned by Diophantus as the author of a ' definition ' of

a polygonal number which, although it does not in terms

mention any polygonal number beyond the pentagonal,

amounts to saying that the nth a-gon (1 counting as the

first) is

Theon of Smyrna, Nicomachus and Iamblichus all devote

some space to polygonal numbers. Nicomachus in particular

gives various rules for transforming triangles into squares,

squares into pentagons, &c.

1. If we put two consecutive triangles together, we get a square.

In fact

%(n— l)n + ^)i(n+ 1) = n2
,

2. A pentagon is obtained from a square by adding to it

a triangle the side of which is 1 less than that of the square

;

similarly a hexagon from a pentagon by adding a triangle

the side of which is 1 less than that of the pentagon, and so on.

In fact

\n {2 + (n - 1) (a- 2) } + \ (n- \)n

= in[2 + (n-l){(a+l)-2}].

3. Nicomachus sets out the first triangles, squares, pentagons,

hexagons and heptagons in a diagram thus

:

Triangles 1 3 6 10 15 21 28 36 45 55,

Squares 1 4 9 16 25 36 49 64 81 100,

Pentagons 1 5 12 22 35 51 70 92 117 145,

Hexagons 1 6 15 28 45 66 91 120 153 190,

Heptagons 1 7 18 34 55 81 112 148 189 235,

and observes that

:

Each polygon is equal to the polygon immediately above it

in the diagram plus the triangle with 1 less in its side, i.e. the

triangle in the preceding column.

Ll2
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4. The vertical columns are in arithmetical progression, the

common difference being the triangle in the preceding column.

Plutarch, a contemporary of Nicomachus, mentions another

method of transforming triangles into squares. Every tri-

angular number taken eight times and then increased by 1

gives a square.

In fact, 8.%n(n+'l) + l = (2n+l)2
.

Only a fragment of Diophantus's treatise On Polygonal

Numbers survives. Its character is entirely different from

that of the Arithmetica. The method of proof is strictly

geometrical, and has the disadvantage, therefore, of being long

and involved. He begins with some preliminary propositions

of which two may be mentioned. Prop. 3 proves that, if a be

the first and I the last term in an arithmetical progression

of n terms, and if s is the sum of the terms, 2s = n(l + a).

Prop. 4 proves that, if 1, \+b, 1 + 2b, ... 1 + (n— 1)6 be an

A. P., and s the sum of the terms,

2s = n {2 + (n— 1)6}.

The main result obtained in the fragment as we have it

is a generalization of the formula 8 . ±n(n + 1) + 1 = (2^+1 )

2
.

Prop. 5 proves the fact stated in Hypsicles's definition and also

(the generalization referred to) that

8P(a-2) + (a- 4)
2 = a square,

where P is any polygonal number with a angles.

It is also proved that, if P be the nth a-gonal number

(1 being the first),

8P(a-2) + (a-4) 2 = {2 + (2w- 1) (a-2)}
2

.

Diophantus deduces rules as follows.

1

.

To find the number from its side.

{2 + (27i-l)(q-2)} 2 -(a-4) 2

~~
8(o^2)~~

2. To find the side from the number.

1
/v/ {8P(a-2) + (a-4) 2}-2,V{8r{a-2) + {a-*yj-2 \

V a— 2 /
n -

2 V a-2
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The last proposition, which breaks oft' in the middle, is

:

Given a number, to find in hoiv many ways it can be

polygonal.

The proposition begins in a way which suggests that

Diophantus first proved geometrically that, if

8P(«-2) + (a-4) 2 = {2 + (2n-\) {a- 2)

}

2
,

then 2P — n {2+ (n— l)(a— 2)}.

Wertheim (in his edition of Diophantus) has suggested a

restoration of the complete proof of this proposition, and

I have shown (in my edition) how the proof can be made
shorter. Wertheim adds an investigation of the main pro-

blem, but no doubt opinions will continue to differ as to

whether Diophantus actually solved it.



XXJ

COMMENTATORS AND BYZANTINES

We have come to the last stage of Greek mathematics ; it

only remains to include in a last chapter references to com-
mentators of more or less note who contributed nothing

original but have preserved, among observations and explana-

tions obvious or trivial from a mathematical point of view,

valuable extracts from works which have perished, or

historical allusions which, in the absence of original docu-

ments, are precious in proportion to their rarity. Nor must
it be forgotten that in several cases we probably owe to the

commentators the fact that the masterpieces of the great

mathematicians have survived, wholly or partly, in the

original Greek or at all. This may have been the case even

with the works of Archimedes on which Eutocius wrote com-

mentaries. It was no doubt these commentaries which

aroused in the school of Isidorus of Miletus (the colleague

of Anthemius as architect of Saint Sophia at Constantinople)

a new interest in the works of Archimedes and caused them

to be sought out in the various libraries or wherever they had

lain hid. This revived interest apparently had the effect of

evoking new versions of the famous works commented upon

in a form more convenient for the student, with the Doric

dialect of the original eliminated; this translation of the

Doric into the more familiar dialect was systematically

carried out in those books only which Eutocius commented

on, and it is these versions which alone survive. Again,

Eutocius's commentary on Apollonius's Conies is extant for

the first four Books, and it is probably owing to their having

been commented on by Eutocius, as well as to their being

more elementary than the rest, that these four Books alone
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survive in Greek. Tannery, as we have seen, conjectured

that, in like manner, the first six of the thirteen Books of

Diophantus's Arithmetlca survive because Hypatia wrote

commentaries on these Books only and did not reach the

others.

The first writer who calls for notice in this chapter is one

who was rather more than a commentator in so far as he

wrote a couple of treatises to supplement the Conies of

Apollonius, I mean Serenus. Serenus came from Antinoeia

or Antinoupolis, a city in Egypt founded by Hadrian (a. d.

117-38). His date is uncertain, but he most probably be-

longed to the fourth century A.D., and came between Pappus

and Theon of Alexandria. He tells us himself that he wrote

a commentary on the Conies of Apollonius. 1 This has

perished and, apart from a certain proposition ' of Serenus

the philosopher, from the Lemmas ' preserved in certain manu-
scripts of Theon of Smyrna (to the effect that, if a number of

rectilineal angles be subtended at a point on a diameter of a

circle which is not the centre, by equal arcs of that circle, the

angle nearer to the centre is always less than the angle more

remote), we have only the two small treatises by him entitled

On the Section of a Cylinder and On the Section of a Cone.

These works came to be connected, from the seventh century

onwards, with the Conies of Apollonius, on account of the

affinity of the subjects, and this no doubt accounts for their

survival. They were translated into Latin by Commandinus
in 1566 ; the first Greek text was brought out by Halley along

with his Apollonius (Oxford 1710), and we now have the

definitive text edited by Heiberg (Teubner 1896).

(a) On the Section of a Cylinder.

The occasion and the object of the tract On the Section of

a Cylinder are stated in the preface. Serenus observes that

many persons who were students of geometry were under the

erroneous impression that the oblique section of a cylinder

was different from the oblique section of a cone known as an

ellipse, whereas it is of course the same curve. Hence he

thinks it necessary to establish, by a regular geometrical

1 Serenus, Opuscula, ed. Heiberg, p. 52. 25-6.
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proof, that the said oblique sections cutting all the generators

are equally ellipses whether they are sections of a cylinder or

of a cone. He begins with ' a more general definition ' of a

cylinder to include any oblique circular cylinder. ' If in two
equal and parallel circles which remain fixed the diameters,

while remaining parallel to one another throughout, are moved
round in the planes of the circles about the centres, which

remain fixed, and if they carry round with them the straight line

joining their extremities on the same side until they bring it

back again to the same place, let the surface described by the

straight line so carried round be called a cylindrical surface.'

The cylinder is the figure contained by the parallel circles and

the cylindrical surface intercepted by them ; the parallel

circles are the bases, the axis is the straight line drawn
through their centres ; the generating straight line in any

position is a side. Thirty-three propositions follow. ' Of these

Prop. 6 proves the existence in an oblique cylinder of the

parallel circular sections subcontrary to the series of which

the bases are two, Prop. 9 that the section by any plane not

parallel to that of the bases or of one of the subcontrary

sections but cutting all the generators is not a circle ;
the

next propositions lead up to the main results, namely those in

Props. 14 and 16, where the said section is proved to have the

property of the ellipse which we write in the form

,
QV 2 :PV.P'V=CD 2 :CP 2

,

and in Prop. 17, where the property is put in the Apollonian

form involving the latus rectum, QV 2 = PV. VR (see figure

on p. 137 above), which is expressed by saying that the square

on the semi-ordinate is equal to the rectangle applied to the

latus rectum PL, having the abscissa PFas breadth and falling

short by a rectangle similar to the rectangle contained by the

diameter PP' and the latus rectum PL (which is determined

by the condition PL . PP'= DD' 2 and is drawn at right angles

to PV). Prop. 18 proves the corresponding property with

reference to the conjugate diameter I)Df and the correspond-

ing latus rectum, and Prop. 19 gives the main property in the

form QV 2 :PV.P'V = Q'V' 2 :PV'.P'V. Then comes the

proposition that ' it is possible to exhibit a cone and a cylinder

which are alike cut in one and the same ellipse ' (Prop. 20).
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Serenus then solves such problems as these : Given a cone

(or cylinder) and an ellipse on it, to find the cylinder (cone)

which is cut in the same ellipse as the cone (cylinder)

(Props. 21, 22); given a cone (cylinder), to find a cylinder

(cone) and to cut both by one and the same plane so that the

sections thus made shall be similar ellipses (Props. 23, 24).

Props. 27. 28 deal with similar elliptic sections of a scalene

cylinder and cone ; there are two pairs of infinite sets of these

similar to any one given section, the first pair being those

which are parallel and subcontrary respectively to the given

section, the other pair subcontrary to one another but not to

either of the other sets and having the conjugate diameter

occupying the corresponding place to the transverse in the

other sets, and vice versa.

In the propositions (29-33) from this point to the end of

the book Serenus deals with what is .really an optical pro-

blem. It is introduced by a remark about a certain geometer,

Peithon by name, who wrote a tract on the 'subject of

parallels. Peithon, not being satisfied with Euclid's treat-

ment of parallels, thought to define parallels by means of an

illustration, observing' that parallels are such lines as are

shown on a wall or a roof by the shadow of a pillar with

a light behind it. This definition, it appears, was generally

ridiculed ; and Serenus seeks to rehabilitate Peithon, who
was his friend, by showing that his statement is after all

mathematically sound. He therefore proves, with regard to

the cylinder, that, if any number of rays from a point outside

the cylinder are drawn touching it on both sides, all the rays

pass through the sides of a parallelogram (a section of the

cylinder parallel to the axis)—Prop. 29—and if they are

produced farther to meet any other plane parallel to that

of the parallelogram the points in which they meet the plane

will lie on two parallel lines (Prop. 30) ; he adds that the lines

will not seem parallel (vide Euclid's Optics, Prop. 6). The
problem about the rays touching the surface of a cylinder

suggests the similar one about any number of rays from an
external point touching the surface of a cone ; these meet the

surface in points on a triangular section of the cone (Prop. 32)

and, if produced to meet a plane parallel to that of the

triangle, meet that plane in points forming a similar triangle



522 COMMENTATORS AND BYZANTINES

(Prop. 33). Prop. 31 preceding these propositions is a par-

ticular case of the constancy of the anharmonic ratio of a
pencifof four rays. If two sides AB, AG of a triangle meet
a transversal through D, an external point, in E, F and another
ray AG between AB and AG cuts DEF in a point G such

that ED : DF = EG : GF, then any other transversal through
D meeting AB, AG, AG in K, L, M is also divided harmoni-
cally, i.e. KB : DM = KL : LM. To prove the succeeding pro-

positions, 32 and 33, Serenus uses this proposition and a

reciprocal of it combined with the harmonic property of the

pole and polar with reference to an ellipse.

(ft) On the Section of a Cone.

The treatise On the Section ofa Cone is even less important,

although Serenus claims originality for it. It deals mainly

with the areas of triangular sections of right or scalene cones

made by planes passing through the vertex and either through

the axis or not through the axis, showing when the area of

a certain triangle of a particular class is a maximum, under

what conditions two triangles of a class may be equal in area,

and so on, and solving in some easy cases the problem of

finding triangular sections of given area. This sort of investi-

gation occupies Props. 1-5 7 of the work, these propositions

including various lemmas required for the proofs of the

substantive theorems. Props. 58-69 constitute a separate

section of the book dealing with the volumes of right cones

in relation to their heights, their bases and the areas of the

triangular sections through the axis.

The essence of the first portion of the book up to Prop. 57

is best shown by means of modern notation. We will call h

the height of a right cone, r the radius of the base ; in the

case of an oblique cone, let p be the perpendicular from the

vertex to the plane of the base, d the distance of the foot of

this perpendicular from the centre of the base, r the radius

of the base.

Consider first the right cone, and let 2x be the base of any

triangular section through the vertex, while of course 2r is

the base of the triangular section through the axis. Then, if

A be the area of the triangular section with base 2x,

A=xV(r2 -x2 + h2
).



SERENUS 523

Observing that the sum of x2 and r2 — x2 + h2 is constant, we
see that A 2

, and therefore A, is a maximum when

x2 = r2- x2 + h2
, or x2 = \ (r2 + h2

) ;

and, since a? is not greater than r, it follows that, for a real

value of x (other than r), h is less than r, or the cone is obtuse-

angled. When h is not less than r, the maximum triangle is

the triangle through the axis and vice versa (Props. 5, 8)

;

when h = r, the maximum triangle is also right-angled

(Prop. 13).

If the triangle with base 2 c is equal to the triangle through

the axis, h2 r2 = c
2 (r2— c

2 + h2
), or (r2 — c

2
) (c

2 — h 2
) = 0, and,

since c<r, h = c, so that h<r (Prop. 10). If x lies between r

and c in this case, (r2 — x2

)
(x2 — h2

) > or x2 (r2— x2 + h2
) >h2 r2

,

and the triangle with base 2x is greater than either of the

equal triangles with bases 2r, 2c, or 2h (Prop. 11).

In the case of the scalene cone Serenus compares individual

triangular sections belonging to one of three classes with other

sections of the same class as regards their area. The classes

are:

(1) axial triangles, including all sections through the axis;

(2) isosceles sections, i.e. the sections the bases of which are

perpendicular to the projection of the axis of the cone on the

plane of the base
;

(3) a set of triangular sections the bases of which are (a) the

diameter of the circular base which passes through the foot of

the perpendicular from the vertex to the plane of the base, and

(6) the chords of the circular base parallel to that diameter.

After two preliminary propositions (15, 16) and some
lemmas, Serenus compares the areas of the first class of

triangles through the axis. If, as we said, p is the perpen-

dicular from the vertex to the plane of the base, d the distance

of the foot of this perpendicular from the centre of the base,

and the angle which the base of any axial triangle with area

A makes with the base of the axial triangle passing through

p the perpendicular,

A =rV(2)2 + d2 sin2
0).

This area is a minimum when = 0, and increases with 6
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until — \ir when it is a maximum, the triangle being then

isosceles (Prop. 24).

In Prop. 29 Serenus takes up the third class of sections with

bases parallel to d. If the base of such a section is 2x,

A = x V (r
2 — x2 +p2

)

and, as in the case of the right cone, we must have for a real

maximum value

x2 = \ (r
2 +p2

), while x < r,

so that, for a real value of x other than r, p must be less than

r, and, if p is not less than r, the maximum triangle is that

which is perpendicular to the base of the cone and has 2 r for

its base (Prop. 29). If p<r, the triangle in question is not

the maximum of the set of triangles (Prop. 30).

Coming now to the isosceles sections (2), we may suppose

2 6 to be the angle subtended at the centre of the base by the

base of the section in the direction away from the projection

of the vertex. Then

A = rsm6V{p2 + (d + rcos6) 2
}.

If A be the area of the isosceles triangle through the axis,

we have

A 2-A 2 = r2
(p

2 + d2
)
- r2 sin2 6 {p

2 + d2 + r2 cos2 6 + 2 dr cos 6)

— r2 (p2 _j_^ cog2 _ r4 gjn2 CQS2 _ 2 ^r3 COS SIB 2 0.

If A = A , we must have for triangles on the side of the

centre of the base of the cone towards the vertex of the cone

(since cos is negative for such triangles)

p
2 + d2 < r2 sin2

0, and a fortiori p
2 + d 2 < r2 (Prop. 35).

If p
2 + d2 ^.r2

, A is always greater than A, so that A is the

maximum isosceles triangle of the set (Props. 31, 32).

If A is the area of any one of the isosceles triangles with

bases on the side of the centre of the base of the cone away
from the projection of the vertex, cos is positive and A is

proved to be neither the minimum nor the maximum triangle

of this set of triangles (Props. 36, 40-4).

In Prop. 45 Serenus returns to the set of triangular sections

through the axis, proving that the feet of the perpendiculars

from the vertex of the cone on their bases all lie on a circle

the diameter of which is the straight line joining the centre of
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the base of the cone to the projection of the vertex on its

plane ; the areas of the axial triangles are therefore propor-

tional to the generators of the cone with the said circle as

base and the same vertex as the original cone. Prop. 50 is to

the effect that, if the axis of the cone is equal to the radius of

the base, the least axial triangle is a mean proportional

between the greatest axial triangle and the isosceles triangular

section perpendicular to the base ; that is, with the above nota-

tion, if r = a/(£>
2 + d2

), then r V(p2 + d2
) : rp = rp:p </(r2— d2

),

which is indeed obvious.

Prop. 57 is interesting 'because of the lemmas leading to it.

It proves that the greater axial triangle in a scalene cone has

the greater perimeter, and conversely. This is proved by
means of the lemma (Prop. 54), applied to the variable sides

of axial triangles, that if a2 + d2 = b2 + c
2 and a>b^.c>d,

then a+d<b+c (a,d are the sides other than the base of one

axial triangle, and b, c those of the other axial triangle com-

pared with it ; and if ABC, ABE be two axial triangles and

the centre of the base, B

A

2 + AC 2= DA 2 + AE 2 because each

of these sums is equal to 2 A 2 + 2BO 2
, Prop. 1 7). This proposi-

tion again depends on the lemma (Props. 52, 53) that, if

straight lines be ' inflected ' from the ends of the base of

a segment of a circle to the curve (i. e. if we join the ends

of the base to any point on the curve) the line (i. e. the sum of

the chords) is greatest when the point taken is the middle

point of the arc, and diminishes as the point is taken farther

and farther from that point.

Let B be the middle point of the

arc of the segment ABC, D, E any

other points on the curve towards

C\ I say that

AB + BC>AD + DC>AE+ EC.

With B as centre and BA as radius

describe a circle, and produce A B,

AD, AE to meet this circle in F, G,

H. Join FC, GC, EC.
Since AB = BC = BF, we have AF = AB + BC. Also the

angles BFC, BCF are equal, and each of them is half of

the angle ABC.
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Again lAGC = LAFC = \LABC = \LABG\

therefore the angles DGG, DCG are equal and DG — DC;

therefore A G = AD + DG.

Similarly EH = EC and AH = AE+ EG.

But, by Eucl. III. 7 or 15, AF>AG>AH, and so on
;

therefore AB + BC>AD + DC>AE+EC, and so on.

In the particular case where the, segment ABC is a semi-

circle AB 2 + BC 2 = AC2 = AD2 + DC 2
, &c, and the result of

Prop. 57 follows.

Props. 58-69 are propositions of this sort: In equal right

cones the triangular sections through the axis are reciprocally

proportional to their bases and conversely (Props. 58, 59)

;

right cones of equal height have to one another the ratio

duplicate of that of their axial triangles (Prop. 62); right

cones which are reciprocally proportional to their bases have

axial triangles which are to one another reciprocally in the

triplicate ratio of their bases and conversely (Props. 66, 67);

and so on.

Theon of Alexandria lived towards the end of the fourth

century a.d. Suidas places him in the reign of Theodosius I

(379-95); he tells us himself that he observed a solar eclipse

at Alexandria in the year 365, and his notes on the chrono-

logical tables of Ptolemy extend down to 372.

Commentary on the Syntaxis.

We have already seen him as the author of a commentary
on Ptolemy's Syntaxis in eleven Books. This commentary is

not calculated to give us a very high opinion of Theon's

mathematical calibre, but it is valuable for several historical

notices that it gives, and we are indebted to it for a useful

account of the Greek method of operating with sexagesimal

fractions, which is illustrated by examples of multiplication,

division, and the extraction of the square root of a non-square

number by way of approximation. These illustrations of

numerical calculation have already been given above (vol. i,
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pp. 58-63). Of the historical notices we may mention the

following. (1) Theon mentions the treatise of Menelaus On
Chords in a Circle, i.e. Menelaus's Table of Chords, which came

between the similar Tables of Hipparclms and Ptolemy. (2) A
quotation from Diophantus furnishes incidentally a lower limit

for the date of the Arlthmetica. (3) It is in the commentary

on Ptolemy that Theon tells us that the second part of Euclid

VI. 33 relating to sectors in equal circles was inserted by him-

self in his edition of the Elements, a notice which is of capital

importance in that it enables the Theonine manuscripts of

Euclid to be distinguished from the ante-Theonine, and is

therefore the key to the question how far the genuine text

of Euclid was altered in Theon's edition. (4) As we have

seen (pp. 207 sq.), Theon, a propos of an allusion of Ptolemy

to the theory of isoperimetric figures, has preserved for us

several propositions from the treatise by Zenodorus on that

subject.

Theon's edition of Euclid's Elements.

We are able to judge of the character of Theon's edition of

Euclid by a comparison between the Theonine manuscripts

and the famous Vatican MS. 190, which contains an earlier

edition than Theon's, together with certain fragments of

ancient papyri. It appears that, while Theon took some

trouble to follow older manuscripts, it was not so much his

object to get the most authoritative text as to make what he

considered improvements of one sort or other, (l) He made
alterations where he found, or thought he found, mistakes in

the original; while he tried to remove some real blots, he

altered other passages too hastily when a little more considera-

tion would have shown that Euclid's words are right or could

be excused, and offer no difficulty to an intelligent reader.

(2) He made emendations intended to improve the form or

diction of Euclid ; in general they were prompted by a desire

to eliminate anything which was out of the common in expres-

sion or in form, in order to reduce the language to one and the

same standard or norm. (3) He bestowed, however, most

attention upon additions designed to supplement or explain

the original
;
(a) he interpolated whole propositions where he

thought them necessary or useful, e.g. the addition to VI. 33
'.
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already referred to, a second case to VI. 27, a porism or corollary

to II. 4, a second porism to III. 16, the proposition VII. 22,

a lemma after X. 1 2, besides alternative proofs here and there
;

(b) he added words for the purpose of making smoother and

clearer, or more precise, things which Euclid had expressed

with unusual brevity, harshness, or carelessness
;

(c) he sup-

plied intermediate steps where Euclid's argument seemed too

difficult to follow. In short, while making only inconsider-

able additions to the content of the Elements, he endeavoured

to remove difficulties that might be felt b}^ learners in study-

ing the book, as a modern editor might do in editing a classical

text-book for use in schools ; and there is no doubt that his

edition was approved by his pupils at Alexandria for whom it

was written, as well as by later Greeks, who used it almost

exclusively, with the result that the more ancient text is only

preserved complete in one manuscript.

Edition of the Optics of Euclid.

In addition to the Elements, Theon edited the Optics of

Euclid ; Theon's recension as well as the genuine work is

included by Heiberg in his edition. It is possible that the

Catoptrica included by Heiberg in the same volume is also by
Theon.

Next to Theon should be mentioned his daughter HypATIA,
who is mentioned by Theon himself as having assisted in the

revision of the commentary on Ptolemy. This learned lady

is said to have been mistress of the whole of pagan science,

especially of philosophy and medicine, and by her eloquence

and authority to have attained such influence that Christianity

considered itself threatened, and she was put to death by

a fanatical mob in March 415. According to Suidas she wrote

commentaries on Diophantus, on the Astronomical Canon (of

Ptolemy) and on the Conies of Apollonius. These works

have not survived, but it has been conjectured (by Tannery)

that the remarks of Psellus (eleventh century) at the begin-

ning of his letter about Diophantus, Anatolius, and the

Egyptian method of arithmetical reckoning were taken bodily

from some manuscript of Diophantus containing an ancient

and systematic commentary which may very well have been

that of Hypatia. Possibly her commentary may have extended
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only to the first six Books, in which case the fact that Hypatia
wrote a commentary on them may account for the survival of

these Books while the rest of the thirteen were first forgotten

and then lost.

It will be convenient to take next the series of Neo-
Platonist commentators. It does not appear that Ammonius
Saccas (about a.d. 175-250), the founder of Neo-Plat6nism, or

his pupil Plotinus (A.D. 204-69), who first expounded the

doctrines in systematic form, had any special connexion with

mathematics, but Porphyry (about 232-304), the disciple of

Plotinus and the reviser and editor of his works, appears to

have written a commentary on the Elements. This we gather

from Proclus, who quotes from Porphyry comments on Eucl.

I. 14 and 26 and alternative proofs of I. 18, 20. It is possible

that Porphyry's work may have been used later by Pappus in

writing his own commentary, and Proclus may have got his

references from Pappus, but the form of these references sug-

gests that he had direct access to the original commentary of

Porphyry.

Iamblichus (died about A.D. 330) was the author of a com-

mentary on the Introductio arithmetica of Nicomachus, and
of other works which have already been mentioned. He was
a pupil of Porphyry as well as of Anatolius, also a disciple of

Porphyry

.

(

But the most important of the Neo-Platonists to the his-

torian of mathematics is Proclus (a.d. 410-85). Proclus

received his early training at Alexandria, where Olympio-

dorus was his instructor in the works of Aristotle, and

mathematics was taught him by one Heron (of course a

different Heron from the ' mechanicus Hero ' of the Metrica,

&c). He afterwards went to Athens, where he learnt the

Neo-Platonic philosophy from Plutarch, the grandson of Nes-

torius, and from his pupil Syrianus, and became one of its

most prominent exponents. He speaks everywhere with the

highest respect of his masters, and was in turn regarded with

extravagant veneration by his contemporaries, as we learn

from Marinus, his pupil and biographer. On the death of

Syrianus he was put at the head of the Neo-Platonic school.

He was a man of untiring industry, as is shown by the

W23.2 M m



530 COMMENTATORS AND BYZANTINES

number of books which he wrote, including a large number of

commentaries, mostly on the dialogues of Plato (e.g. the

Timaeus, the Republic, the Parmenides, the Cratylus). He
was an acute dialectician and pre-eminent among his contem-

poraries in the range of his learning; he was a competent

mathematician ; he was even a poet. At the same time he

was a believer in all sorts of myths and mysteries, and

a devout worshipper of divinities both Greek and Oriental.

He was much more a philosopher than a mathematician. In

his commentary on the Timaeus, when referring to the ques-

tion whether the sun occupies a middle place among the

planets, he speaks as no real mathematician could have

spoken, rejecting the view of Hipparchus and Ptolemy because

6 Oeovpyos (sc. the Chaldean, says Zeller) thinks otherwise,

' whom it is not lawful to disbelieve '. Martin observes too,

rather neatly, that ' for Proclus the Elements of Euclid had

the good fortune not to be contradicted either by the Chaldean

Oracles or by the speculations of Pythagoreans old and new '.

Commentary on Euclid, Book I.

For us the most important work of Proclus is his commen-
tary on Euclid, Book I, because it is one of the main sources

of our information as to the history of elementary geometry.

Its great value arises mainly from the fact that Proclus had

access to a number of historical and critical works which are

now lost except for fragments preserved by Proclus and

others.

(a) Sources of the Commentary.

The historical work the loss of which is most deeply to be

deplored is the History of Geometry by Eudemus. There

appears to be no reason to doubt that the work of Eudemus
was accessible to Proclus at first hand. For the later writers

Simplicius and Eutocius refer to it in terms such as leave no

doubt that they had it before them. Simplicius, quoting

Eudemus as the best authority on Hippocrates's quadratures

of lunes, says he will set out what Eudemus says ' word for

word ', adding only a little explanation in the shape of refer-

ences to Euclid's Elements 'owing to the memorandum-like

style of Eudemus, who sets out his explanations in the abbre-
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viated form usual with ancient writers. Now in the second

book of the history of geometry he writes as follows '.* In

like manner Eutocius speaks of the paralogisms handed down
in connexion with the attempts of Hippocrates and Antiphon

to square the circle, ' with which I imagine that all persons

are accurately acquainted who have examined (enterKefifiivovs)

the geometrical history of Eudemus and know the Geria

Aristotelica \
2

The references by Proclus to Eudemus by name are not

indeed numerous ; they are five in number ; but on the other

hand he gives at least as many other historical data which can

with great probability be attributed to Eudemus.

Proclus was even more indebted to Geminus, from whom
he borrows long extracts, often mentioning him by name

—

there are some eighteen such references—but often omitting

to do so. We are able to form a tolerably certain judge-

ment as to the origin of the latter class of passages on the

strength of the similarity of the subjects treated and the views

expressed to those found in the acknowledged extracts. As
we have seen, the work of Geminus mainly cited seems to

have borne the title The Doctrine or Theory of the Mathematics,

which was a very comprehensive work dealing, in a portion of

it, with the ' classification of mathematics '.

We have already discussed the question of the authorship

of the famous historical summary given by Proclus. It is

divided, as every one knows, into two distinct parts between

which comes the remark, ' Those who compiled histories

bring the development of this science up to this point. Not
much younger than these is Euclid, who ', &c. The ultimate

source at any rate of the early part of the summary must
presumably have been the great work of Eudemus above

mentioned.

It is evident that Proclus had before him the original works
of Plato, Aristotle, Archimedes and Plotinus, the ^vfifxiKra of

Porphyry and the works of his master Syrianus, as well as a

group of works representing the Pythagorean tradition on its

mystic, as distinct from its mathematical, side, from Philo-

laus downwards, and comprising the more or less apocryphal

1 Simplicius on Arist. Phys., p. 60. 28, Diels.
2 Archimedes, ed. Heib., vol. iii, p. 228. 17-19.

M m 2
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Upbs Aoyoy of Pythagoras, the Oracles (\6yia) and Orphic
verses.

The following will be a convenient summary of the other

works used by Proclus, and will at the same time give an
indication of the historical value of his commentary on
Euclid, Book I :

Eudemus : History of Geometry.

Geminus: The Theory of the Mathematical Sciences.

Heron: Commentary on the Elements of Euclid.

Porphyry:

Pappus:

Apollonius of Perga : A work relating to elementary

geometry.

Ptolemy : On the parallel-postulate.

Posidonius : A book controverting Zeno of Sidon.

Carpus : Astronomy.

Syrianus: A discussion on the angle.

(/?) Character of the Commentary.

We know that in the Neo-Platonic school the pupils learnt

mathematics ; and it is clear that Proclus taught this subject,

and that this was the origin of his commentary. Many
passages show him as a master speaking to scholars ; in one

place he speaks of ' my hearers '} Further, the pupils whom
he was addressing were beginners in mathematics ; thus in one

passage he says that he omits ' for the present ' to speak of the

discoveries of those who employed the curves of Nicomedes

and Hippias for trisecting an angle, and of those who used the

Archimedean spiral for dividing an angle in a given ratio,

because these things would be ' too difficult for beginners \
2

But there are signs that the commentary was revised and

re-edited for a larger public; he speaks for instance in one

place of ' those who will come across his work \8 There are

also passages, e.g. passages about the cylindrical helix, con-

choids and cissoids, which would not have been understood by

the beginners to whom he lectured.

1 Proclus on Eucl. 1, p. 210. 19. - //>., p. 272. 12.
3

lb., p. 84. 9.
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The commentary opens with two Prologues. The first is

on mathematics in general and its relation to, and use in,

philosophy, from which Proclus passes to the classification of

mathematics. Prologue II deals with geometry generally and

its subject-matter according to Plato, Aristotle and others.

After this section comes the famous summary (pp. 64-8)

ending with a eulogium of Euclid, with particular reference

to the admirable discretion shown in the selection of the pro-

positions which should constitute the Elements of geometry,

the ordering of the whole subject-matter, the exactness and

the conclusiveness of the demonstrations, and the power with

which every question is handled. Generalities follow, such as

the discussion of the nature of elements, the distinction between

theorems and problems according to different authorities, and

finally a division of Book I into three main sections, (1) the

construction and properties of triangles and their parts and

the comparison between triangles in respect of their angles

and sides, (2) the properties of parallels and parallelograms

and their construction from certain data, and (3) the bringing

of triangles and parallelograms into relation as regards area.

Coming to the Book itself, Proclus deals historically and

critically with all the definitions^ postulates and axioms in

order. The notes on the postulates and axioms are preceded

by a general discussion of the principles of geometry, hypo-

theses, postulates and axioms, and their relation to one

another ; here as usual Proclus quotes the opinions of all the

important authorities. Again, when he comes to Prop. 1, he

discusses once more the difference between theorems and

problems, then sets out and explains the formal divisions of

a proposition, the enunciation {irporacns), the setting-out

(e/c^€o-iy), the definition or specification (8topio-fj.6s), the con-

struction (KaTaaKtvrj), the proof {airoSti^Ls), the conclusion

(o-vfjLirepao-fxa), and finally a number of other technical terms,

e.g. things said to be given, in the various senses of this term,

the lemma, the case, the porism in its two senses, the objection

{'ivvTacns), the reduction of a problem, reductio ad absurdum,

analysis and synthesis.

In his comments on the separate propositions Proclus

generally proceeds in this way : first he gives explanations

regarding Euclid's proofs, secondly he gives a few different
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cases, mainly for the sake of practice, and thirdly he addresses

himself to refuting objections which cavillers had taken or

might take to particular propositions or arguments. He does

not seem to have had any notion of correcting or improving

Euclid; only in one place does he propose anything of his

own to get over a difficulty which he finds in Euclid ; this is

where he tries to prove the parallel-postulate, after giving

Ptolemy's attempt to prove it and pointing out objections to

Ptolemy's proof.

The book is evidently almost entirely a compilation, though

a compilation ' in the better sense of the term '. The onus

probandi is on any one who shall assert that anything in it is

Proclus's own ; very few things can with certainty be said to

be so. Instances are (1) remarks on certain things which he

quotes from Pappus, since Pappus was the last of the com-

mentators whose works he seems to have used, (2) a defence

of Geminus against Carpus, who criticized Geminus's view of

the difference between theorems and problems, and perhaps

(3) criticisms of certain attempts by Apollonius to improve on

Euclid's proofs and constructions ; but the only substantial

example is (4) the attempted proof of the parallel-postulate,

based on an ' axiom ' to the effect that, ' if from one point two

straight lines forming an angle be produced ad infinitum, the

distance between them when so produced ad infinitum exceeds

any finite magnitude (i. e. length) ', an assumption which

purports to be the equivalent of a statement in Aristotle.1

Philoponus says that Proclus as well as Ptolemy wrote a whole

book on the parallel-postulate.2

It is still not quite certain whether Proclus continued his

commentaries beyond Book I. He certainly intended to do so,

for, speaking of the trisection of an angle by means of certain

curves, he says, ' we may perhaps more appropriately examine

these things on the third Book, where the writer of the

Elements bisects a given circumference', and again, after

saying that of all parallelograms which have the same peri-

meter the square is the greatest ' and the rhomboid least of

all', he adds, ' But this we will prove in another place, for it

is more appropriate to the discussion of the hypotheses of the

1 De caelo, i. 5, 271 b 28-30.
2 Philoponus on Anal. Post. i. 10, p. 214 a 9-12, Brandis.
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second Book '. But at the time when the commentary on

Book I was written he was evidently uncertain whether he

would be able to continue it, for at the end he says, ' For my
part, if I should be able to discuss the other Books in the

same way, I should give thanks to the gods ; but, if other

cares should draw me away, I beg those who are attracted by

this subject to complete the exposition of the other Books as

well, following the same method and addressing themselves

throughout to the deeper and more sharply defined questions

involved'. 1
- Wachsmuth, finding a Vatican manuscript contain-

ing a collection of scholia on Books I, II, V, VI, X, headed Eh ra

EvKXeiSou (TTOL\ela TrpokanfiavbyLtva e/c tcou IIpoKXov cnropdSrji/

kcu kolt €7riTo/xriu, and seeing that the scholia on Book I were

extracts from the extant commentary of Proclus, concluded

that those on the other Books were also from Proclus ; but

the 77-/00- in npoXafi^apo/xeua rather suggests that only the

scholia to Book I are from Proclus. Heiberg found and

published in 1903 a scholium to X. 9, in which Proclus is

expressly quoted as the authority, but he does not regard

this circumstance as conclusive. On the other hand, Heiberg

has noted two facts which go against the view that Proclus

wrote on the later Books: (1) the scholiast's copy of

Proclus was not much better than our manuscripts ; in

particular, it had the same lacunae in the notes to I. 36,

37, and I. 41-3; this makes it improbable that the scholiast

had further commentaries of Proclus which have vanished

for us
; (2) there is no trace in the scholia of the notes

which Proclus promised in the passages already referred to.

All, therefore, that we can say is that, while the Wachsmuth
scholia may be extracts from Proclus, it is on the whole

improbable.

Hypotyposis of Astronomical Hypotheses.

Another extant work of Proclus which should be referred

to is his Hypotyposis of Astronomical Hypotheses, a sort of

readable and easy introduction to the astronomical system

of Hipparchus and Ptolemy. It has been well edited by
Manitius (Teubner. 1909). Three things may be noted as

1 Proclus on Eucl. I, p. 432. 9-15.
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regards this work. It contains 1 a description of the method
of measuring the sun's apparent diameter by means of

Heron's water-clock, which, by comparison with the corre-

sponding description in Theon's commentary to the Syntaxis

of Ptolemy, is seen to have a common source with it. That

source is Pappus, and, inasmuch as Proclus has a figure (repro-

duced by Manitius in his text from one set of manuscripts)

corresponding to the description, while the text of Theon has

no figure, it is clear that Proclus drew directly on Pappus,

who doubtless gave, in his account of the procedure, a figure

taken from Heron's own work on water-clocks. A simple

proof of the equivalence of the epicycle and eccentric hypo-

theses is quoted by Proclus from one Hilarius of Antioch. 2

An interesting passage is that in chap. 4 (p. 130, 18) where

Sosigenes the Peripatetic is said to have recorded in his work
' on reacting spheres ' that an annular eclipse of the sun is

sometimes observed at times of perigee ; this is, so far as

I know, the only allusion in ancient times to annular eclipses,

and Proclus himself questions the correctness of Sosigenes's

statement.

Commentary on the Republic.

The commentary of Proclus on the Republic contains some

passages of great interest to the historian of mathematics.

The most important is that 3 in which Proclus indicates that

Props. 9, 10 of Euclid, Book II, are Pythagorean proposi-

tions invented for the purpose of proving geometrically the

fundamental property of the series of ' side-' and ' diameter-'

numbers, giving successive approximations to the value of

\/2 (see vol. i, p. 93). The explanation 4 of the passage in

Plato about the Geometrical Number is defective and dis-

appointing, but it contains an interesting reference to one

Paterius, of date presumably intermediate between Nestorius

and Proclus. Paterius is said to have made a calculation, in

units and submultiples, of the lengths of different segments of

1 Proclus, Hypotyposis, c. 4, pp. 120-22.
2 lb., c. 3, pp. 76, 17 sq.
3 Prodi Diadoch't in Platonis Rempublicam Commentarii , ed. Kroil,

vol. ii, p. 27.

* lb., vol. ii, pp. 36-42.
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straight lines in a figure formed by taking a triangle with

sides 3, 4, 5 as ABC, then drawing

BD from the right angle B perpen-

dicular to AC, and lastly drawing-

perpendiculars BE, DF to A B, BC.

A diagram in the text with the

lengths of the segments shown along-

side them in the usual numerical

notation shows that Paterius obtained from the data AB — 3,

BC = 4, CA = 5 the following:

2)C = y €'=3-|

2U> = '0yV=2iA [=2|]

<4D=asav = iHA [=ifi

jra = a/^^=iiAA [=14*]

M=aS y' feV = lfiA-A [= iff]

EA=a Le'oe'=l^-7\ [=1*].

This is an example of the Egyptian method of stating frac-

tions preceding by some three or four centuries the exposition

of the same method in the papyrus of Akhmim.

Marinus of Neapolis, the pupil and biographer of Proclus,

wrote a commentary or rather introduction to the Data of

Euclid. 1 It is mainly taken up with a discussion of the

question ri to SeSofievov, what is meant by given! There

were apparently many different definitions of the term given

by earlier and later authorities. Of those who tried to define

it in the simplest way by means of a single differentia, three

are mentioned by name. Apollonius in his work on vevo-eis

and his ' general treatise ' (presumably that on elementary

geometry) described the given as assigned or fixed (reray-

likvov), Diodorus called it known (yucopi/xop)', others regarded

it as rational (prjTov) and Ptolemy is classed with these, rather

oddly, because ' he called those things given the measure of

which is given either exactly or approximately'. Others

1 See Heiberg and Menge's Euclid, vol. vi, pp. 234-56.
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combined two of these ideas and called it assigned or fixed
and procurable or capable of being found (nopLfxoy); others
' fixed and known ', and a third class ' known and procurable '•

These various views are then discussed at length.

Domninus of Larissa, a pupil of Syrianus at the same time

as Proclus, wrote a Manual of Introductory Arithmetic ky\ei-

piSiov dpiOfirjTiKrjs elo-aycoyrjs, which was edited by Boissonade 1

and is the subject of two articles by Tannery,2 who also left

a translation of it, with prolegomena, which has since been

published.3 It is a sketch of the elements of the theory of

numbers, very concise and well arranged, and is interesting

because it indicates a serious attempt at a reaction against the

Introductio arithmetica of Nicomachus and a return to the

doctrine of Euclid. Besides Euclid, Nicomachus and Theon
of Smyrna, Domninus seems to have used another source,

now lost, which was also drawn upon by Iamblichus. At the

end of this work Domninus foreshadows a more complete

treatise on the theory of numbers under the title Elements of

Arithmetic (dpiO/irjTiKrj o-ToiyeioixTLs), but whether this was
ever written or not we do not know. Another tract

attributed to Domninus ttS>$ 'ivri Xoyov e/c Xoyov dcpeXeiv

(how a ratio can be taken out of a ratio) has been published

with a translation Joy Ruelle 4
; if it is not by Domninus, it

probably belongs to the same period.

A most honourable place in our history must be reserved

for Simplicius, who has been rightly called 'the excellent

Simplicius, the Aristotle-commentator, to whom the world can

never be grateful enough for the preservation of the frag-

ments of Parmenides, Empedocles, Anaxagoras, Melissus,

Theophrastus and others' (v. Wilamowitz-MollendorfF). He
lived in the first half of the sixth century and was a pupil,

first of Ammonius of Alexandria, and then of Damascius,

the last head of the Platonic school at Athens. When in the

year 529 the Emperor Justinian, in his zeal to eradicate

paganism, issued an edict forbidding the teaching of philo-

1 Anecdota Graeca, vol. iv, pp. 413-29.
2 Mimoires scientijiques, vol. ii, nos. 35, 40.
3 Revue des etudes grecques, 1906, pp. 359-82; Memoires scientijiques

,

vol. iii, pp. 256-81.
4 Uevue de Philologie, 1883, p. 83 sq.
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sophy at Athens, the last members of the school, including

Damascius and Simplicius, migrated to Persia, but returned

about 533 to Athens, where Simplicius continued to teach for

some time though the school remained closed.

Extracts from Eudemus.

To Simplicius we owe two long extracts of capital impor-

tance for the history of mathematics and astronomy. The
first is his account, based upon and to a large extent quoted

textually from Eudemus's History of Geometry, of the attempt

by Antiphon to square the circle and of the quadratures of

lunes by Hippocrates of Chios. It is contained in Simplicius's

commentary on Aristotle's Physics, 1 and has been the subject

of a considerable literature extending from 1870, the date

when Bretschneider first called attention to it, to the latest

critical edition with translation and notes by Rudio (Teubner,

1907). It has already been discussed (vol. i, pp. 183-99).

The second, and not less important, of the two passages is

that containing the elaborate and detailed account of the

system of concentric spheres, as first invented by Eudoxus for

explaining the apparent motion of the sun, moon, and planets,

and of the modifications made by Callippus and Aristotle. It

is contained in the commentary on Aristotle's De caelo 2
;

Simplicius quotes largely from Sosigenes the Peripatetic

(second century A.D.), observing that he in his turn drew
from Eudemus, who dealt with the subject in the second

book of his History of Astronomy. It is this passage of

Simplicius which, along with a passage in Aristotle's Meta-

physics,'3 enabled Schiaparelli to reconstruct Eudoxus' s system

(see vol. i, pp. 329-34). Nor must it be forgotten that it is in

Simplicius's commentary on the Physics* that the extract

from Geminus's summary of the Meteorologica of Posidonius

occurs which was used by Schiaparelli to support his view

that it was Heraclides of Pontus, not Aristarchus of Samos,

who first propounded the heliocentric hypothesis.

Simplicius also wrote a commentary on Euclid's Elements,

Book I, from which an-Nairizi, the Arabian commentator,
1 Simpl. in Phys., pp. 54-69, ed. Diels.
2 Simpl. on Arist. De cae'to, p. 488. 18-24 and pp. 493-506, ed. Heiberg.
3 Metaph. A. 8, 1073 b 17-1074 a 14.

* Simpl. in Phys., pp. 291-2, ed. Diels.
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made valuable extracts, including the account of the attempt of

'Aganis' to prove the parallel-postulate (see pp. 228-30 above).

Contemporary with Simplicius, or somewhat earlier, was
Eutocius, the commentator on Archimedes and Apollonius.

As he dedicated the commentary on Book I On the Sphere

and Cylinder to Ammonius (a pupil of Proclus and teacher

of Simplicius), who can hardly have been alive after a.d. 510,

Eutocius was probably born about a.d. 480. His date used

to be put some fifty years later because, at the end of the com-

mentaries on Book II On the Sphere and Cylinder and on

the Measurement of a Circle, there is a note to the effect that
1 the edition was revised by Isidorus of Miletus, the mechanical

engineer, our teacher '. But, in view of the relation to Ammo-
nius, it is impossible that Eutocius can have been a pupil of

Isidorus, who was younger than Anthemius of Tralles, the

architect of Saint Sophia at Constantinople in 532, whose

work was continued by Isidorus after Anthemius's death

about a.d. 534. Moreover, it was to Anthemius that Eutocius

dedicated, separately, the commentaries on the first four

Books of Apollonius's Conies, addressing Anthemius as ' my
dear friend '. Hence we conclude that Eutocius was an elder

contemporary of Anthemius, and that the reference to Isidorus

is by an editor of Eutocius's commentaries who was a pupil of

Isidorus. For a like reason, the reference in the commentary

on Book II On the Sphere and Cylinder 1 to a Siap-qTrfs

invented by Isidorus ' our teacher ' for drawing a parabola

must be considered to be an interpolation by the same editor.

Eutocius's commentaries on Archimedes apparently ex-

tended only to the three works, On the Sphere and Cylinder,

Measurement of a Circle and Plane Equilibriums, and those

on the Conies of Apollonius to the first four Books only.

We are indebted to these commentaries for many valuable

historical notes. Those deserving special mention here are

(1) the account of the solutions of the problem of the duplica-

tion of the cube, or the finding of two mean proportionals,

by ' Plato ', Heron, Philon, Apollonius, Diodes, Pappus,

Sporus, Menaechmus, Archytas, Eratosthenes, Nicomedes, (2)

the fragment discovered by Eutocius himself containing the

1 Archimedes, ed. Heiberg, vol. iii, p. 84. 8-11.
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missing solution, promised by Archimedes in On the Sphere

and Cylinder, II. 4, of the auxiliary problem amounting

to the solution by means of conies of the cubic equation

(a—x)x2 = be2
, (3) the solutions (a) by Diodes of the original

problem of II. 4 without bringing in the cubic, (b) by Diony-

sodorus of the auxiliary cubic equation.

Anthemius of Tralles, the architect, mentioned above, was
himself an able mathematician, as is seen from a fragment of

a work of his, On Burning-mirrors. This is a document of

considerable importance for the history of conic sections.

Originally edited by L. Dupuy in 1777, it was reprinted in

Westermann's IlapaSogoypdcpoi (Scriptores rerum mirabilium

Graeci), 1839, pp. 14 9-58. The first and third portions of

the fragment are those which interest us. 1 The first gives

a solution of the problem, To contrive that a ray of the sun

(admitted through a small hole or window) shall fall in a

given spot, without moving away at any hour and season.

This is contrived by constructing an elliptical mirror one focus

of which is at the point where the ray of the sun is admitted

while the other is at the point to which the ray is required

to be reflected at all times. Let B be the hole, A the point

to which reflection must always take place, BA being in the

meridian and parallel to the horizon. Let BO be at right

angles to BA, so that CB is an equinoctial ray ; and let BD be

the ray at the summer solstice, BE a winter ray.

Take F at a convenient distance on BE and measure FQ
equal to FA. Draw HFG through F bisecting the angle

AFQ, and let BG be the straight line bisecting the angle EEC
between the winter and the equinoctial rays. Then clearly

?

since FG bisects the angle QFA, if we have a plane mirror in

the position HFG, the ray BFE entering at B will be reflected

to A.

To get the equinoctial ray similarly reflected to A, join GA,
and with G as centre and GA as radius draw a circle meeting

BO in K. Bisect the angle KGA by the straight line GLM
meeting BK in L and terminated at M, a point on the bisector

of the angle GBD. Then LM bisects the angle KLA also, and

KL — LA, and KM = MA. If then GLM is a plane mirror,

the ray BL will be reflected to A.
1 See Bibliotheca mathematical, vii

3 , 1907, pp. 225-33.
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By taking the point JV on BD such that MN = 31A, and

bisecting the angle NMA by the straight line MOP meeting

BD in 0, we find that, if MOP is a plane mirror, the ray BO
is reflected to A.

Similarly, by continually bisecting angles and making more

mirrors, we can get any number of other points of impact. Mak-
ing the mirrors so short as to form a continuous curve, we get

the curve containing all points such that the sum of the distances

of each of them from A and B is constant and equal to BQ, BK,
or BJST.

' If then ', says Anthemius, ' we stretch a string passed

round the points A, B, and through the first point taken on the

rays which are to be reflected, the said curve will be described,

which is part of the so-called " ellipse ", with reference to

which (i.e. by the revolution of which round BA) the surface

of impact of the said mirror has to be constructed.'

We have here apparently the first mention of the construc-

tion of an ellipse by means of a string stretched tight round

the foci. Anthemius's construction depends upon two pro-

positions proved by Apollonius (1) that the sum of the focal

distances of any point on the ellipse is constant, (2) that the

focal distances of any point make equal angles with the

tangent at that point, and also (3) upon a proposition not

found in Apollonius, namely that the straight line joining
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the focus to the intersection of two tangents bisects the angle

between the straight lines joining the focus to the two points

of contact respectively.

In the third portion of the fragment Anthemius proves that

parallel rays can be reflected to one single point from a para-

bolic mirror of which the point is the focus. The directrix is

used in the construction, which follows, mutatis mutandis, the

same course as the above construction in the case of the ellipse.

As to the supposition of Heiberg that Anthemius may also

be the author of the Fragmentum mathematicum Bobiense, see

above (p. 203).

The Papyrus of Akhmim.

Next in chronological order must apparently be placed

the Papyrus of Akhmim, a manual of calculation written

in Greek, which was found in the metropolis of Akhmim,
the ancient Panopolis, and is now in the Musee du

Gizeh. It was edited by J. Baillet 1 in 1892. Accord-

ing to the editor, it was written between the sixth and

ninth centuries by a Christian. It is interesting because

it preserves the Egyptian method of reckoning, with proper

fractions written as the sum of primary fractions or sub-

multiples, a method which survived alongside the Greek and

was employed, and even exclusively taught, in the East. The
advantage of this papyrus, as compared with Ahmes's, is that

we can gather the formulae used for the decomposition of

ordinary proper fractions into sums of submultiples. The
formulae for decomposing a proper fraction into the sum of

two submultiples may be shown thus

:

0) ir= -XT- +
be b + c 7 b + c

c. 6 .

a a

,211 3 1 1 18 11
Examples — = > — = ? =

^ 11 666 110 7077 323 34 38

, , a 1 1

be b-\-mc , b + mc 1

c. b.
a am

1 Memoires publies par les membres de la Mission archeologique frangaise

ay, Caire, vol. ix, part 1, pp. 1-89.
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7
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(
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) ^ = TTT/ +
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a a

Example.

28 28 1 1 11
1320

""
10. 12. 11

"

120 + 132
+

120+ 132 "90 99"
10. 11.

28 28

The object is, of course, to choose the factors of the denomi-

nator, and the multiplier m in (2), in such a way as to make
the two denominators on the right-hand side integral.

When the fraction has to be decomposed into a sum of three

or more submultiples, we take out an obvious submultiple

first, then if necessary a second, until one of the formulae

will separate what remains into two submultiples. Or we
take out a part which is not a submultiple but which can be

divided into two submultiples by one of the formulae.

For example, to decompose g
3
T\. The factors of 6 1 6 are 8.7 7

nr 7 ftft Talrp mif 1 onrl 31 1 24 — 1 3 — 1 1 2
•U1 '' 00 ' J-d-Ive UUt gg, ttllU gjg — 88 61"6 — 88 11 — 88 77 11 1

and T
2
T = eV^ by formula (1), so that ^e = w* tV w§ *V

Take g
2^. The factors of 6460 are 85.76 or 95.68. Take

out qV, and 6
2
4
3
6
9
o = sV wzwo • Again take out g

1
-^, and we have

we ww etio or ww ww -$8 -

r^e actual problem here is to find

3^3 rd of Hi^iVFffj which latter expression reduces to

h •
23 9-

The sort of problems solved in the book are-(l) the division

of a number into parts in the proportion of certain given

numbers, (2) the solution of simple equations such as this:

From a certain treasure we take away y^th, then from the

remainder TVth of that remainder, and we find 150 units left;

what was the treasure? \<x x — j(x x\ — .. .1 =R.
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(3) subtractions such as : From § subtract y
1
^ yT ^o -^ -jg 35

1 1 1 1 1 _1 1 l 1 1_ 1 1 1_ An«wpr _1 l~
40 4 4 50 55 60 66 70 7 7 88 90 99" 100 110* n-UBVVC1

» 10 50'

The book ends with long tables of results obtained (1) by

multiplying successive numbers, tens, hundreds and thousands

up to 10,000 by §, §, |, |, J, &c, up to ^, (2) by multiplying

all the successive numbers 1, 2, 3 ... ?i by -
5 where w is succes-

sively 11, 12, ... and 20; the results are all arranged as the

sums of integers and submultiples.

The Geodaesia of a Byzantine author formerly called, with-

out any authority, ' Heron the Younger ' was translated into

Latin by Barocius in 1572, and the Greek text was published

with a French translation by Vincent. 1 The place of the

author's observations was the hippodrome at Constantinople,

and the date apparently about 938. The treatise was modelled

on Heron of Alexandria, especially the Di<yptra
y
while some

measurements of areas and volumes are taken from the

Metrica.

Michael Psellus lived in the latter part of the eleventh

century, since his latest work bears the date 1092. Though
he was called ' first of philosophers ', it cannot be said that

what survives of his mathematics suits this title. Xylander

edited in 1556 the Greek text, with a Latin translation, of

a book purporting to be by Psellus on the four mathematical

sciences, arithmetic, music, geometry and astronomy, but it is

evident that it cannot be entirely Psellus's own work, since

the astronomical portion is dated 1008. The arithmetic con-

tains no more than the names and classification of numbers

and ratios. The geometry has the extraordinary remark that,

while opinions differed as to how to find the area of a circle,

the method which found most favour was to take the area as

the geometric mean between the inscribed and circumscribed

squares; this gives it = VS= 2-8284271 ! The only thing of

Psellus which has any value for us is the letter published by

Tannery in his edition of Diophantus.2 In this letter Psellus

says that both Diophantus and Anatolius (Bishop of Laodicea

about a.d. 280) wrote on the Egyptian method of reckoning,

1 Notices et extraits, xix, pt. 2, Paris, 1858.
2 Diophantus, vol. ii, pp. 37-42.

1623.2 n n
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and that Anatolius's account, which was different and more

succinct, was dedicated to Diophantus (this enables us to

determine Diophantus's date approximately). He also notes

the difference between the Diophantine and Egyptian names
for the successive powers of dpiOfjios : the next power after

the fourth (8vvafio8vvafiis = xA
), i.e. x5

, the Egyptians called

' the first undescribed ' (dXoyos irpcoros) or the ' fifth number '

;

the sixth, x6
, they apparently (like Diophantus) called the

cube-cube ; but with them the seventh, x1
, was the ' second

undescribed ' or the ' seventh number ', the eighth (x?) was the

'quadruple square' (TerpcmXrj Svvafiis), the ninth (xQ
) the

'extended cube' (kv&os e^eXi/croy). Tannery conjectures that

all these remarks were taken direct from an old commentary
on Diophantus now lost, probably Hypatia's.

Georgius Pachymeres (1242-1310) was the author of a

work on the Quadrivium (^vurayjia toou reo-a-dpcou /xaOrj/idrcou

or TeTpd^L/3Xoi'). The arithmetical portion contains, besides

excerpts from Nicomachus and Euclid, a paraphrase of Dio-

phantus, Book I, which Tannery published in his edition of

Diophantus l

; the musical section with part of the preface was

published by Vincent, 2 and some fragments from Book IV by

Martin in his edition of the Astronomy of Theon of Smyrna.

Maximus Planudes, a monk from Nicomedia, was the

envoy of the Emperor Andronicus II at Venice in the year

1297, and lived probably from about 1260 to 1310. He
wrote scholia on the first two Books of Diophantus, which

are extant and are included in Tannery's edition of Dio-

phantus. 3 They contain nothing of particular interest except

a number of conspectuses of the working-out of problems of

Diophantus written in Diophantus's own notation but with

steps in separate lines, and with abbreviations on the left of

words indicating the operations (e.g. e/c#. = e/cflecny, rerp. =
TtTpaycovio-fios, crvvQ. = avvOeais, &c); the result is to make
the work almost as easy to follow as it is in our notation.

Another work of Planudes is called Wrjcjyofyopia kolt 'IvSov?,

or Arithmetic after the Indian method, and was edited as Das

1 Diophantus, vol. ii, pp. 78-122.
2 Notices et extraits, xvii, 1858, pp. 362-533.
3 Diophantus, vol. ii, pp. 125-255.



PSELLUS. PACHYMERES. PLANUDES 547

Bechenbuch des Maximus Planudes in Greek by Gerhardt

(Halle, 1805) and in a German translation by H. Waeschke
(Halle, 1878). There was, however, an earlier book under the

similar title 'Ap^rj Trj? fieydXrjs kclI 'Ii/Slktj? yjrr}(f)i<popia$ (sic),

written in 1252, which is extant in the Paris MS.^uppl. Gr.

387; and Planudes seems to have raided this work. He
begins with an account of the symbols which, he says, were

' invented by certain distinguished astronomers for the most
convenient and accurate expression of numbers. There are

nine of these symbols (our 1, 2, 3, 4, 5, 6, 7, 8, 9), to which is

added another called Tzifra (cypher), written and denoting
zero. The nine signs as well as this one are Indian.'

But this is, of course, not the first occurrence of the Indian

numerals; they were known, except the zero, to Gerbert

(Pope Sylvester II) in the tenth century, and were used by
Leonardo of Pisa in his Liber abaci (written in 1202 and

rewritten in 1228). Planudes used the Persian form of the

numerals, differing in this from the writer of the treatise of

1252 referred to, who used the form then current in Italy.

It scarcely belongs to Greek mathematics to give an account

of Planudes's methods of subtraction, multiplication, &c.

Extraction of the square root.

As regards the extraction of the square root, he claims to

have invented a method different from the Indian method
and from that of Theon. It does not appear, however, that

there was anything new about it. Let us try to see in what
the supposed new method consisted.

Planudes describes fully the method of extracting the

square root of a number with several digits, a method which

is essentially the same as ours. This appears to be what he

refers to later on as ' the Indian method '. Then he tells us

how to find a first approximation to the root when the number
is not a complete square.

' Take the square root of the next lower actual square
number, and double it : then, from the number the square root

of which is required, subtract the next lower square number
so found, and to the remainder (as numerator) give as de-

nominator the double of the square root already found/

N n 2
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The example given is \/(18). Since 4 2 = 16 is the next

2
lower square, the approximate square root is 4 + -— or 4J.

The formula used is, therefore, V(a2 + b) = a + 5— approxi-

mately. (An example in larger numbers is

7(1690196789) = 41112 + §fff 4 approximately.)

Planudes multiplies 4j by itself and obtains 18^, which

shows that the value 4J is not accurate. He adds that he will

explain later a method which is more exact and nearer the

truth, a method ' which I claim as a discovery made by me
with the help of God \ Then, coming to the method which he

claims to have discovered, Planudes applies it to \/6. The
object is to develop this in units and sexagesimal fractions.

Planudes begins by multiplying the 6 by 3600, making 21600

second-sixtieths, and finds the square root of 21600 to lie

between 146 and 147. Writing the 146' as 2 26', he proceeds

to find the rest of the approximate square root (2 26' 58" 9'")

by the same procedure as that used by Theon in extracting

the square root of 4500 and 2 28' respectively. The differ-

ence is that in neither of the latter cases does Theon multiply

by 3600 so as to reduce the units to second-sixtieths, but he

begins by taking the approximate square root of 2, viz. 1, just

as he does that of 4500 (viz. 67). It is, then, the multiplication

by 3600, or the reduction to second-sixtieths to start with, that

constitutes the difference from Theon's method, and this must

therefore be what Planudes takes credit for as a new dis-

covery. In such a case as \/(2 28') or \/3, Theon's method
has the inconvenience that the number of minutes in the

second term (34' in the one case and 43' in the other) cannot

be found without some trouble, a difficulty which is avoided

by Planudes's expedient. Therefore the method of Planudes

had its advantage in such a case. But the discovery was not

new. For it will be remembered that Ptolemy (and doubtless

Hipparchus before him) expressed the chord in a circle sub-

tending an angle of 120° at the centre (in terms of 120th parts

of the diameter) as 103 p 55' 23", which indicates that the first

step in calculating Vs was to multiply it by 3600, making

10800, the nearest square below which is 103 2 (= 10609). In
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the scholia to EucL, Book X, the same method is applied.

Examples have been given above (vol. i, p. 63). The supposed

new method was therefore not only already known to the

scholiast, but goes back, in all probability, to Hipparchus.

Tivo 'problems.

Two problems given at the end of the Manual of Planudes

are worth mention. The first is stated thus :
' A certain man

finding himself at the point of death had his desk or safe

brought to him and divided his money among his sons with

the following words, " I wish to divide my money equally

between my sons : the first shall have one piece and -i^th. of the

rest, the second 2 and -|th of the remainder, the third 3 and

\th of the remainder." At this point the father died without

getting to the end either of his money or the enumeration of

his sons. I wish to know how many sons he had and how
much money.' The solution is given as (n— l)

2 for the number
of coins to be divided and (n— 1 ) for the number of his sons

;

or rather this is how it might be stated, for Planudes takes

n = 7 arbitrarily. Comparing the shares of the first two we
must clearly have

1 + -(x-1) = 2 +- {x-(l +^=- + 2)},

which gives x — (n — 1
)

2
; therefore each of (n — 1) sons received

(n-l).

The other problem is one which we have already met with,

that of finding two rectangles of equal perimeter such that

the area of one of them is a given multiple of the area of

the other. If n is the given multiple, the rectangles are

(n2— 1, n3 — n2
) and (n— 1, n3 — n) respectively. Planudes

states the solution correctly, but how he obtained it is not clear.

We find also in the Manual of Planudes the ' proof by nine

'

(i.e. by casting out nines), with a statement that it was dis-

covered by the Indians and transmitted to us through the

Arabs.

Manuel Moschopoulos, a pupil and friend of Maximus
Planudes, lived apparently under the Emperor Andronicus II

(1282-1328) and perhaps under his predecessor Michael VIII

(1261-82) also. A man of wide learning, he wrote (at the
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instance of Nicolas Rhabdas, presently to be mentioned) a

treatise on magic squares ; he showed, that is, how the num-
bers 1 , 2, 3 . . . n2 could be placed in the n2 compartments of

a square, divided like a chess-board into n2 small squares, in such

a way that the sum of the numbers in each horizontal and

each vertical row of compartments, as well as in the rows

forming the diagonals, is always the same, namely \n (n2 -\- 1).

Moschopoulos gives rules of procedure for the cases in which

n — 2m+l and n = 4 m respectively, and these only, in the

treatise as we have it ; he promises to give the case where

n = 4 m +2 also, but does not seem to have done so, as the

two manuscripts used by Tannery have after the first two cases

the words riXo? tov olvtov. The treatise was translated by

De la Hire,1 edited by S. Gunther,2 and finally edited in an

improved text with translation by Tannery. 3

The work of Moschopoulos was dedicated to Nicolas Arta-

vasdus, called Rhabdas, a person of some importance in the

history of Greek arithmetic. He edited, with some 'additions

of his own, the Manual of Planudes; this edition exists in

the Paris MS. 2428. But he is also the author of two letters

which have been edited by Tannery in the Greek text with

French translation.4 The date of Rhabdas is roughly fixed

by means of a calculation of the date of Easter ' in the current

year ' contained in one of the letters, which shows that its

date was 1341. It is remarkable that each of the two letters

has a preface which (except for the words Tr\v SrjXcoo-ii' tcov kv

tol9 dpiOfjiois ^7]Tt]fj.drcou and the name or title of the person

to whom it is addressed) copies word for word the first thir-

teen lines of the preface to Diophantus's Arithmetica, a piece

of plagiarism which, if it does not say much for the literary

resource of Rhabdas, may indicate that he had studied Dio-

phantus. The first of the two letters has the heading ' A con-

cise and most clear exposition of the science of calculation

written at Byzantium of Constantine, by Nicolas Artavasdus

1 Mem. de VAcad. Royale des Sciences, 1705.
2 Vermischte Untersuchungen zur Gesch. d. Math., Leipzig, 1876.
3 'Le traite de Manuel Moschopoulos sur les carres magiques' in

Annuaire de VAssociation pour Vencouragement des etudes grecques, xx,

1886, pp. 88-118.
4 'Notices sur les deux lettres arithmetiques de Nicolas Rhabdas' in

Notices et extraits des manuscrits de Ja Bibliotheque Rationale, xxxii, pt. 1,

1886, pp. 121-252.
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of Smyrna, arithmetician and geometer, rod 'PaftSa, at the

instance of the most revered Master of Requests, Georgius

Chatzyces, and most easy for those who desire to study it.'

A long passage, called €K(ppacri$ tov SclktvXlkov fiirpov, deals

with a method of finger-notation, in which the fingers of each

hand held in different positions are made to represent num-
bers. 1 The fingers of the left hand serve to represent all the

units and tens, those of the right all the hundreds and

thousands up to 9000 ;
' for numbers above these it is neces-

sary to use writing, the hands not sufficing to represent such

numbers.' The numbers begin with the little fingers of each

hand; if we call the thumb and the fingers after it the 1st,

2nd, 3rd, 4th, and 5th fingers in the German style, the succes-

sive signs may be thus described, premising that, where fingers

are not either bent or ' half-closed ' (K\iv6jxevoi) or ' closed

'

(o-vo-T€\\6fj.evoi), they are supposed to be held out straight

(kK7ZlV0}iev0l).

(a) On the left hand :

for 1, half-close the 5th finger only;

„ 2, „ „ 4th and 5th fingers only

;

„ 3, „ ,, 3rd, 4th and 5th fingers only

;

„ 4, „ „ 3rd and 4th fingers only
;

„ 5, „ „ 3rd finger only

;

>> t>, „ ,, 'tin „ „

„ 7, close the 5th finger only;

., 8, „ „ 4th and 5th fingers only

:

„ 9, „ „ 3rd, 4th and 5th fingers only.

(b) The same operations on the right hand give the thou-

sands, from 1000 to 9000.

(c) On the left hand :

for 10, apply the tip of the forefinger to the first joint of

the thumb so that the resulting figure resembles a-
;

1 A similar description occurs in the works of the Venerable Bede
(' De computo vel loquela digitorum ', forming chapter i of De temporum
ratione), where expressions are also quoted from St. Jerome (d. 420 a. d.)

as showing that he too was acquainted with the system (The Miscellaneous

Works of the Venerable Bede, ed. J. A. Giles, vol. vi, 1843, pp. 141-3).
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for 20, stretch out the forefinger straight and vertical,

keep fingers 3, 4, 5 together but separate from it

and inclined slightly to the palm ; in this position

touch the forefinger with the thumb

;

„ 30, join the tips of the forefinger and thumb
;

„ 40, place the thumb on the knuckle of the forefinger

behind, making a figure like the letter T
;

„ 50, make a like figure with the thumb on the knuckle

of the forefinger inside
;

„ 60, place the thumb inside the forefinger as for 50 and
bring the forefinger down over the thumb, touch-

ing the ball of it

;

„ 70, rest the forefinger round the tip of the thumb,

making a curve like a spiral

;

„ 80, fingers 3, 4, 5 being held together and inclined

at an angle to the palm, put the thumb across the

palm to touch the third phalanx of the middle

finger (3) and in this position bend the forefinger

above the first joint of the thumb

;

„ 90, close the forefinger only as completely as possible.

(d) The same operations on the right hand give the hun-

dreds, from 100 to 900.

The first letter also contains tables for addition and sub-

traction and for multiplication and division ; as these are said

to be the ' invention of Palamedes ', we must suppose that

such tables were in use from a remote antiquity. Lastly, the

first letter contains a statement which, though applied to

particular numbers, expresses a theorem to the effect that

(a '+ 10c/, + ... + I0mam) (b + 10^ + ... + 10n bn )

is not > low+w+2,

where ci
Q
;a

x
... b0i b

1
... are any numbers from to 9.

In the second letter of Rhabdas we find simple algebraical

problems of the same sort as those of the Anthologia Graeca

and the Papyrus of Akhmim. Thus there are five problems

leading to equations of the type

x x~ +- + ...= a.m n
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*Aj *AJ

Rhabdas solves the equation — + - = a, practically as we
m n L

should, by multiplying up to get rid of fractions, whence he

obtains x = mna/(m + n). Again he solves the simultaneous

equations x + y = a, mx = ny ; also the pair of equations

y xx+— = y+-=a.m n

Of course, m, n, a... have particular numerical values in

all cases.

Rhabdas's Rule for approximating to the square root of

a non-square number.

We find in Rhabdas the equivalent of the Heronian formula

for the approximation to the square root of a non-square

number A — a2 + b, namely

b
<x = a + —

;

2 a

he further observes that, if a be an approximation by excess,

then ol
x
— A/ol is an approximation by defect, and i((* + 0Ci)

is an approximation nearer than either. This last form is of

course exactly Heron's formula ex = J (
a H ) The formula

was also known to Barlaam (presently to be mentioned), who
also indicates that the procedure can be continued indefinitely.

It should here be added that there is interesting evidence

of the Greek methods of approximating to square roots in two
documents published by Heiberg in 1899.1 The first of

these documents (from a manuscript of the fifteenth century

at Vienna) gives the approximate square root of certain non-

square numbers from 2 to 147 in integers and proper fractions.

The numerals are the Greek alphabetic numerals, but they are

given place-value like our numerals: thus ocr) = 18, ot8{= 147,

~ = — j and so on : is indicated by u or, sometimes, by •.

I3r) 28 J i
> » J

All these square roots, such as -/(21) = 4|J, \/(35) = 5y|,

\/(112) = 10||, and so on, can be obtained (either exactly or,

in a few cases, by neglecting or adding a small fraction in the

1
' Byzantinische Analekten' in Abh. zurGfesch. d.Math. ix. Heft, 1899,

pp. 163 sqq.
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numerator of the fractional part of the root) in one or other

of the following ways :

(1) by taking the nearest square to the given number A,

say a2
, and using the Heronian formulae

(2) by using one or other of the following approximations,

where
a2 < A < (a + l)

2
, and A = a2 + b = (a+l) 2 -c,

namely, b b
a + , a + —- b i

2a 2a + —

-

2a

(
a+1)

-2^M,' <
a+1>-^T)

2(a+l)
or a combination of two of these with

(3) the formula that, if - < ^ , then
o a

a ma + nc c

b mb + nd d

It is clear that it is impossible to deny to the Greeks the

knowledge of these simple formulae.

Three more names and we have done.

Ioannes Pediasimus, also called Galenus, was Keeper of the

Seal to the Patriarch of Constantinople in the reign of

Andronicus III (1328-41). Besides literary works of his,

some notes on difficult points in arithmetic and a treatise on

the duplication of the cube by him are said to exist in manu-

scripts. His Geometry, which was edited by Friedlein in 1866,

follows very closely the mensuration of Heron.

Barlaam, a monk of Calabria, was abbot ajt Constantinople

and later Bishop of Geraci in the neighbourhood of Naples;

he died in 1348. He wrote, in Greek, arithmetical demon-

strations of propositions in Euclid, Book II,
1 and a Logistic in

six Books, a laborious manual of calculation in whole numbers,

1 Edited with Latin translation by Dasypodius in 1564, and included
in Heiberg and Menge's Euclid, vol. v, ad fin.
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ordinary fractions and sexagesimal fractions (printed at

Strassburg in 1592 and at Paris in 1600). Barlaam, as we
have seen, knew the Heronian formulae for finding successive

approximations to square roots, and was aware that they could

be indefinitely continued.

Isaac Argyrus, a monk, who lived before 1368, was one of

a number of Byzantine translators of Persian astronomical

works. In mathematics he wrote a Geodaesia and scholia to

the first six Books of Euclid's Elements. The former is con-

tained in the Paris MS. 2428 and is called c a method of

geodesy or the measurement of surfaces, exact and shortened '

;

the introductory letter addressed to one Colybos is followed

by a compilation of extracts from the Geometrica and Stereo-

metrica of Heron. He is apparently the author of some

further additions to Rhabdas's revision of the Manual of

Planudes contained in the same manuscript. A short tract

of his ' On the discovery of the square roots of non-rational

square numbers ' is mentioned as contained in two other manu-
scripts at Venice and Rome respectively (Codd. Marcianus Gr.

333 and Vaticanus Gr. 1058), where it is followed by a table

of the square roots of all numbers from 1 to 102 in sexa-

gesimal fractions (e.g. V2 = 1 24' 51" 48'", ^3 = 1 43' 56" 0'"). 1

1 Heiberg, ' Byzantinische Analekten ', in Abh. ziw Gesch. d. Math, ix,

pp. 169-70.



APPENDIX
On Archimedes s proof of the subtangent-property of

a spiral.

The section of the treatise On Spirals from Prop. 3 to

Prop. 20 is an elaborate series of propositions leading up

to the proof of the fundamental property of the subtangent

corresponding to the tangent at any point on any turn of the

spiral. Libri, doubtless with this series of propositions in

mind, remarks (Histoire des sciences mathematiques en Italie,

i, p. 31) that c Apres vingt siecles de travaux et de de'cou-

vertes, les intelligences les plus puissantes viennent encore

e'chouer contre la synthese difficile du Traite des Spirales

d'Archimede.' There is no foundation for this statement,

which seems to be a too hasty generalization from a dictum,

apparently of Fontenelle, in the Histoire de I'Academie des

Sciences pour I'annee 1704 (p. 42 of the edition of 1722),

who says of the proofs of Archimedes in the- work On
Spirals :

' Elles sont si longues, et si difficiles a embrasser,

que, comme on Fa pu voir dans la Preface de 1*Analyse des

Infiniment petits, M. Bouillaud a avoue' qu'il ne les avoit

jamais bien entendues, et que Viete les a injustement soup-

conne'es de paralogisme, parce qu'il n'avoit pu non plus

parvenir a les bien entendre. Mais toutes les preuves qu'on

peut donner de leur difficulty et de leur obscurite' tournent

a la gloire d'Archimede ; car quelle vigueur d'esprit, quelle

quantity de vues differentes, quelle opiniatrete' de travail n'a-

t-il pas fallu pour lier et pour disposer un raisonnement que

quelques-uns de nos plus grands ge'ometres ne peuvent suivre,

tout lie
7

et tout eMspose' qu'il est ?

'

P. Tannery has observed 1 that, as a matter of fact, no

mathematicians of real authority who have applied or ex-

tended Archimedes's methods (such men as Huygens, Pascal,

Roberval and Fermat, who alone could have expressed an

opinion worth having), have ever complained of the

1 Bulletin des sciences mathematiques, 1895, Part i, pp. 265-71.
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' obscurity ' of Archimedes ; while, as regards Vieta, he has

shown that the statement quoted is based on an entire mis-

apprehension, and that, so far from suspecting a fallacy in

Archimedes's proofs, Vieta made a special study of the treatise

On Spirals and had the greatest admiration for that work.

But, as in many cases in Greek geometry where the analy-

sis is omitted or even (as Wallis was tempted to suppose) of

set purpose hidden, the reading of the completed synthetical

proof leaves a certain impression of mystery; for there is

nothing in it to show why Archimedes should have taken

precisely this line of argument, or how he evolved it. It is

a fact that, as Pappus said, the subtangent-property can be

established by purely ' plane ' methods, without recourse to

a 'solid' vevcris (whether actually solved or merely assumed

capable of being solved). If, then, Archimedes chose the more

difficult method which we actually find him employing, it is

scarcely possible to assign any reason except his definite

predilection for the form of proof by reductio ad absuvdum
based ultimately on his famous ' Lemma ' or Axiom.

It seems worth while to re-examine the whole question of

the discovery and proof of the property, and to see how
Archimedes's argument compares with an easier ' plane ' proof

suggested by the figures of some of the very propositions

proved by Archimedes in the treatise.

In the first place, we may be sure that the property was
not discovered by the steps leading to the proof as it stands.

I cannot but think that Archimedes divined the result by an
argument corresponding to our use of the differential calculus

for determining tangents. He must have considered the

instantaneous direction of the motion of the point P describ-

ing the spiral, using for this purpose the parallelogram of

velocities. The motion of P is compounded of two motions,

one along OP andjbhe other at right angles to it. Comparing
the distances traversed in an instant of time in the two direc-

tions, we see that, corresponding to a small increase in the

radius vector r, we have a small distance traversed perpen-

dicularly to it, a tiny arc of a circle of radius r subtended by
the angle representing the simultaneous small increase of the

angle (AOP). Now r has a constant ratio to which we call

a (when is the circular measure of the angle 0). Consequently
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the small increases of r and are in that same ratio. There-

fore what we call the tangent of the angle OPT is r/a,

i.e. OT/r — r/a; and OT = r2/a, or rO, that is, the arc of a

circle of radius r subtended by the angle 0.

To prove this result Archimedes would doubtless begin by
an analysis of the following sort. Having drawn OT perpen-

dicular to OP and of length equal to the arc ASP, he had to

prove that the straight line joining P to T is the tangent

at P. He would evidently take the line of trying to show

that, if any radius vector to the spiral is drawn, as OQ', on

either side of OP, Q' is always on the side of TP towards 0,

or, if OQ' meets TP in F, OQ' is always less than OF. Suppose

g p^ /a
kv^to^"^5^/G 1

s/^:

AX
7ax

that in the above figure OR' is any radius vector between OP
and OS on the ' backward ' side of OP, and that OR' meets the

circle with radius OP in R, the tangent to it at P in G, the

spiral in R', and TP in F'. We have to prove that R, R' lie

on opposite sides of Ff
, i.e. that RR' > RF' ; and again, sup-

posing that any radius vector OQ' on the ' forward ' side of

OP meets the circle with radius OP in Q, the spiral in Q' and

TP produced in F, we have to prove that QQ' < QF.

Archimedes then had to prove that

(1) F'R:RO < RR'iRO, and

(2)' FQ:QO>QQ':QO.
Now (1) is equivalent to

F'R : RO < (arc RP) : (arc ASP), since RO = PO.
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But (arc ASP) = OT,hy hypothesis
;

therefore it was necessary to prove, alternando, that

(3) F'R : (arc RP) < RO : OT, or PO : OT,

i.e. < PM: MO, where OM is perpendicular to SP.

Similarly, in order to satisfy (2), it was necessary to

prove that

(4) FQ: (arc PQ) > PM:MO.

Now, as a matter of fact, (3) is a fortiori satisfied if

F'R : (chord RP) < PM : MO
;

but in the case of (4) we cannot substitute the chord PQ for

the arc PQ, and we have to substitute PG\ where G' is the

point in which the tangent at P to

the circle meets OQ produced ; for

of course PG' > (arc PQ), so that (4)

is a fortiori satisfied if

FQ:PG'> PM:MO.

It is remarkable that Archimedes

uses for his proof of the'two cases Prop.

8 and Prop. 7 respectively, and makes

no use of Props 6 and 9, whereas

the above argument points precisely to the use of the figures

of the two latter propositions only.

For in the figure of Prop. 6 (Fig. 1), if OFP is any radius

cutting AB in F, and if PB produced cuts OT, the parallel to

AB through 0, in H, it is obvious, by parallels, that

PF : (chord PB) = OP : PH.

Also PII becomes greater the farther P moves from B
towards A, so that the ratio PF : PB diminishes continually,

while it is always less than OB : BT (where BT is the tangent

at B and meets OH in T), i.e. always less than BM : MO.
Hence the relation (3) is always satisfied for any point R' of

the spiral on the ' backward ' side of P.

But (3) is equivalent to (1), from which it follows that F'R
is always less than RR', so that R' always lies on the side

of TP towards 0.

Fig. 1.
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Next, for the point Q' on the 'forward' side of the spiral

from P, suppose that in the figure of Prop. 9 or Prop. 7 (Fig. 2)

any radius OP of the circle meets AB produced in F, and

Fig. 2.

the tangent at B in G ; and draw BPH, BGT meeting 0T, the

parallel through to AB, in H, T.

Then PF:BG> FG: BG, since PF > FG,

> 0G : GT, by parallels,

> OB :BT, a fortiori,

> BM:M0;

and obviously, as P moves away from B towards 0T, i.e. as G
moves away from B along BT, the ratio 0G:GT increases

continually, while, as shown, PF.BG is always > BM'.MO,
and, a fortiori,

PP:(arcP5) > BM:M0.

That is, (4) is always satisfied for any point Q' of the spiral

' forward ' of P, so that (2) is also satisfied, and QQ' is always

less than QF.

It will be observed that no vevcris, and nothing beyond
' plane ' methods, is required in the above proof, and Pappus's

criticism of Archimedes's proof is therefore justified.

Let us now consider for a moment what Archimedes actually

does. In Prop. 8, which he uses to prove our proposition in

the 'backward' case (R', R, F'), he shows that, if P0 : 0V
is any ratio whatever less than PO'.OT or PM:M0, we can

find points F', G corresponding to any ratio P0 : 0V where

0T < V < OF, i.e. we can find a point F' corresponding to

a ratio still nearer to PO : 0T than P0 : OF is. This proves

that the ratio RF' : PG, while it is always less than PM:M0,
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approaches that ratio without limit as R approaches P. But

the proof does not enable us to say that RF' : (chord PR),

which is > RF' : PG, is also -always less than PM : MO. At
first sight, therefore, it would seem that the proof must fail.

Not so, however ; Archimedes is nevertheless able to prove

that, if PI7" and not PT is the tangent at P to the spiral, an

absurdity follows. For his proof establishes that, if PVis the

tangent and 0Ff
is drawn as in the proposition, then

F'O : RO < OR: OP,

or F'O < OR', l which is impossible '. Why this is impossible

does not appear in Props. 18 and 20, but it follows from the

argument in Prop. 13, which proves that a tangent to the spiral

cannot meet the curve again, and in fact that the spiral is

everywhere concave towards the origin.

Similar remarks apply to the proof by Archimedes of the

impossibility of the other alternative supposition (that the tan-

gent at P meets OT at a point U nearer to than T is).

Archimedes's proof is therefore in both parts perfectly valid,

in spite of any appearances to the contrary. The only draw-

back that can be urged seems to be that, if we assume the

tangent to cut OT at a point very near to T on either side,

Archimedes's construction brings us perilously near to infini-

tesimals, and the proof may appear to hang, as it were, on

a thread, albeit a thread strong enough to carry it. But it is

remarkable that he should have elaborated such a difficult

proof by means of Props. 7, 8 (including the ' solid ' vevais of

Prop. 8), when the figures of Props. 6 and 7 (or 9) themselves

suggest the direct proof above given, which is independent of

any vevaLs.

P. Tannery, 1 in a paper on Pappus's criticism of the proof as

unnecessarily involving ' solid ' methods, has given another

proof of the subtangent-property based on ' plane ' methods

only ; but I prefer the method which I have given above

because it corresponds more closely to the preliminary proposi-

tions actually given by Archimedes.

1 Tannery, Memoires scientijiques, i, 1912, pp. 300-16.
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INDEX OF GREEK WORDS

[The pages are those of the first volume except where otherwise stated.]

<i/3<»£, dfidiaov 47.

dyecopeTprjros, -ov : dyfcopeTprjros prj-

dc\s eunVco (Plato) iii. 355.

a§ie£t'r»77-o9, -ov, that cannot be gone
through, i.e. infinite 343.

ddvvaTos, -ov ii. 462 : d-raycoyt) us
dbvvarov, &C. 372.

aiTrjfxa, postulate 373.

dxovcrfxaTiKoi 11.

dXoyos, -ov, irrational 84, 90 : nep\

dXoyoiv ypappdv K(i\ maTa>i>.(DeniO-

critus) 156-7, 181 : dXoyoi cbo-nzp

ypappai (Plato) 157.

dvdXtjppa 11. 287.

dvdXoyoi*, proportional : used as ad-

jective 85.

dvaXvopevos (tottos), Treasury of

Analysis 421-2, ii. 399, 400, ii.

426.

dvdiraXiv, inversely 385 :

Xvo-is ii. 400.

dvao~Tfjz\l/avTi (dvacrrpftpio]

tendo 386.

dvaarpocpr], conversion ib.

dvao-TpofptKos (tottos), a class of locus

ii. 185.

\\va(popiKos by Hypsicles419, ii. 213.

dveXiTT€Lv ii. 244.

a£a>i/, axis 341.

dopurros, -ov, undefined : irXqdos po-

vddcov ddpiorrov (= unknown, x)

94, ii. 456 : ivdopivrv ii. 489, 491.

dimycdyfj, reduction 372 : air. us
dhvvnrov, reductio ad absurdum
372.

dwobu^is, proof 310, ii. 533.

d7roKa.Tao~TaTiK.6s, -f],-6v, recurring 108.

d-rco-Taois, distance or dimension

305 n., or interval 306 n.

apQrjXos, 'shoemaker's knife' ii. 23,

s

ii. 101-2, ii. 371-7.

dpi6pi)TiKi), theory of numbers, opp.

to XoytaTtKi] 13-16.

avarruAiv

conver-

apidpi]TiKos, -r), -dv '. dpidprjTiKij dira-

)(oyi] of Nicomachus 97.

dptdpds, number : definitions of
'number' 69-70: in Diophantus,
used for unknown quantity (x)

94, ii. 456.

dpiOpoaTov : reciprocal of dpidpos

(= x) in Diophantus ii. 458.

dp-T'dovd-TTai, 'rope-stretchers' 121-

f

2, 178.

dppqTos, -ov, irrational 157.

dpTu'iKLs dpTLos, even-times-even 71,

with Neo-Pythagoreans =2", 72.

dpTu'iKis uepLTTos, even-times-odd 72.

dpTioTre'piTTos, even-odd, restricted

by ]$eo-Pythagoreans to form
2(2 m+1), 72.

dpTios, -a, ov, even 70.

'ApXai, a lost work of Archimedes
ii. 81.

J

A<rTpo0to-iai of Eratosthenes ii. 109.

daTpoXdftov dpyavov of Hipparchus

s

ii. 256.

dvvp,n*Tpos, -ov, incommensurable

davpTTTcoTos, -ov, non-secant ii. 227.

do-vvderos, -ov, incomposite 72.

('nopos, -ov, indivisible 181 : Ari"to-

telian rrepl aTopoiv ypappaiv 157,
346-8.

utottos, -ov, absurd ii. 462.

av£dv€iv : Tpls av£t]6eis (Plato) 306-7.

av£rj, Tpirr, 297 : Kvfioov avi-r), 297.

av^rja-is 305-6 ft.

avTopaTOTroirjTtKT] 11. 308.

d\j/is, segment of circle less than a
semicircle ii. 314.

BapovXKos of Heron ii. 309, ii. 346-7.

BeXo-TouKa of Heron 18, ii. 298, ii.

302, ii. 308-9.

fiid&iv : fcfiuio-pivos, forced or un-

natural ii. 362.

O o
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ficopiaKos, ' little altar ', properly a
wedge-shaped solid ii. 319, ii. 333

:

measurement of(Heron), ii. 332-3:

(= a(f»ivi(TKos) of a certain kind
of solid number 107, ii. 240, ii.

315.

-yea>8;it<n'ci= mensuration 16.

l\(i);xeTpovfX(i>a of Heron ii. 318, ii.

453.

yXco^iV (arrow-head), Pythagorean
name for angle 166.

yvcofxopiKT] 18.

yv6)fxoi:>, gnomon, q.v. : Kara yvcopovn

= perpendicular 78, 175.

yvdopipos, -ov, known : yviopipov, an
alternative term for bedopt'vov,

given ii. 537.

yvwpLpios/in the recognized manner'
ii. 79.

ypdppa, ' figure ' or proposition, of

theorem of Eucl. 1. 47, 144.

ypappr) : did 01* e* ru>v ypappoov of

theoretical proof ii. 257, 258.

yiHippiKos, -rj, -dv, linear : used of

prime numbers 73 : ypapfUKai

emoTdcreis, " Considerations on
Curves ', by Demetrius ii. 359 :

ypappiK&s, graphically 93.

ypdfaiv, to draw or write on 159,

173: also to prove 203 «., 339.

debopevos, -t], -ov, given : senses of,

ii. 537-8.

deiKpvpai, to prove 328.

fiety ; del &r] 371.

deurepos, secondary : of composite
numbers 72: devrepa pvpids (

=
10,000 2

) 40.

&ia(3r)Tr)s, compasses 308, ii. 540.

biaipflv : 8uX6vti, separando or divi-

dendo (in transformation of ratios)

386.

8iaipean : Xdyou, separation of a

ratio 386: 7repi biaipiaewv [SifiXiov

,

On divisions {of figures), by
Euclid 425.

didaraais, dimension : 7repi Siaora-

aea>s, a work of Ptolemy ii. 295.

8uio-Ti]pn, interval 215 : distance

239.

diavXos, ' race-course '
: representa-

tions of square and oblong num-
bers as sums of terms 114.

bibovai : dedopcvov, given, senses ii.

537-8.

Sie£oSiKos (rd-ros), a species of locus

ii. 185.

diiardvai I c(p
f

eV duaTws, extended
one way ii. 428.

diKoXovpos, -ov, twice-truncated 107.

bioiTTpa, dioptra, q.v.

SlOTTTplKr] 18.

$iopi(eiv : dieopiope'vT) joprj, Deter-

minate Section, bv Apollonius
ii. 180.

diopiapds, definition, delimitation :

two senses (1) a constituent part
of a theorem or problem 370,

(2) a statement of conditions of

possibility of a problem 303. 319-
20. 371, 377, 395, 396, 428, ii. 45-

6, ii. 129-32, ii. 168, ii. 230.

SinXoio-orris, double-equation (Dio-

phantus) ii. 468.

dinXovs, -rj, -ouv : dnrXrj pvpids =
10,000 2 (Apollonius) 40: darXfj

1(t6tt]s, dinXr) '(acoats, double-equa-
tion (Diophantus) ii. 468.

doKis, beam, a class of solid number
107, ii. 240.

8ok6s = doKis ii. 315.

8paxiJi-r), sign for, 31, 49, 50.

dvvapis : incommensurable side of

square containing a non-square
number of units of area 203-4 :

square or square root 209 «.,

297 : square of unknown quantity
(= x 1

)
(Diophantus) ii. 457-8:

dvvdpH, 'in square' 187, 308:
rerpaTrXi] dvvapi? = eighth power
(Egypt) ii. 546

;
power in

mechanics 445.

hwapohvvnpis , square - square =
fourth power (Heron) ii. 458

:

fourth power of unknown (Dio-

phantus) ii. 458, ii. 546.

dwapoKvfios, square-cube, — fifth

power of unknown (Diophantus)
ii. 458.

dwapocrrou, SwapohwapocTTov, &C,
reciprocals of powers of unknown
(Diophantus) ii. 458.

Svva<r6<u,to be equivalent ' in square
'

to, i. e. to be the side of a square

equal to (a given area) : bwapivrj

305-6 n.

duvaaTevopevr], Opp. to dwcipevrj

305-6 n.

elbos, ' figure ' of a conic ii.

139: ' species' = particular power
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of unknown, or term, in an equa-

tion (Diophantus) ii. 400.

(h, pin, ev, One : evn nXeieo,
l several

ones ' (definition of ' number
')

70.

€ia-r]ye7a6(u, to introduce or explain

213.

€k6€(tis, setting-out 370, ii. 533.

'EK7rera(7/xara of Democritus 178,

181.

eKTTjfxopos (kvkXos) ii. 288.

e'AXfi\//if, falling-short (in application

of areas), name given to < IIipse by
Apollonius 150, ii. 138.

c\Ai7jvys-, -eg, defective (of numbers),
contrasted with perfect 74, 101 :

¥ e'XXines Karat vtvov ii. 459.

eVnXAa£, alternately (in proportions)

385.

e'woia, notion : Koivai Zwoiai, com-
mon notions = axioms 336.

evo-rcuris, objection 372, ii. 311, ii. 533.

eVrrccr/?, bulging out 6.

e^e\iyp,6s ii. 234.

e^rjyrjo-is, elucidation ii. 223, ii.

231-2.

e^r)KO(TT6v
}
Or 7Tpa>TOv e£., a 60th (

=
a minute), bevrepov e|., a second,

&c. 45.

iirav6t]p.a, ('bloom ') of Thym arid as :

asystemof linear equations solved

,

94
*,

(Tvncpr], contact : 'Enacpal, Contacts

or Tan gene ies, by Apollonius ii.

18L
iiti, on : to a^pdav e(p' a> (or ov) K,

archaic for 'the point K' 199:

r) e^' /J AB, ' the straight line

AB ' ib.

intpepris, superpartiens,

- ratio 1 + , 102.
m + n

empopios, mjperparticularis = ratio

of form (n + l)/n, 90,101: em-
popiov hiaarrjpa 215.

(7rme^op.€TpiKci ii. 453.

eTTLcrr)p.naini, weather indications

177n., ii. 234.

enirpiTos = ratio 4/3, 101 : emrpiros

TrvOriv (Plato) 306-7.

€<tx (,tos '- r" fV^ara, extremities

293.

(Tepopi)<r)c, .fr
5
oblong ; of numbers

of form m(m + l)'
f
82, 108.

evduypappiKos (upi8p.os) = prime 72.

t(p€KTiKik, a class of locus ii. 185,

ii. 193.

((podiov, Method ii. 246.

(vyvv, lever or balance : ncp\ £vywv,

a work of Archimedes ii. 23-4,

ii. 351.

rjpuoXios, -a, -ov, ratio of 3/2, 101.

j7/Mtw/3eAio*>,J-obol,signfor,31,49,50.

BnvpuironouKr) 18.

Q(o\ayovp.(vn dpidpyTiK^s 97.

dt'cris, position : napci Oioei (SC. SeSo.

pevrjv), parallel to a straight line

given in position ii. 193 : 7rp<W

de'o-ei evddais, on straight lines

given in position ii. 426.

Bvpeog, shield, old name for ellipse

439, ii. Ill, ii. 125.

tWeaOai : IWopev'iv used by Plato of

the earth 314-15.

laaKis i'aof, equal an equal number
of times, or equal multiplied by

equal 204.

laopLtrpos, -ov, of equal contour

:

TTfp\ l(Top.eTpcov axrjp-uTutv, by Zeno-

dorus ii. 207, ii. 390.

laonXevpos, -ov, equilateral : of

square number (Plato) 204.

laoppoTvia, equilibrium : 7rfpi laoppo-

ttlwv, work by Archimedes ii. 24,

ii. 351.

"to or, equal : oV 'laov, ex aeqitali (in

proportions) 386 : oY 'iaov iv re-

T(tpnypeij) draXoyiq 386.

lo-oTrjs or io-coous-, equation ii. 468.

lo-Topin, inquiry, Pythagoras's name
for geometry 166. .

icrxvs, power (in mechanics) 445.

Kap.TTTr]p, turning-point in race-

course 114.

KapnvXos, -rj, -ov, curved 249, 341.

j

KavovLKij, Canonic, q. v.
1

Kcipav, ruler 239: Table (astron.),

Ilpoxeipcov mipovcov Su'imais Km
^/r](f:o(pnpia, work by Ptolemy ii.

293 : canon (in music), v. Kararo/x^.

KaTaypdcfxiv: ip inscribe in or on (c.

gen.) 131.
' KarnAoyoi, work by Eratosthenes ii.

108.
I KciTao-KevdCfiv 193 11.

i KUTao-Kcvr, construction (constituent

part of proposition) -570, ii. 533.
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KnTiKTTepKTfxnt, work by Eratosthe-

nes ii. 108.

KarrtTojui? Kauovos, Sectio canonis,

attributed to Euclid 17, 444.

Karovopakis to>i> dpiOpoov, naming of

numbers (Archimedes) ii. 23.

KaTonTpiKr), theory of mirrors 18.

KcvTpofiapiKa, problems on centre of

gravity ii. 24, ii. 350.

Ktvrpov, centre : 17 £k tov Kevrpov =
radius 381.

KfpaToeiftrjs (yawui) 178, 382.

. Ktjpin of Sporus 234.

kXiUlv, inflect : KetXdaSai 337.

Koyxoeidijs ypapur), conchoid 238.

KoiXoyoiviov ii. 211.

KoXnvpos, -ov, truncated ii. 333: (of

pyramidal number) 107.

Kna-Kivov, sieve (of Eratosthenes) 16,

100, ii. 105.

KO^Aoeifir}? ypappr), cochloid 238.

KvftoKvfios, cube-cube, = sixth power
of unknown (Diophantus) ii. 458.

icvfioKvfioo-Tov, reciprocal of kv(36-

kvQos ii. 458.

Kvftos, cube : Kvftoov a$f-t) (Plato)

297 : cube of unknown (Dio-

phantus) ii. 458 : kv$os iSekucros

= ninth power of unknown
(Egyptian) ii. 546.

kvkXiki) 6(copia, De motu circulars,

by Cleomedes ii. 235.

kvkXlkos, •{), -6v, circular, used of

square numbers ending in 5 or 6,

108.

Xdneiv: forms used to express minus,

and sign for (Diophantus), ii. 459.

Xefyis, wanting (Diophantus) : Xetyei

— minus ii. 459.

\4£isl Kara \e£iv, word for word
"183.

Xenrov, a fraction (Heron) 43 : = a
minute (Ptolemy) 45.

Xrjppa, lemma 373.

Xoycapos, calculation 13.

XoyiariKr), art of calculation, opp.

to dpl6pr)TiKr) 13-16, 53.

Xoyos, ratio : Xoyov dnoropij, sectio

rationis, by Apollonius ii. 175.

paOqpara, subjects of instruction

10-11 : term first appropriated

to mathematics by Pythagoreans
11 : Trcpi twv paBr)pdru>v, <\ work
by Protagoras 179.

pa8i)paTtKo<>, •}'], -dv '. pa$i)uaTtKoi in

Pythagorean school, opp. to

aK0vcrp.aTiK.0L 11 : MaOrjuariKr) avv-

ra£« of Ptolemy ii. 273-4: pa 0r).

partKa, to. (Plato)H288.

peBopiop, boundary ii. 449.
peiovpov Trpofo-Kapicpevpevov (Heron),

curtailed and pared in front (cf.

scarify), of a long, narrow, tri-

angular prism (Heib.) ii. 319.

pe'pos: p-:pi), 2>cirts (= proper frac-

tion) dist. from pipos (aliquot
part) 42 (cf. p. 294).

pcaoXdfioi>, mean-finder (of Erato-
sthenes) ii. 104, ii. 359.

perecopns, -ov I 7rep\ pereapoiv, work
by Posidonius ii. 219, ii. 231-2.

p(Ti(OpOO KOTTlKr') 18.

Mfrpijoet?, Mensurae (Heronian) ii.

319.

prjKos, length: used by Plato of side

of square containing a square
number of units of area 204.

pTjXiTrjs (dpidfxos), term for problems
about numbers of apples (e.g.) 14,
ii. 442.

MiKpus darpovopioupevoi (tokos), Little

Astronomy ii. 273.
pvd, mina (= 1000 drachmae) : M

stands for, 31.

poipa, fraction : l/360th of circum-
ference or a degree 45, 61 : polpa
TomKr), xpoviKr) (in Hypsicles) ii.

214.

povds, monad or unit 43 : definitions

of, 69: povddcov aixrTr)p.!i= number,
69: devTeptodovpevr) povds = 10,

TpiGidovpeir) p. = 100, &c. (Iambi.)

114: povds Bicnv eyovaa — point
69, 283.

poptov, part or fraction : pnpinv or
ev popl(o = divided by (Diophan-
tus) 44>

pvpids (with or without Trpoorr) or
dnXr)) myriad (10,000), p. devrepa

or SiTrAJ) 10,000 2
, &c. 40.

vaardv (solid ?J 156, 178.

reveiv, to verge (towards) 196, 239,

337, ii. 65.

vevcrtSf inclinatio or 'verging', a
type of problem 235-41,260, ii.

199, ii. 385: vevaets in Archi-

medes ii 65-8 : two books of

vfvaeis by Apollonius ii. 189 92
ii. 401, ii. 412-13.
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vvaan, goal or end of race-course

114.
L

dftoXds, obol : sign for, 31, 49, 50.

'OXvuTriov'iKai, work by Eratosthenes
ii. 109.

opv£, a wedge-shaped figure ii. 319,

^
if. 333.

dpyavoirouki) 18.

opOios, -a, -of, right or perpendi-

cular : dpdin irXevpd, lotus rectum

ii. 139 : dpOin dtdperpos, ' erect

diameter ', in double hyperbola,

ii. 134.

opifriv : odpia/jiivos, defined, i. e. de-

terminate 94, 340.

6pL(<0v (kvkXos), dividing circle :

horizon (Eucl.) 351,352.
opos, (1) definition 373: (2) limit

or boundary 293 : (3) term (in a

proportion) 306 n.

ovdepin or ovSev, sign for (O), 39,45.

7ra /3a> Koi Kivoi tuv yuv, saying of

Archimedes ii. 18.

7rr/p' tju hvvavrai (ai KaraydpevaiTeTay-

pevas), expression for parameter
of ordinates ii. 139.

7rnpa/3oXr}, application: n.iwv \copia>v,

application of areas 150 : to. en

rrjs napafioXrjS yivdfitva crrjpdn, the

foci of a central conic, ii. 156 :

parabola (the conic) 150, ii. 138.

Unpn8o^oypd(poi ii. 541.

napdfiot;os ypappij, paradoxical curve

(of Menelaus) ii. 260-1, ii. 360.

ttopair r}yfin 111, ii. 234.

Trapacnrdv, to pull awry : Tvapfana-

crpevos ii. 398.

irapicroTrjs, nearness to equality, ap-

proximation : napLOOTrjTos dywyi/

(Diophantus) ii. 477, ii. 500.

TreXeKvs, axe-shaped figure ii. 315.

nepnd&iv, to ' five' (= count) 26.

nevTadXos 176, ii. 104.

nepaivovaa iroaoTqs = unit, 69.

nepas, limit or extremity 293

:

limiting surface 166 : irepas avy-
kXcIov, definition of figure ii. 221.

7rf/Jio-(T<i/jrtof, odd-even : with Neo-
Pythagoreans is of form

2" +1 (2m+l), 72.

7repio-o~6s, -tj, -dv, odd, q.v.

7T(TT€in 19.

nqXiKos, -r], -ov, how great (of mag-
nitude) 12.

TTrjXiKOTrjs, size 384.

irXdytos, -a, -ov, transverse : nXayia

ftidfierpos or nXevpd ii. 139.

7rXno-p<>TiK(U, -dv, (easily) formable
ii. 487.

IlX<tTai»iKd?, a work by Eratosthenes
ii. 104.

nXijOoi, multitude : nXr/dos ev = unit,

69 : 7rXr)Bos lapia-pevov = number,
70 : TrXrjQo? po'-dbatv ddpiarov, def.

of unknown ' quantity ' 94, ii.

456.

nXivdls, a brick, a solid number of

a certain form 107, ii. 240, ii.

315.

Tr<>XXaTrXno-i€nt.pepTjS, multiplex super-

partiens, — ratio of form

P+-4-, 103.m + n

TroXXnrrXnat(7ripdpios, multiplex su-

perparticulariSf = ratio of form

m + ~, 103.
n

noXXmrXdiaios, -a, -ov, multiple 101.

iroXvo-nao-Tos, a compound pulley ii.

18.

ndpipos, -ov (nopifciv), procurable :

one sense of detopevos ii. 538.

ndpicrpa, porism : (1) = corollary,

(2) a certain type of proposition

372-3, ii. 533.

7ro0-oj', quantity, of number, 12.

noo-drr)?, quantity 69, 70 : number
defined as 7Wo-dTr]Tos \vpn i< povd-

dcov ovyKtipevov 70.

izpopi.K'is, prolate (= oblong) 203:
but distinguished from erepoprjicrfs

83, 108.

rrpoaayooyiov 3G9.

npoTacris = enunciation 370, ii.

533.

npuTos, prime 72.

nroiais, case 372.

nvdpiju, base ; = dig-it 55-7, 115-17:

eniTptTos 7ridpr]v 306-7.

nvpapis, pyramid 126.

nvpeiov, nvptov, burning mirror

:

n-ept nvpelcov, work by Diodes
264, ii. 200 ; irepl rov TTvpiov, by
Apollonius ii. 194.

fords, -r], -ov, rational : used in sense

of given ' ii. 537.

p&jrfj : nepl ponojr, a mechanical

work by Ptolemy ii. 295.
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adXivou of Archimedes ii. 23, ii.

103.

(rfjKcofia 49.

<r/<u</>7, a form of sun-dial ii. 1, ii. 4.

o-Krjvoypa.rf'HKr], scene-painting 18, ii.

224.

2o</)ta, nickname of Democritus 176.

aneipa, spire or tore ii. 117: varie-

ties of (8icxr)S, <rvve)(r)S, e/u7rf7rXey-

/JLivr) Or eVaXXuTrovrn), ii. 204.

crTiiOpr), plumb-line 78, 309.

o-tcittjp, sign for, 31.

a-Tepeofxerpia, solid geometry 12-13.

o~T(peop.trpovp.(va 11. 453.

(tttjXls, column, a class of solid

number, 107.

(TTiyprj, point 69 : ariyprj aOeros =
unit, 69.

aToixciaiTris, -6, the writer of Ele-

ments (o-Toixtlov), used of Euclid
357.

(TTpoyyvXos, -ovj round or circular

293.

avp.Tre'pacrp,a, conclusion (of proposi-

tion) 370, ii. 533.

(TvvOecns (\6yov), composition (of a
ratio) 385.

avvra^ts, collection : MeydXrj arvv

Ta£is of Ptolemy 348, called

Madr]p.aTiicr) avvra^is ii. 273.

avvriQivai : avpOeuri = componenclo
(in proportion) 385.

o-ixTTaais, construction 151, 158.

o-cpaipiKos, -i), -of, spherical : used of

cube numbers ending in 5 or 6,

107-8.

a(f> ]Ki(TKOi, stake, a form of solid

number, 107.

<r(pr]vi(TKos, wedge, a solid of a certain
form, measurement of, ii. 332-3:
a solid number, 107, ii. 315, ii.

319.

o-^eVif, relation 384.

o-x^]parottoulv, to form a figure ii.

226.

TdXavrov, sign for (T), 31, 50.

rapciacTdv : (fit' 'iaov) iv Tcrapaypevjj

dvaXoyia, in disturbed proportion
386. *

ti'ktctciv : T€Tayp.evov, assigned = da-

tum ii. 192, ii. 537: at KaTay6;uvai

Terayp-evoos (evdeim), (straight

lines) drawn ordmate-wise = or-

dinates ii. 139: reraypevcos Km-
r)\6ai ii. 134.

raxos, speed : nep\ rax&v, work by

Eudoxus 329.

reXeiof, -n, -ov, perfect: reXeios dpid'

fi6s 74, 101.

Teraprnpopiov, \ of obol, sign for, 31,

49, 50.

T(.rpnyoivl^iv, to square : h Tfrpnyo)-

vi(ovcra (ypap.p.r)), the quadratrix

225, ii. 359.

T€Tpayoivi(Tpds, squaring 173.

TfTpaKTvslh, 99??., 313, ii. 241.

TerpnirXr} dvvnpis — 8th power of

unknown (Egyptian term) ii.

546.

Tp.f}p.a, segment : used of lunes as

well as segments of circles 184 :

segments or sectors 187-9 : rprj-

para = l/360th parts of circum-

ference and l/120th parts of

diameter of circle (Ptolemy) 45.

ropevs, shoemaker's knife, term for

sector of circle 381.

Top.ri, section : to mp\ rr)v roprji/

(Proclus) 324-5.
>

ro7rof, locus : classifications of loci

218-19, ii. 185 : tottoi npos ypap-

/xius, tottoi npos enicpaveiais (-a)

218 19, 439 : tottoi rrpbs peaoTrjTas

ii. 105 : T07ros dvaXvdp.evos, Trea-

sury of Analysis, q. v.

Topvos, circle-drawer 78, 308.

Tpiyoouos dpiOpuk, triangular number,
15-16.

rpiKoXovpos, thrice-truncated 107.

rpiTrXevpou, three-side, Menelaus's

term for spherical triangle ii.

262.

rpiooftoXov, sign for, 49.

vdpia eopoo-KOTTela, water-clocks ii.

309.

vn-aptjis, forthcoming: positive term,

dist. from negative (Xeiv/^t?) ii.

459.

vTTfTTipfpijs, subsuperpartiens, reci-

procal of iiripepfjS 102.

vTTenip.6pios, subsuperparticularis, re-

ciprocal of empopios 101.

virepfioXr), exceeding (in application

of areas) : name given to hyper-

bola 150, ii. 138.

{/7repreXeto9, vrrepTtXip, over-perfect

(number) 74, 100.

*Ytto6€0~(i$ T(ov 7iXav<t>p,ivti)V, WOl'k by
Ptolemy ii. 293.

v7T07roXXaTrXdaios , vTT07ToXXa7rX(io'i(7Ti-
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ptpt)s, vnoTToWaTrXaaienifiopios, &C.
101-3.

v7roT(iv(iv, subtend 193 n.

vo-nXrj^, starting-point (of race-

course) 114.

<bd(T€i$ uTrXnvcov narepciii', work by
Ptolemy, ii. 293.

(PtaXirrjs (dpidpns), (number) of bowls
(in simple algebraical problems)
U, ii. 442.

$>i\oKa\ia, b)7 Geminus ii. 223.

XciXkovs (|th of obol). sign for. 31

48. 50.'

X(l[), manus, in sense of number of

men 27.

XeipoftdWiaTpa ii. 309.

Xpoia, colour or skin : Pythagorean
name for surface 166, 293.

Xpovoypacpiai, work by Eratosthenes

ii. 109.

XP&)/zn, colour (in relation to sur-

face) 293.

Xoipiov, area 300 m.: x<0
P'-
nv (moTopt],

sectio spatii, by Apollonius ii.

179.

Vrj'pocpopia kut 'ivBovs ii. 546.

'Qkvtokiov of Apollonius 234, ii. 194.

ii. 253.
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Abacus 46-8.

'Abdelmelik al-Shlrazi ii. 128.

Abraham Echellensis ii. 127.

Abu Bekr Muh. b. al-Hasan al-

Karkhl, see al-Karkhl.
Abu '1 Fath al-Isfahanl ii. 127.

Abu '1 Wafa al-BQzjam ii. 328, ii.

450, ii. 453.

Abu Nasi- Mans jr ii. 262.

Achilles of Zeno 275-6, 278-80.

Adam, James, 305-7, 313.

Addition in Greek notation 52.

Adrastus ii. 241, 243, 244.

Aetius 158-9, 163, ii. 2.

'Aganis': attempt to prove paral-

lel-postulate 358, ii. 228-30.

Agatharchus 174.

Ahmes (Papyrus Rhind) 125, 130,

ii. 441.

Akhmim, Papyrus of, ii. 543-5.

Albertus Pius ii. 26.

Al-ChazinT ii. 260-1.

Alexander the ' Aetolian' ii. 242.

Alexander Aphrodisiensis 184, 185,

186, 222, 223, ii. 223, ii. 231.

Alexeieff, ii. 324-5 n.

Al-Fakhri, by al-Karkhi 109, ii.

449-50.

Algebra : beginnings in Egypt ii.

440 : /^^-calculations ii. 440-1 :

Pythagorean, 91-7 : epanthema of

Thymaridas 94-6.

Algebra, geometrical, 150-4: ap-

plication of areas (q. v.) 150-3:

scope of geometrical algebra
153-4 : method of proportion ih.

Al-Hajjaj, translator of Euclid,

362 : of Ptolemy ii. 274.

Alhazen, problem of, ii. 294.

Al-Kafi of al-Karkhl 111.

Al-Karkhl : on sum of

l
3 + 23 + ... + w3

109-10, 111, ii. 51, ii. 449.

Allman, G. J. 134, 183.

Almagest ii. 274.

Alphabet, Greek : derived from
Phoenician, 31-2 : Milesian, 33-4:
quasi-numerical use of alphabet,
35-6 n.

Alphabetic numerals 31-40, 42-4.

Amasis 4, 129.

Amenemhat 1 122, III 122.

Ameristus 140, 141, 171.

Amyclas (better Amyntas) 320-1.

Amyntas 320-1.

Analemma of Ptolemy ii. 286-92

:

of Diodorus ii. 287.

Analysis : already used by Pytha-
goreans 168 : supposed invention
by Plato 291-2: absent from
Euclid's Elements 371-2 : defined

by Pappus ii. 400.

Anatolius 11, 14, 97, ii. 448, ii. 545-6.

Anaxagoras : explanation of eclipses

7, 162, 172 : moon borrows light

from sun 138, 172, ii. 244 : cen-

trifugal force and centripetal

tendency 172-3: geometry 170:
tried to square circle 173, 220 :

on perspective 174 : in Erastae

22, 174.

Anaximander 67, 177 : introduced

gnomon 78, 139, 140 : astronomy
139, ii. 244 : distances of sun and
moon 139 : first map of inhabited
earth ib.

Anaximenes ii. 244.

Anchor-ring, see Tore.

Anderson, Alex., ii. 190.

Angelo Poliziano ii. 26.

Angle ' of a segment ' and ' of a

semicircle ' 179: 'angle of con-

tact ' 178-9, ii. 202.

Anharmonic property, of arcs of

great circles ii. 269-70 : of straight

lines ii. 270, ii. 420-1.
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Anthemius of Tralles 243, ii. 194,

ii. 200-3, ii. 518, ii. 540, ii.

541-3.

Antiphon 184. 219, 221 2. 224,

271.

Apastamba-Sulba-Sutra 145-6.

Apelt, E. F. 330.

Apelt, 0. 181 n., 182.

Apices 47.

Apollodorus, author of Chronica,

176.

Apollodorus 6 Xoyia-riKas : distich of,

131. 133, 134, 144, 145.

Apollonius of Perga ii. 1, ii. 126.

Arithmetic : ukvtokiov 234, ii.

194, ii. 253 (approximation to

7r, ib.), 'tetrads' 40, continued
multiplications 54-7.

Astronomy ii. 195-6 : A. and
Tycho Brahe 317, ii. 196: on
epicycles and eccentrics ii. 195-6,

ii. 243 : trigonometry ii. 253.

Conies ii. 126-75: text ii. 126-

8, Arabic translations ii. 127,

prefaces ii. 128-32, characteris-

tics ii. 132-3: conies obtained
from oblique cone ii. 134-8,

prime property equivalent to

Cartesian equation (oblique axes)

ii. 139, new names, parabola, &c.

150, 167, ii. 138, transformation

of coordinates ii. 141-7, tangents
ii. 140-1, asymptotes ii. 148-9,

rectangles under segments of in-

tersecting chords ii. 152-3, har-

monic properties ii. 154-5, focal

properties (central conies) ii. 156—

7, normals as maxima and mini-
ma ii. 159-67, construction of
normals ii. 166-7, number of

normals through point ii. 163-4,

propositions giving evolute ii.

164-5.

On contacts ii. 181-5 (lemmas
to, ii. 416-17), three-circle pro-
blem ii. 182-5.

Sectio rationis ii. 175 9 (lemmas
•to, ii. 404-5).

Sectio spatii ii. 179-80, ii. 337.

ii. 339.

Determinate section ii. 180-1
(lemmas to, ii. 405-12).

Comparison of dodecahedron
and icosahedron 419 20, ii. 192.

Duplication of cube 262-3, ii.

194.

'General treatise' ii. 192-3, ii.

253 : on Book I of Euclid 358.

i>€v<T€ts ii. 68, ii. 189-92 (lemmas
to, ii. 412 16), rhombus-problem
ii. 190-2, square - problem ii.

412-13.
Plane Loci ii. 185-9 (lemmas to,

ii. 417-19). •

On cochlias 232, ii. 193, ' sister

of cochloid' 225, 231-2, On irra-

tionals ii. 193, On the burning-
mirror ii. 194, ii. 200-1.

Application of areas 150-3 : method
attributed to Pythagoras 150,

equivalent to solution of general
quadratic 150 2, 394-6.

Approximations to ^2 (by means
of ' side- ' and 'diameter-' num-
bers) 91-3, (Indian) 146 : to y^
(Ptolemy) 45, 62-3, (Archimedes)
ii. 51-2: to tt 232-5, ii. 194, ii.

253 : to surds (Heron) ii. 323-6,

cf. ii. 547-9, ii. 553-4 : to cube
root (Heron) ii. 341-2.

Apuleius of Madaura 97, 99.

Archibald, R. C. 425 n.

Archimedes 3, 52, 54, 180, 199, 202,
203 m., 213, 217, 224-5, 229, 234,

272, ii. 1.

Traditions ii. 16-17, engines ii.

17, mechanics ii. 18, general
estimate ii. 19-20.

Works : character of, ii. 20-2,
works extant ii. 22-3, lost ii. 23-
5, 103 ; text ii. 25-7, MSS. ii. 26,

editions ii. 27 : The Method ii. 20,

21, 22, 27-34, ii. 246, ii. 317-18 :

On the Sphere and Cylinder ii. 34-

50 : Measurement ofa circleii. 50-

6, ii. 253 : On Conoids and Sphe-
roids ii. 56-64 : *On Spirals 230-1,
ii. 64-75 (cf. ii. 377-9), ii. 556-61

:

Sand-reckoner ii. 81-5 : Quadra-
ture of Parabola ii. 85-91 : me-
chanical works, titles ii. 23-4,

Plane equilibriums ii. 75-81 : On
Floating Bodies ii. 91-7, problem
of crown ii. 92-4 : Liber assump-
torum ii. 101-3 : Cattle-problem
14, 15, ii. 23, ii. 97-8, ii. 447 :

Catoptrica 444, ii. 24.

Arithmetic : octads 40-1, frac-

tions 42, value of n 232-3, 234,

ii. 50-6 : approximations to \/'\

ii. 51-2.

Astronomy ii. 17 18, sphere-
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making ii. 18. on Aristarchus's

hypothesis ii. 3-4.

Conies, propositions in, 438-9,

ii. 122-6.

Cubic equation solved by conies

ii. 45-6.

On Democritus 180, 327,

equality of angles of incidence
and reflection ii. 353-4, integral

calculus anticipated ii. 41-2. 61,

62-3, 74, 89-90: Lemma or Axiom
of A. 326-8, ii. 35 : vevaeis in, ii.

65-8 (Pappus on, ii. 68) : on semi-

regular solids ii. 98-101 : triangle,

area in terms of sides ii. 103

:

trisection of any angle 240-1.

Archytas 2, 170, 212-16, ii. 1 : on
fxadrj/jLaTa 11, on logistic 14, on 1

as odd-even 71 : on means 85, 86:

no mean proportional between n
and w + 1, 90, 215: on music 214:

mechanics 213 : solution of pro-

blem of two mean proportionals

214, 219, 245, 246-9, 334, ii. 261.

Argyrus, Isaac, 224 n., ii. 555.

Aristaeus : comparison of five regu-
lar solids 420 : Solid Loci (conies)

438, ii. 116, 118-19
Aristaeus of Croton 86.

Aristarchus of Samos 43, 139, ii. 1-

15, ii. 251 : date ii. 2 : o-Ka<fir) of,

ii. 1 : anticipated Copernicus ii.

2-3: other hypotheses ii. 3, 4:

treatise On sizes and distances of
Sun and Moon ii. 1, 3, 4-15, tri-

gonometrical purpose ii. 5 : num-
bers in, 39 : fractions in, 43.

Aristonophus, vase of, 162.

Aristophanes 48, 161, 220.

Aristotelian treatise on indivisible

lines 157, 346-8.

Aristotherus 348.

Aristotle 5, 120, 121 : on origin of

science 8 : on mathematical sub-

jects 16-17 : on first principles, de-
finitions, postulates, axioms 336-8.

Arithmetic : reckoning by tens
26-7, why 1 is odd-even 71 : 2

even and prime 73 : on Pytha-
goreans and numbers 67 9 : on
the gnomon 77-8, 83.

Astronomy : Pythagorean sys-

tem 164-5, on hypothesis of con-

centric spheres 329, 335, ii. 244,

on Plato's view about the earth
314-15.

On the continuous and infinite
342-3 : proof of incommensura-
bility of diagonal 91 : on principle
of exhaustion 340 : on Zeno's
paradoxes 272, 275-7, 278-9, 282

:

on Hippocrates 22 : encomium on
Democritus 176.

Geometry : illustrations from
335, 336. 338-40, on parallels

339, proofs differing from Euclid's
338-9, propositions not in Euclid
340, on quadratures 184-5, 221
223, 224 n., 271, on quadrature
by lunes (Hippocrates) 184-5,
198-9 : on Plato and regular
solids 159 : curves and solids in
A. 341.

Mechanics 344-6,445-6: paral-
lelogram of velocities 346 : 'Aris-

totle's wheel' ii. 347-8.
Aristoxenus 24 n., 66.

Arithmetic (1 j
= theory of numbers

(opp. to XoyioTiKi]) 13-16 : early
' Elements of A rithmetic ' 90, 216:
systematic treatises, Nicomachus
Introd. At: 97-112, Theon of
Sniyrnall2-3,Iamblichus,Comm.
on Nicomachus 113-15, Domninus
ii. 538. (2) Practical arithmetic :

originated with Phoenicians 120-

1, in primary education 19-20.
Arithmetic mean, defined 85.

Arithmetica of Diophantus 15-16,
ii. 449-514.

Arithmetical operations: see Addi-
tion, Subtraction, &c.

Arrow of Zeno 276, 280-1.

Aryabhatta 234.

Asclepius of Tralles 99.

Astronomy in elementary education
19 : as secondary subject 20-1.

Athelhard of Bath, first translator

of Euclid 362-4.

Athenaeus 144, 145.

Athenaeus of Cyzicus 320-1.
' Attic' (or 'Herodianic') numerals

30-1.

August, E. F. 299,302, 361.

Autolycus of Pitane 348 : works
On the moving Sphere 348-52, On
Risings and Settinqs 352-3 : rela-

tion to Euclid :?5i-2.

Auverus, C. ii. 26.

Axioms : Aristotle on, 336 : = Com-
mon Notions in Euclid 376 : Axiom
of Archimedes 326-8, ii. 35.
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Babylonians : civilization of, 8, 9 :

system of numerals 28-9: sexa-

gesimal fractions 29 :
' perfect

proportion ' 86.

Bachet, editor of Diophantus ii.

454-5, ii. 480.

Bacon, Rosier : on Euclid 367-8.

Baillet, J. ii. 548.

Baldi, B. ii. 308.

Barlaam ii. 324 n., ii. 554-5.

Barocius ii. 545.

Barrow, I., edition of Euclid, 369
70 : on Book V 384.

Bathycles 142.

Baudhayana S. S. 146.

Baynard, D. ii. 128.

Benecke, A. 298, 302-3.

Benedetti, G. B. 344,446.
Bertrand, J. ii. 324 n.

Bessarion ii. 27.

Besthorn, R. 0. 362, ii. 310.

Billingsley, Sir H. 369.

Bjornbo, A. A. 197 n., 363. ii. 262.

Blass, C. 298.

Blass, F. 182.

Boeckh, A. 50, 78. 315.

Boetius 37, 47, 90 : translation of

Euclid 359.

Boissonade ii. 538.

Bombelli, Rafael, ii. 454.

Borchardt, L. 125. 127.

Borelli, G. A. ii. 127.

Bouillaud (Bullialdus) ii. 238, ii.

556.

Braunmuhl, A. von, ii. 268-9 n.. ii.

288, ii. 291.

Breton (de Champ), P. 436, ii. 360.

Brctschneider, C. A. 149,183,324 5.

ii. 539.

Brochard, V. 276-7, 279 n., 282.

Brougham, Lord, 436.

Brugsch, H. K. 124.

Bryson 219, 223-5.

Burnet, J. 203 n., 285. 314-15.

Butcher, S. H. 299,300.
Buzengeiger ii. 324 n.

Cajori, F. 283 n.

Calculation, practical : the abacus
46-8, addition and subtraction

52, multiplication (i) Egyptian
52-3 (Russian ? 53n.), (ii) Greek
53-8, division 58-60, extraction

of square root 60-3, of cube root

63-4, ii. 341-2.

Callimachus 141-2.

Callippus: Great Year 177: system of

concentric spheres 329, 335. ii.244.

Cambyses 5.

Camerarius, Joachim, ii. 274.

Camerer, J. G. ii. 360.

Campanus, translator of Euclid
363-4.

Canonic = theory of musical inter-

vals 17.

Cantor, G. 279.

Cantor, M. 37-8, 123, 127, 131, 135,

182, ii. 203, ii. 207.

Carpus of Antioch 225, 232, ii.

359.

Case (7TTQ)(ris) 372, ii. 533.

Cassini ii. 206.

Casting out nines 115-17, ii. 549.

Catoptric, theory of mirrors 18.

Catoptrica : treatises by Euclid (?)

442. by Theon (?) 444, by Archi-
medes 444, and Heron 444, ii. 294,

ii. 310, ii. 352-4.

Cattle-problem of Archimedes 14,

15, ii. 23, ii. 97-8, ii. 447.

Cavalieri, B. 180, ii. 20.

Censorinus 177.

Centre of gravity : definitions ii.

302, ii. 350-1, ii. 430.

Ceria Aristotelica ii. 531.

Chalcidius ii. 242, 244.

Chaldaeans : measurement of angles

by ells ii. 215-16 : order of planets

ii. 242.

Charmandrus ii. 359.

Chasles, M. ii. 19, 20 : on Porisms
435-7, ii. 419.

Chords, Tables of, 45, ii. 257, ii.

259-60.
Chrysippus 179 : definition ofunit 69

.

Cicero 144, 359, ii. 17, 19.

Circle : division into degrees ii. 214—
15 : squaring of, 173, 220 35,

Antiphon 221-2, Bryson 223-4,

by Archimedes's spiral 225, 230-

1, Nicomedes, Dinostratus, and
quadratrix 225-9, Apollonius

225, Carpus 225 ; approximations
to 77 124, 232-5, ii. 194, ii. 253,

ii. 545.

Cissoid of Diocles 264-6.

Clausen, Th. 200.

Cleanthes ii. 2.

Cleomedes: 'paradoxical' eclipse 6:

De motu circulari ii. 235-8, 244.

Cleonides 444.

Cochlias 232, ii. 193.
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Cochloids 238-40 :
' sister of eoch-

loid' 225,231-2.
Coins and weights, notation for, 31.

Columella ii. 303.

Commandinus, F., translator of
Euclid, 365, 425, Apollonius ii.

127, Analemma of Ptolemy ii.

287 , Planisplierium ii. 292, Heron's
Pnnimatica ii. 308,Pappus ii. 360,

Serenus ii. 519.

Conchoid of Nicomedes 238-40.
Conclusion 370, ii. 533.

Cone: Democritus on, 179-80, ii.

110: volume of, 176, 180, 217.

327, 413, ii. 21, ii. 332: volume
of frustum ii. 334: division of
frustum in given ratio ii. 340-3.

Conic sections : discovered by Me-
naechmus 252-3, ii. 110-16 : Eu-
clid's Conies and Aristaeus's Solid

Loci i38, ii. 116-19: propositions

included in Euclid's Conies ii.

121-2 (focus-directrix property
243-4, ii. 119-21), conies in Archi-
medes ii. 122-6 : names due to

Apollonius 150, ii. 138: Apollo-
nius's Conies ii. 126-75 : conies
in Fraymentum Bobiense ii. 200-
203 : in Anthemius ii. 541-3.

Conon of Samos ii. 16, ii. 359.

Construction 370, ii. 533.

Conversion of ratio (convertendo) 386.

Cook-Wilson, J. 300 ><., ii. 370.

Counter-earth 164.

Croesus 4, 129.

Ctesibius 213 : relation to Philon
and Heron ii. 298-302.

Cube: called 'geometrical har-

mony ' (Philolaus) 85-6.

Cube, duplication of: history of

problem244-6: reduction by Hip-
pocrates to problem of two mean
proportionals 2, 183, 200, 245

:

solutions, by Archytas 246-9, Eu-
doxus 249-51, Menaechmus 251-

5, ' Plato ' 255-8, Eratosthenes
258-60, Nicomedes 260-2, Apol-
lonius, Philon, Heron 262-4, Dio-

des 264-6, Sporus and Pappus
266-8 : approximation by plane
method 268-70.

Cube root, extraction of, 63-4

:

Heron's case ii. 341-2.

Cubic equations, solved by conies,

237-8, ii. 45-6, ii. 46
;
particular

case in Diophantus ii. 465, ii. 512.

Curfcze, M. 75 n., ii. 309.

Cyrus 129.

DacUjlus, l/24th of ell, ii. 216.

Damastes of Sigeum 177.

Damianus ii. 294.

Darius-vase 48-9.

D'Armagnac, G. ii. 26.

Dasypodius ii. 554 n.

De la Hire ii. 550.

De levi et ponderoso 445-6.

Decagon inscribed in circle, side of,

416 : area of, ii. 328.

Dee, John, 369, 425.

Definitions: Pythagorean 166: in

Plato 289, 292-4 : Aristotle on,

337 : in Euclid 373 : Definitions

of Heron, ii. 314-16.

Demetrius of Alexandria ii. 260, ii.

359.

Democritus of Abdera 12, 119, 121,

182 : date 176, travels 177 : Aris-

totle's encomium 176 : list of

works (1) astronomical 177, (2)

mathematical 178 : on irrational

lines and solids 156-7, 181 : on
angle of contact 178-9 : on cir-

cular sections of cone 179-80, ii.

110: first discovered volume of

cone and pyramid 176, 180, 217,

ii. 21 : atoms mathematically di-

visible ad inf. 181 : 'KKTViTaa^aTa

178, 181 : on perspective 174: on
Great Year 177.

Dercyllides ii. 244.

Descartes 75 n., 279.

Dicaearchus ii. 242.

Dichotomy of Zeno 275, 278 80.

Diels, H., 142 m., 176, 178, 184, 188.

Digamma: from Phoenician Vau
32 : signs for, ib.

Digit 27.

Dinostratus 225, 229, 320-1, ii. 359.

Diocles : inventor of cissoid 264-6:

solution of Archimedes On Sph.

and Cyl. II. 4, ii. 47-8 : on burn-

ing-mirrors ii. 200-3.

Diodorus (math.) : on parallel-pos-

tulate 358 : Analemma of, ii. 287,

ii. 359.

Diodorus Siculus 121, 141, 142, 176.

Diogenes Laertius 144, 145,177.291.

Dionysius, Plato's master, 22.

Dionysius, a friend of Heron, ii. 306.

Dionysodorns ii. 46, ii. 218-19, ii.

334-5.

Diophantus of Alexandria : date ii.
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448 : works and editions ii. 448-

55: Arithmetical 15-16: fractions

in, 42-4 : notation and definitions

ii. 455-61 : signs for unknown (x)

and powers ii. 456-9, for minus
ii. 459: methods ii. 462-79 : de-

terminate equations ii. 462-5,

484-90 : indeterminate analysis

ii. 466-76, 491-514 : 'Porisms' ii.

449,450,451, ii. 479-80 : propo-
sitions in theory of numbers ii.

481-4 : conspectus of Arithmetica

ii. 484-514 : On Polygonal Num-
berslQ, 84, ii. 514-17 : "Moriastica

1

ii. 449.

Dioptral8, ii. 256 : Heron's Dioptra
ii. 345-6.

Division : Egyptian method 53,

Greek 58-60 : example with sexa-

gesimal fractions (Theon of Alex-

andria) 59-60.

Divisions (ofFigures) , On, by Euclid
425-30 : similar problems in

Heron ii. 336-40.

Dodecagon, area of, ii. 328.

Dodecahedron : discovery attributed

to Pythagoras or Pythagoreans
65, 141, 158-60, 162 : early occur-

rence 160: inscribed in sphere
(Euclid) 418-19, (Pappus) ii. 369 :

Apollonius on, 419-20: volume
of, ii. 335.

Domninus ii. 538.

Dositheus ii. 34.

Duhem, P. 446.

Dupuis, J. ii. 239.

Earth : measurements of, ii. 82,

(Eratosthenes) ii. 106-7, (Posido-

nius) ii. 220.

Ecliptic : obliquity discovered by
Oenopides 174, ii. 244 : estimate

of inclination (Eratosthenes, Pto-

lemy) ii. 107-8.

Ec] hantus 317, ii. 2.

Edfu, Temple of Horus 124.

Egypt : priests 4-5, 8-9 : relations

with Greece 8; origin ofgeometry
in, 120-2 : orientation of temples
122.

Egyptian mathematics : numeral
system 27-8, fractions 28, multi-

plication, &c. 14-15, 52-3: geo-

metry (mensuration) 122-8 : tri-

angle (3, 4, 5) right-angled 122,

147: value of 7r 124,125: measure-

ment of pyramids 126-8: maps
(regional) 139 : algebra in Papyrus
Rhind, &c. ii. 440-1.

Eisenlohr, A. 123, 126, 127.

Eisenmann, H. J. ii. 360.

Elements : as known to Pytha-
goreans 166-8: progress in, down
to Plato 170-1, 175-6,201-2, 209-

13, 216-17 : writers of Elements,
Hippocrates of Chios 170-1, 201-

2, Leon, Theudius 320-1 : other

contributors to, Leodamas, Ar-

chytas 170, 212-13, Theaetetus
20*9-12, 354. Hermotimus of Colo-

phon 320,. Eudoxus 320, 323-9.

354: Elementsoi Euclid 357-419:

the so-called ' Books XIV, XV

'

419-21.

Ell, as measure of angles ii. 215-16.

Empedocles : on Pythagoras 65.

Enestrom, G. ii. 341-2.

Enneagon : Heron's measurement
of side ii. 259, of area ii. 328 9.

Epanthema of Thymaridas (system

of simple equations) 94: other

types reduced to, 94-6.

Equations : simple, in Papyrus
Rhind, &c. ii. 441 : in epanthema
of Thymaridas and in lamblichus
94-6 : in Greek anthology ii.

441-3 : indeterminate, see Inde-

terminate Analysis : see also

Quadratic, Cubic.

Eratosthenes ii. 1, 16: date, &c.
ii. 104: sieve (kuvkm.v) for finding-

primes 16, 100, ii. 105 : on dupli-

cation of cube 244-6,251, 258-60:

the PIaton icus ii. 104-5 : On Means
ii. 105-6, ii. 359 : Measurement of
earth ii. 106-7, ii. 242, ii. 346 :

astronomy ii. 107-9 : chronology
and Geographica ii. 109: on Octar-

teris ib.

Erycinus ii. 359, 365-8.

Euclid 2-3,93, 131 : date,&c. 354-
6 : stories of, 25, 354, 357 : rela-

tion to predecessors 354, 357 :

Pappus on, 356-7.

Arithmetic : classification and
definitions of numbers 72-3, 397,
' perfect ' numbers 74, 402: for-

mula for right-angled triangles

in rational numbers 81-2, 405.

Conies 438-9, ii. 121-2, focus-

directrix property ii. 119-21 : on
ellipse 439, ii. Ill, ii. 125.
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Data 421-5, Divisions {of

figures) 425-30, ii. 336, 339.

Elements', text 360-1, Theon's
edition 358, 360, ii. 527-8, trans-

lation by Boetius 359, Arabic

translations 362, ancient com-
raentaries 358-9, editio princeps

of Greek text 360, Greek texts of

Gregory, Peyrard, August, Hei-

berg 360-1 : Latin translations.

Athelhard 362-3, Gherard 363.

Campanus 363-4, Commandinus
365 : first printed editions, Rat-

dolt 364-5, Zamberti 365 : first

introduction into England 363 :

first English editions, Billingsley,

&c. 369-70: Euclid in Middle
Ages 365-9, at Universities 368-

9: analysis of, 373-419 : arrange-

ment of postulates and axioms
361 : 1. 47, how originally proved
147-9 : parallel-postulate 358,

375, ii. 227-30, ii. 295-7, ii. 534:

so-called 'Books XIV, XV 419-

21.

Mechanics 445-6 : Music 444-

5, Sectio canonis 17, 90, 215,

444-5: Optics 17-18, 441-4: Phae-

nomena 349, 351-2, 440-1, ii.

249: Porisms 431-8, lemmas to,

ii. 419-24: Pseudaria 430-1 : Sur-

face-Loci 243-4, 439-40, lemmas
to, ii. 119-21, ii. 425-6.

Eudemus 201, 209, 222 : History of
Geometry 118, 119, 120, 130, 131,

135, 150, 171 : on Hippocrates's

lunes 173, 182, 183-98: History

of Astronomy 174, 329, ii. 244.

Eudoxus 24, 118, 119, 121, 320,

322-4 : new theory of proportion

(that of Eucl. V. ii) 2, 153, 216,

325-7 : discovered method of ex-

haustion 2, 176, 202, 206, 217,

222, 326, 327-9 : problem of two
mean proportionals 245, 246, 249-

51 : discovered three new means
86: 'general theorems' 323-4:

On speeds, theory of concentric

spheres 329-34, ii. 244 : Pheno-
mena and Mirror 322.

Eugenius Siculus, Admiral, ii. 293.

Euler, L. 75 n., ii. 482, ii. 483.

Euphorbus (= Pythagoras) 142.

Eurytus 69.

Eutocius 52, 57-8, ii. 25, ii. 45, ii.

126, ii. 518, ii. 540-1.

Exhaustion, method of, 2, 176,202,
217, 222, 326, 327-9: develop-
ment of, by Archimedes 224, ii.

35-6.

False hypothesis: Egyptian use ii.

441 : in Diophantus ii. 488, 489.

Ferniat, P. 75 n., ii. 20, ii. 185, ii.

454, ii. 480, ii. 481-4 : on Porisms
435.

Fontenelle ii. 556.

Fractions : Egyptian (submultiples

except 5) 27-8, 41: Greek sys-

tems 42-4 : Greek notation ib. :

sexagesimal fractions, Babylo-
nian 29, in Greek 44-5.

' Friendly ' numbers 75.

Galilei 344, 446.

Geeponicits, Liber, 124, ii. 309, ii.

318, ii. 344.

Geminus 119, ii. 222-34 : on arith-

metic and logistic 14 : on divi-

sions of optics, &c. 17-18 : on
original steps in proof of Eucl. I

32, 135-6: on parallels 358:

attempt to prove parallel-postu-

late ii. 227-30 : on original way
of producing the three conies

ii. Ill : encyclopaedic work on

mathematics ii. 223-31 : onPosi-

donius's Meteorologica ii. 231-2 :

Introduction to Phaenomena ii.

232-4.

Geodesy (y(wbmaia) = mensuration

(asdistinct from geometry) 16-17.

Geometric mean, defined (Archytas)

85 : one mean between two

squares (or similar numbers), two

between cubes (or similar solid

numbers) 89-90, 112, 201, 297,

400 : no rational mean between
consecutive numbers 90, 215.

' Geometrical harmony ' (Philolaus's

name for cube) 85-6.

Geometry : origin in Egypt 120-2 :

geometry in secondary education

20-1.

Georgius Pachymeres ii. 453, ii.

546.

Gerbert (Pope Sylvester II) 365-7 :

geometry of, 366 : ii. 547.

Gerhardt, C. J. ii. 360, ii. 547.

Gherard of Cremona, translator of

Euclid and an-Naiiizi 363, 367,

ii. 309 : of Menelaus ii. 252, ii. 262.
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Ghetaldi, Marino, ii. 190.

Girard, Albert, 485, ii. 455.

Gnomon : history of term 78-9

:

gnomons of square numbers 77-

8, of oblong numbers 82-3, of

polygonal numbers 79: in appli-

cation of areas 151-2 : use by
al-Karkhi 109-10 : in Euclid 379 :

sun-dial with vertical needle 139.

Gomperz, Th. 176.

Govi, G. ii. 293 n.

Gow, J. 38.

Great Year, of Oenopides 174-5,
of Callippus and Democritus 177.

Gregory, D. 360-1, 440, 441. ii. 127.

Griffith, F. LI. 125.

Giinther, S. ii. 325 »., ii. 550.

Guldin's theorem, anticipated by
Pappus ii. 403.

Halicarnassus inscriptions 32 - 3,

34.

Halley, E., editions of Apollonius's
Conies ii. 127-8, and Sec'tio ratio-

ns ii. 175, 179, of Menelaus ii. '

252, ii. 262, of extracts from
Pappus ii. 360, of Serenus ii. 519.

Halma, editor of Ptolemy ii. 274,
275.

Hammer-Jensen, I. ii. 300 n,, ii.

304 n.

Hankel, H. 145, 149, 288, 369, ii.

483.

Hardy, G. H. 280.

Harmonic mean (originally 'sub-
contrary ') 85.

Harpedonaptae, ' rope-stretchers

'

121-2, 178.

Harun ar-Rashid 362.
Ifan.-calculations (Egyptian) ii.

440-1.

Hecataeus of Miletus 65, 177.

Heiben, J. L. 233 n.

Heiberg, J. L. 184, 187 n., 188,
192 n., 196-7 «.., 315, 361, ii. 203,
ii. 309, 310,316, 318, 319, ii. 519,
ii. 535, 543,553, 555 n.

Helceph 111.

Hendecagon in a circle (Heron) ii.

259, ii. 329.

Henry, C. ii. 453.

Heptagon in a circle, ii. 103

:

Heron's measurement of, ii. 328.

Heraclides of Pontus 24, ii. 231-2:
discovered rotation of earth about
axis316-17,ii.2 3, and thatVenus

and Mercury revolve about sun
312, 317, ii. 2, ii. 244.

Heraclitus of Ephesus 65.

Heraclitus, mathematician ii. 192,

ii. 359, ii. 412.

Hermannus Secundus ii. 292.

Hermesianax 142 n., 163.

Hermodorus ii. 359.

Hermotimus of Colophon 320-1 :

Elements and Loci ib., 354.
' Herodianic ' (or ' Attic ') numerals

30-1.

Herodotus 4, 5,48, 65, 121, 139.

Heron of Alexandria 121, ii. 198,

ii. 259 : controversies on date ii.

298-307 : relation to Ctesibius

and Philon ii. 298-302, to Pappus
ii. 299-300, to Posidonius and
Vitruvius ii. 302-3, to agrimen-
sores ii. 303, to Ptolemy ii. 303-6.

Arithmetic : fractions 42-4, mul-
tiplications 58, approximation to

surds ii. 51, ii. 323-6, approxima-
tion to cube root 64, ii. 341-2,

quadratic equations ii. 344, in-

determinate problems ii. 344,
444-7.

Character of works ii. 307-8 :

list of treatises ii. 308-10.

Geometry ii. 310-14, Definitions

ii. 314-16: comm. on Euclid's

Elements 358, ii. 310-14 : proof of

formula for area of triangle in

terms of sides ii. 321-3 : duplica-

tion of cube 262-3.

Metrica ii. 320-43: (1) mensu-
ration ii. 316-35 : triangles ii.

320-3, quadrilaterals ii. 326,

regular polygons ii. 326-9, circle

and segments ii. 329-31 : volumes
ii. 331-5, &u>iji(tkos ii. 332-3, frus-

tum of cone, sphere and segment
ii. 334, tore ii. 334-5, five regular

solids ii. 335. (2) divisions of

figures ii. 336-43, of frustum of

cone ii. 342-3.

Mechanics ii. 346-52 : on Ar-

chimedes's mechanical works ii.

23-4, on centreof gravity ii. 350-1,

352.

Belopoe't'ca 18, ii. 308-9, Catop-

trica 18, ii. 294, ii. 310, ii. 352-4.

Dioptra ii. 345-6, Pnenmatica
and Automata 18, ii. 308, 310.

On Wafer-cloeks ii. 429, ii. 536.

Heron, teacher of Proclus ii. 529.

1523.2 P p
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'Heron the Younger' ii. 545.

Heronas 99.

Hicetas 317.

Hierius 268, ii. 359.

Hieronymus 129.

Hilal b. Abl Hilal al-Himsi ii. 127.

Hiller, E. ii. 239.

Hilprecht, H. V. 29.

Hipparchus ii. 3, 18, 198, 216, 218:

date, &c. ii. 253 : work ii. 254-6 :

on epicycles and eccentrics ii.

243, ii. 255 : discovery of preces-

sion ii. 254 : on mean lunar month
ii. 254-5 : catalogue of stars ii.

255 : geography ii. 256 : trigono-

metry ii. 257-60, ii. 270.

Hippasus 65, 85, 86, 214: construc-

tion of ' twelve pentagons in

sphere ' 160.

Hippias of Elis : taught mathe-
matics 23 : varied accomplish-
ments ib., lectures in Sparta 24

:

inventor of quadratrix 2, 171, 182,

219 225-6
Hippocrates of Chios 2, 182, 211:

taught for money 22: first writer

of Elements 119, 170, 171: ele-

ments as known to, 201-2:
assumes vevau equivalent to solu-

tion of quadratic equation 88,

195-6 : on quadratures of lunes

170, 171, 173, 182, 183-99, 220,

221: proved theorem of Eucl. XII
2, 187, 328 : reduced duplication

of cube to problem of finding

two mean proportionals 2, 183,

200, 245. ,

Hippolytus: on n-vd/jLeves (bases) and
'rule of nine

1 and 'seven' 115-16.

Hippopede of Eudoxus 333-4.

Homer 5.

' Horizon ' : use in technical sense by
Euclid 352.

Horsley, Samuel, ii. 190, ii. 360.

Hultsch, F. 204, 230, 349, 350, ii. 51,

ii. 308, ii. 318, 319, ii. 361.

Hunrath, K. ii. 51.

Hunt, A. S. 142.

Hypatia ii. 449, ii. 519, ii. 528-9.

Hypotenuse, theorem of square on,

142, 144-9 : Proclus on discovery

of, 145 : supposed Indian origin

145-6.

Hypsicles : author of so-called Book
XIV of Eucl. 419-20, ii. 192 : de-

finition of 'polygonal number' 84,

ii. 213, ii. 515 : 'Ai>a(/>optKo? ii.

213-18, first Greek division of
zodiac circle into 360partsii. 214.

Iamblichus 4, 69, 72, 73, 74, 75, 86,
107, ii. 515, 529 : on ciravdwi of
Thymaridas, &c. 94-6: works
113-14: comm. on Nicomachus
113-15 : squares and oblong num-
bers as 'race-courses

1

114: "pro-

perty of sum of numbers 3« — 2,

3n>-l,8n 114-15.
Ibn al-Haitham,on burning-mirrors

ii. 201: ii. 453.

Icosahedron 159 : discovery attri-

buted to Theaetetus 162 : volume
of, ii. 335.

Incommensurable, discovery of, 65,

90-1, 154 : proof of incommensu-
rability of diagonal of square 91.

Indeterminate analysis : first cases,

right-angled triangles in rational

numbers 80, 81, 'side-' and 'dia-

meter-' numbers 91-3, ii. 536:
rectangles with area and peri-

meter numerically equal 96-7 :

indeterminate equations, first

degree ii. 443, second degree ii.

443-4 (see also Diophantus), in

Heronian collections ii. 344, ii.

444-7.

India : rational right-angled tri-

angles in, 145 6: approximation
to ^/2, 146.

Indian Table of Sines ii. 253.

Irrational : discovered by Pythago-
reans 65, 90-1, 154, and with
reference to \/2, 155, 168 : Demo-
crituson,156-7,181:Theodoiuson,
203-9: extensions by Theaetetus
209-12, Euclid 402-11, Apollonius

ii. 193.

Isaac Argyrus 224 n., ii. 555.

Ishaq b. Hunain, translator of

Euclid 362, of Menelaus ii. 261,

and Ptolemy ii. 274.

Isidorus Hispalensis 365.

lsidorus of Miletus 421, ii. 25, ii.

518, ii. 540.

Isocrates : on mathematics in edu-

cation 21.

Isoperimetric figures ii. 206-13, ii.

390-4.

Jacob b. Machir ii. 252, ii. 262.

Jacobus Cremonensis ii. 26-7.
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Jan, C. 444.

Joachim Camerarius ii. 274.

Joachim, H. H. 348 n.

Johannes de Sacrobosco 368.

Jordanus Nemorarius ii. 328.

Jourdain, P. E. B. 283 n.

Kahun Papyri 125, 126.

Kant 173.

Keil, B. 34-5.

Kepler ii. 20, ii. 99.

Keenly, H. A. T. ii. 309.

Koppa (9 for 90) = Phoenician Qoph
32.

Kubitschek, W. 50.

Lagrange ii. 483.

Laird, A. G. 306 n.

Laplace 173.

Larfeld,W. 31 n., 33-4.
Lawson 436.

Leibniz 279, ii. 20.

Lemma 373, ii. 533.

Leodamas of Thasos 120, 170, 212,
291, 319.

Leon 319.

Leon (of Constantinople) ii. 25.

Leonardo of Pisa 367, 426, ii. 547.
Lepsius, C. R. 124.

Leucippus 181.

Libri, G. ii. 556.
1 Linear ' (of numbers) 73.
1 Linear' loci and problems 218-19.
Lines, classification of, ii. 226.
Livy ii. 18.

Loci : classification of,218-19, plane,
solid, linear 218: loci on surfaces
219: ' solid loci ' ii. 116-19.

Loftus, W. K. 28.

Logistic (opp. to 'arithmetic'),
science of calculation 13-16, 23,
53.

Logistica speciosa and numerosQ.
(Vieta) ii. 456.

Loria, G. iv-v, 350 n., ii. 293 n.

Luca Paciuolo 367, ii. 324 n.

Lucas, E. 75 n.

Lucian 75 n., 77, 99, 161, ii. 18.

Lucretius 177.

Magic squares ii. 550.
Magnus, Logistica 234-5.

Mamercus or Mamertius 140, 141,
171.

al-Ma'mun, Caliph 362.

al-Mansur, Caliph 362.

P p

Manus, for number 27.

Marinus 444, ii. 192, ii. 537-8.

Martianus Capella 359, 365.

Martin, T. H. ii. 238, ii. 546.

Maslama b. Ahmad al-Majrlti ii.

292.
_

Massalia 8.

Mastaba tombs 128.

Mathematics : meaning 10-11, clas-

sification of subjects 11-18:
branches of applied mathematics
17-18 : mathematics in Greek
education 18-25.

Maurolycus ii. 262.

Means : arithmetic, geometric, and
subcontrary (harmonic) known
in Pythagoras's time 85 : defined

by Archytas ih. : fourth, fifth, and
sixth discovered, perhaps by Eu-
doxus 86, four more by Myonides
and Euphranor 86 : ten means
in Nicomachus and Pappus 87-9,

Pappus's propositions 88-9 : no
rational geom. mean between suc-

cessive numbers (Archytas) 90,

215.

Mechanics, divisions of, 18 : writers

on, Archytas 213, Aristotle 344-6,

445-6, Archimedes ii. 18, ii. 23-4,

ii. 75-81, Ptolemy ii. 295, Heronii.
346-52, Pappus ii. 427-34.

Megethion ii. 360.

Memus, Johannes Baptista, ii. 127.

Menaechmus 2, 25, 251-2, 320-1 :

discoverer of conic sections 251-

3, ii. 110-16 : solved problem of
two mean proportionals 245,246,
251-5 : on ' problems' 318.

Menelaus of Alexandria ii. 198, ii.

252-3 : date, &c. ii. 260-1 : Table of
Chords ii. 257: Sphaerica ii. 261-
73 : Menelaus's theorem ii. 266-

8, 270 : anharmonic property ii.

269 : 7rapd8ot;os curve ii. 260-1.
Mensa Pythagorea 47.

Mensuration : in primary education
19 : in Egypt 122-8 : in Heron ii.

316-35.

Meton 220.

Metrodorus ii. 442.

Minus, sign for, in Diophantus ii.

459-60.
Mochus 4.

Moschopoulos, Manuel, ii. 549-50.

Muhammad Bagdadinus 425.

Multiplication : Egyptian method

2
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52-3, Greek 53-4, 'Russian' 53 n.:

examples from Eutocius, Heron,
Theon 57-8 : Apollonius's con-
tinued multiplications 54-7.

Multiplication Table 53.

Murran, an angular measure ii. 215.

Musical intervals and numerical
ratios 69, 75-6, 85, 165.

Myriads, ' first ', ' second ', &c, nota-
tion for, 39-40.

Nagl, A. 50.

an-Nairizi : comm. on Euclid 363,

ii. 224, ii. 228-30, ii. 309-10.
NasTraddm at-Tusi : version of Eu-

clid 362, of Apollonius's Conies
ii. 127: of Ptolemy ii. 275.

Naucratis inscriptions 33.

Nemesius 441.

Neoclides 319.

Ner (Babylonian) (=600) 28, ii.

215.

Nesselmann, G. H. F. ii. 450-1, ii.

455-6.

Newton 370, ii. 20, ii. 182.

Nicolas Rhabdas 40, ii. 324 n , ii.

550-3.

Nicomachus of Gerasa 12, 69, 70,

72, 73, 74, 76, 83, 85, 86, ii. 238,

ii. 515: works of, 97: Introductio

arithmetical character of treatise

98-9, contents 99-112, classifica-

tion of numbers 99-100: on 'per-

fect' numbers 74, 100-1 : on ten
means 87 : on a 'Platonic' theo-
rem 297 : sum of series of

natural cubes 109-10.

Nicomedes 225-6, ii. 199: cochloids

or conchoids 238-40 : duplica-

tion of cube 260-2.

Niloxenus 129.

Nine, rule of, 115-16: casting out
nines ii. 549.

Nipsus, M. Junius, 132.

Nix, L. ii. 128, 131, ii. 309.

Noel, G. 282.

Number: defined, by Thales 69, by
Moderatus, Eudoxus, Nicoma-
chus, Aristotle 70 : classification

of numbers 70-4: 'perfect',

'over-perfect' and 'defective'

numbers 74-5, ' friendly ' 75,

figured 76-9 : 'oblong', 'prolate'

82-3, 108, 114, similar plane and
solid numbers 81-2, 90, . solid

numbers classified 106-8 : ' the

number in the heaven ' (Pytha-
gorean) 68, 'number' of an object
69.

Numerals: systems of,decimal, qui-
nary, vigesimal 26 : origin of

decimal system 26-7 : Egyptian
27-8 ; Babylonian systems (1)

decimal 28, (2) sexagesimal 28-9:

Greek (1) 'Attic' or 'Herodianic'
30 - 1 : (2) alphabetic system,
original in Greece 31-7, how
evolved 31-2, date of introduc-

tion 33-5, mode of writing 36-7,

comparison of two systems 37-9

:

notation for large numbers, Apol-
lonius's tetrads 40, Archimedes's
octads 40-1.

Nymphodorus 213.

4 Oblong ' numbers 82-3, 108, 114:
gnomons of, 82- 3.

Ocreatus, 111.

Octads, of Archimedes 40-1.

Octagon, regular, area of, ii. 328.

Octahedron 159, 160, 162: volume
of, ii. 335.

' Odd ' number defined 70-1 : 1

called ' odd-even '71:' odd-even ',

'odd-times-odd', &c, numbers
71-4.

Oenopides of Chios 22, 121 : dis-

covered obliquity of ecliptic 138,

174, ii. 244: Great Year of, 174-5 :

called perpendicular gnomon-ivise

78, 175 : two propositions in ele-

mentary geometry 175.

Olympiodorus 444.

One, the principle of number 69.

Oppermann ii. 324 n.

Optics: divisions of, 17-1 8: of Euclid
441-4 : of Ptolemy ii. 293-4.

Oval of Cassini ii. 206.

Oxyrhynchus Papyri 142.

Pamphile, 131, 133, 134.

Pandrosion ii. 360.

Pappus (see also Table of Contents,

underChap.XIX)ii.l7-18,ii. 175,

180, 181, 182, 183, 185, 186, 187,

188, 189, 190, ii. 207, 211, 212,

213, ii. 262, ii. 337, ii. 355-439 :

on Apollonius's tetrads 40, on
Apollonius's continued multi-

plications 54-7 : on ten means
87-9 : on mechanical works of

Archimedes ii. 23-4: on conies
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of Euclid and Apollonius 438,

proof of focus-directrix property
ii. 120-1: commentary on Euclid

358, ii. 356-7, on Book X 154-5,

209, 211, ii. 193 : commentary on
Euclid's Data 421-2, ii. 357, on
Diodorus's Analemma ii. 287,

scholia on Syntaxis ii. 274 : on
classification of problems and
loci (plane, solid, linear) 218—19,

ii. 11 7-18, criticism on Archimedes
and Apollonius 288, ii. 68, ii.167:

on suriace-loci 439-40, ii. 425-6 :

on Euclid's Porisms 431-3, 436-7,
ii. 270, ii. 419-24 : on ' Treasury
of Analysis ' 421, 422, 439, ii. 399-
427 : on cochloids 238-9 : on quad-
ratrix 229-30, ii. 379-80, con-

structions for,ii. 380-2: on dupli-

cation of cube 266-8, 268-70: on
trisection of any angle 241-3,
ii. 385-6, vevai? with regard to

parallelogram 236-7 : on isoperi-

metry (cf. Zenodorus) ii. 207, ii.

211-12, ii. 390-4.
1 Paradoxes ' of Erycinus ii. 365-8.

Parallelogram of velocities 346, ii.

348-9.

Parapegma of Democritus 177.

Parmenides 138.

Paterius ii. 536-7.

Patricius ii. 318, 319.

Pebbles, for calculation 46, 48.

Pentagon, regular : construction
Pythagorean 160-2; area of,ii.327.

Pentagram, Pythagorean 161-2 (see

Errata).
1 Perfect ' numbers 74-5 : list of

first ten ib. : contrasted with
1 over-perfect ' and ' defective

'

ib. : 10 with Pythagoreans 75.
1 Perfect ' proportion 86.

Pericles 172.

Pericles, a mathematician ii. 360.
Perseus 226 : spiric sections ii.

203-6.
' Phaenomena ' = observational as-

tronomy 17 : 322, 349.

Philippus of Opus 354 : works by,

321 : on polygonal numbers 84,

ii. 515 : astronomy 321.

Philolaus 67, 72, 76, 78, 86, 158,

ii. 1 : on odd, even, and even-odd
numbers 70-1: Pythagorean non-
geocentric astronomy attributed

to, 163-4.

Philon of Byzantium 213 : duplica^

tionof cube 262-3: Philon, Ctesi-

bius and Heron ii. 298-302.
Philon of Gadara 234.

Philon of Tyana ii. 260.

Philoponus, Joannes, 99, 223, 224 n.

Phocaeans 7.

Phocus of Samos 138.

Phoenician alphabet, how treated

by Greeks 31-2 : arithmetic ori-

ginated with Phoenicians 120-1.

'Piremus' or 'peremus' in pyramid
126, 127.

'Plane' loci 218.

'Plane' problems 218-19.
^

Planisphaerium of Ptolemy ii. 292-3.

Planudes, Maximus, 117, ii. 453, ii.

546-9.

Plato 19, 22, 24, 121, 142n., 170, 176:

©eoyaeiyeco^frpeilO : /ur/Seis aye cofxe-

rprjTos eio-irwiii, 24, 355 : on educa-
tion in mathematics 19-20, 284:

on mathematical 'arts', measure-
ment and weighing 308, instru-

ments for, 308-9, principle of

lever 309 : on optics 309, 441

:

on music 310 : Plato's astronomy
310-15: on arithmetic and logistic

13-14 : classification of numbers,
odd, even, &c. 71-2, 292: on
number 5040, 294: the Geometri-
cal Number, 305-8 : on arithme-
tical problems 15, ii. 442 : on
geometry 286-8, constructions

alien to true geometry ib. : on-

tology of mathematics 288-9:
hypotheses of mathematics 289-
90 : two intellectual methods
290-2 : supposed discovery of

mathematical analysis, 120, 212-
13, 291-2 : definitions of various

species of numbers 292, figure

292-3, line and straight line 293,

circle and sphere 293-4 : on
points and indivisible lines 293

:

formula for rational right-angled
triangles 81, 304 : 'rational' and
' irrational diameter of 5 ' 93,

306-7 : Plato and the irrational

156, 203-5, 304: on solid geo-
metry 12-13,303 : on regular and
semi-regular solids 294-7 : Plato

and duplication of cube 245-6,

255, 287-8, 303: on geometric
means between two squares and
two cubes respectively 89, 112,



582 ENGLISH INDEX

201,297, 400: on ' perfect ' pro-

portion 86 : a proposition in

proportion 294: two geometrical
passages in Meno 297-303 : pro-

positions ' on the section ' 304,
324-5.

'Platonic' figures (the regular

solids) 158, 162, 294-5, 296-7.

Playfair, John, 436.

Pliny 129, ii. 207.

Plutarch 84, 96, 128, 129, 130, 133,

144, 145, 167, 179, ii. 2, 3, ii. 516:

on Archimedes ii. 17-18.

Point: defined as a 'unit having
position ' 69, 166 : Tlato on points

293.

Polybius 48, ii. 17 n,, ii. 207.

Polygon : propositions about sum
of exterior or interior angles 144:

measurement of regular polygons
ii. 326-9..

Polygonal numbers 15, 76, 79, ii.

213, ii. 514-17.

Polyhedra, see Solids.

Porism (1) = corollary 372: (2) a

certain type of proposition 373,

431-8 : Porisms of Euclid, see

Euclid : of Diophantus, see Dio-
phantus.

Porphyry 145: commentary on Eu-
clid's Elements 358, ii. 529.

Poselger, F. T. ii. 455.

Posidonius ii. 219-22 : definitions

ii. 221, 226 ; on parallels 358, ii.

228 : versus Zeno of Sidon ii.

221-2 : Meteorologica ii. 219 :

measurement of earth ii. 220: on
size of sun ii. 108, ii. 220-1.

Postulates : Aristotle on, 336 : in

Euclid 336, 374-5 : in Archimedes
336, ii. 75.

Powers, R. E. 75 n.

Prestet, Jean, 75 n.

Prime numbers and numbers prime
to one another 72-3: defined 73:

2 prime with Euclid and Aristotle,

not Theon of Smyrna and Neo-
Pythagoreans ib.

Problems : classification 218-19 :

plane and solid ii. 117-18 : pro-

blems and theorems 318, 431, ii.

533.

Proclus 12, 99, 175, 183, 213, 224 n.,

ii. 529-37 : Comm. on Eucl. I. ii.

530-5 : sources ii. 530-2 :
' sum-

mary' 118-21, 170, object of, 170-

1 : on discoveries of Pythagoras
84-5,90,119,141,154: on Euclid
I. 47, 145, 147: attempt to prove
parallel-postulate 358, ii. 534 : on
loci 219 : on porisms 433-4 : on
Euclid's music 444 : comm. on
Republic 92-3, ii. 536-7 : Hypoty-
posis of astronomical hypotheses

ii. 535-6.

Prodicus, on secondary education
20-1.

Prolate, of numbers 108, 204.

Proof 310, ii. 533.

Proportion : theory discovered by
Pythagoras 84-5, but his theory

numerical and applicable to com-
mensurables only 153, 155, 167:

def. of numerical proportion 190:

the ' perfect ' proportion 86 :

Euclid's universally applicable

theory due to Eudoxus 153, 155,

216, 325-7.

Proposition, geometrical : formal

divisions of, 370-1.

Protagoras 202 : on mathematics
23, 179.

Prou, V. ii. 309.

P,sammites or Sand-reckoneroiArchi-

medes 40, ii. 3, ii. 81-5.

Psellus, Michael, 223-4 n., ii. 453,

ii. 545-6.

Pseudaria of Euclid 430-1.

Pseudo-Boetius 47.

Pseudo-Eratosthenes: letter on du-

plication of cube 244-5.

Ptolemies : coins of, with alphabetic

numerals 34-5: Ptolemy I, story

of, 354.

Ptolemy, Claudius, 181, ii. 198, ii.

216, ii. 218, ii. 273-97: sexa-

gesimal fractions 44-5, approxi-

mation to 7r 233 : attempt to prove

parallel-postulate 358, ii. 295-7 :

Syntaxisii. 273-86, commentaries
and editions ii. 274-5, contents

of, ii. 275-6, trigonometry in, ii.

276-86, 290-1, Table of Chords
ii. 259, ii. 283-4, on obliquity of

ecliptic ii. 107-8 : Analemma
ii. 286-92: Planispherium ii. 292-

3, Optics ii. 293-4, other works ii.

293 : 7T€f)\ poncov ii. 295 : wepl dia-

ardcre cos ib.

Pyramids : origin of name 126 :

measurements of, in Rhincl Papy-
rus 126-8: pyramids of Dakshiir,
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Gizeh, and Medum 128: measure-

ment of height by Thales 129-30
;

volume of pyramid 176, 180, 217,

ii. 21, &c, volume of frustum ii.

334.

Pythagoras 65-6, 121, 131, 133, 138:

travels 4-5, story of bribed pupil

24-5: motto 25, 141 : Heraclitus,

Empedocles and Herodotus on,

65 : Proclus on discoveries of, 84-

5, 90, 119, 141, 154 : made mathe-
matics a part of liberal education

141, called geometry 'inquiry'

166, used definitions 166 : arith-

metic (theory of numbers) 66-80,

figured numbers 76—9 : gnomons
77, 79: 'friendly' numbers 75:

formula for right-angled tri-

angles in rational numbers 79-

80 : founded theory of proportion

84-5, introduced ' perfect ' pro-

portion 86 : discovered depen-
dence of musical intervals on
numerical ratios 69, 75—6, 85,

165 : astronomy 162-3, earth

spherical ib., independent move-
ment of planets 67, 163: Theorem
of Pythagoras 142, 144-9, how-

discovered? 147-9, general proof,

how developed ib., Pappus's ex-

tension ii. 369-71.

Pythagoreans 2, 11, 220: quadri-

vium 11 : a Pythagorean first

taught for money 22 : first to

advance mathematics 66 :
' all

things are numbers' 67-9 : 'num-
ber ' of an object 69, ' number in

the heaven' 68: figured numbers
69 : definition of unit 69 : 1 is

odd-even 71 : classification of

numbers 72-4 :
' friendly ' num-

bers 75: 10 the 'perfect' number
75 : oblong numbers 82-3, 108,

114 : side- and diameter- numbers
giving approximations to V2, 91-
3 : first cases of indeterminate
analysis 80, 91, 96-7 : sum of
angles of triangle = 2 R, 135,

143 : geometrical theorems attri-

buted to, 143-54 : invented appli-

cation of areas and geometrical
algebra 150-4: discovered the in-

commensurable 65, 90-1, 154,

with reference to v 2 155, 168

:

theory of proportion only ap-
plicable to commensurables 153,

155, 167, 216 : construction of

regular pentagon 160-2 : astro-

nomical system (non-geocentric)

163-5 : definitions 166 : on order

of planets ii. 242.

Qay en hem, height (of pyramid)
127.

Quadratic equation : solved by Py-
thagorean application of areas

150
T2, 167, 394-6, 422-3; nu-

merical solutions ii. 344, ii. 448,

ii. 463-5.

Quadratrix 2, 23, 171, 182, 218, 219,

225-30, ii. 379-82.

Quadrivium of Pythagoreans 11.

Quinary system of numerals 26.

Quintilian ii. 207.

Qusta b. Luqa, translator of Euclid

362, ii. 453.

Rangabe, A. R. 49-50.

Ratdolt, Erhard, first edition of

Euclid 364-5.

Reductio ad absurdum 372 : already

used by Pythagoreans 168.

Reduction (of a problem) 372.

Reflection : equality of angles of

incidence and reflection 442, ii.

294, ii. 353-4.

Refraction 6-7, 444 : first attempt
at a law (Ptolemy) ii. 294.

Regiomontanus 369, ii. 27, ii. 453-4.

ReguJa Nicomachi 111.

Rhabdas, Nicolas, 40, ii. 324 n., ii.

550-3.

Rhind Papyrus : mensuration in,

122-8: algebra in, ii. 440-1.

Right-angled triangle : inscribed

by Thales in circle 131: theorem
of Eucl. I. 47, attributed to

Pythagoras 142, 144-5, supposed
Indian origin of, 145-6.

Right-angled triangles in rational

numbers : Pythagoras's formula

80, Plato's 81, Euclid's 81-2,

405: triangle (3, 4, 5) known to

Egyptians 122: Indian examples
146 : Diophantus's problems on,

ii. 507-14.

Robertson, Abram, ii. 27.

Rodet, L. 234.

Rodolphus Pius ii. 26.

Roomen, A. van, ii. 182.

Rudio, F. 173, 184, 187-91, ii.

539.
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Rudolph of Bruges ii. 292.

Ruelle, Ch. tm. ii. 538.

Rustow, F. W. ii. 309.

Ruler - and - compasses restriction

175-6.

Sachs, Eva, 209 n.

Salaminian table 48, 50-1.

Salmon ii. 23, ii. 103.

Sampi (~^) = 900) derived from
Ssade q.v.

Sar (Babylonian for 602
) 28, ii. 215.

SaUtpatha Brahmana, 146.

Savile, Sir H., on Euclid 360, 369.

Scalene: oftriangles 142: of certain

solid numbers 107 : of an odd
number (Plato) 292: of an oblique

cone ii. 134.

Schiaparelli, G. 317, 330, ii. 539.

Schmidt, W. ii. 308, 309, 310.

Schone, H. ii. 308.

Schone, R. ii. 308, 317.

Scholiast to Charmides 14, 53.

Schooten, F. van, 75 n., ii. 185.

Schulz, 0. ii. 455.

Scopinas ii. 1.

Secondary numbers 72.

Sectio canonis 17, 215, 444.

SeelhofF, P. 75 n.

Seleucus ii. 3.

Semicircle : angle in, is right

(Thales) 131, 133-7.

Senkereh, Tables 28, 29.

Senti, base (of pyramid) 127.

Se-qet, ' that which makes tb e nature

'

(of pyramid ) = cotangent ofangle
of slope 127-8, 130, 131.

Serenus ii. 519-26: On section of
cylinder ii. 519-22, On section of
cone ii. 522-6.

Sesostris (Ramses II) 121.

Sexagesimal system of numerals
and fractions 28-9 : sexagesimal
fractions in Greek 44-5, 59, 61-3,

233, ii. 277-83.

Sextius 220.

Sicily 8.
1 Side-

1 and 'diameter-numbers' 91-

3, 112, 153,308, 380, ii. 536.

Simon, M. 200.

Simplicius : extract from Eudemus
on Hippocrates's quadrature of

lunes 171, 182-99: on Antiphon
221-2 : on Eudoxus's theory of

concentric spheres 329: commen-
tary on Euclid 358, ii. 539-40 : on

mechanical works of Archimedes
ii. 24: ii. 538-40.

Simson, R., edition of Euclid's
Elements 365, 369, and of Euclid's
Data 421 : on Euclid's Porisms
435-6: restoration of Plane Loci
of Apollonius ii. 185, ii. 360.

Simus of Posidonia 86.

Sines, Tables of, ii. 253, ii. 259-60.
Sinus rectus, sinus versus 367.
Sluse, R. F. de, 96.

Smith, D. E. 49, 133 w.
' Solid ' loci and problems 218, ii.

117-18: Solid Loci of Aristaeus
438, ii. 118-19.

'Solid' numbers, classified 106-8.
Solids, Five regular : discovery at-

tributed to Pythagoras or Pytha-
goreans 84, 141, 158-60,168,
alternatively (as regards octahe-
dron and icosahedron) to Theae-
tetus 162: all five investigated
by Theaetetus 159, 162, 212, 217:
Plato on, 158-60 : Euclid's con-
structions for, 415-19 : Pappus's
constructions ii. 368-9 : content
of, ii. 335, ii. 395-6.

Solon 4, 48.

Sophists : taught mathematics 23.

Sosigenes 316, 329.

Soss = sussu = 60 (Babylonian) 28,

ii. 215.

Speusippus 72, 73, 75, ii. 515 : on
Pythagorean numbers 76, 318

:

on the five regular solids 318 : on
theorems ib.

Sphaeric 11-12 : treatises on, by Au-
tolycus and Euclid 348-52, 440-
1 : earlier text-book presupposed
in Autolycus 349-50 : Spnaerica

of Theodosius ii. 245, 246-52, of

Menelaus ii. 252-3, 260, 261-73.

Sphere-making 18: Archimedes on,

ii. 17-18.

Spiric sections ii. 203-6.

Sporus 226 : criticisms on quadra-

trix 229-30 : KrjpLa 234 : duplica-

tion of cube 266-8.

Square root, extraction of, 60-3:

ex. in sexagesimal fractions

(Theon) 61-2, (scholiast to Eu-
clid) 63 : method of approxima-
ting to surds ii. 51-2, ii. 323-6,

ii. 547-9, ii. 553-4.

Square numbers 69 : formation by
adding successive gnomons (odd
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numbers) 77 : any square is sum
of two triangular numbers 83-4 :

8 times a triangular number
4- 1 = square, 84, ii. 516.

Ssade, Phoenician sibilant (signs

TAfilT) became "^ (900) 32.

' Stadium,' l/60th of 30°, ii. 215.

Stadium of Zeno 276-7, 281-3.

Star-pentagon, or pentagram, of

Pythagoreans 161-2.

Stereographic projection (Ptolemy)
ii 292.

Stevin, S. ii. 455.
' Stigma,' name for numeral 9*,

originally C (digamma) 32.

Strabo 121, ii. 107, ii. 220.

Strato ii. 1.

Subcontrary (= harmonic) mean,
defined 85.

Subtraction in Greek notation 52.

Surds : Theodorus on, 22-3, 155-6,

203-9, 304: Theaetetus's general-

ization 203-4, 205, 209, 304 : see

also 'Approximations '.

Surface-Loci 219, ii. 380-5 : Euclid's

439-40, ii. 119, ii. 425-6.

Surya-Siddhdnta ii. 253.

Sussu = soss (Babylonian for 60) 28,

ii. 215.

Synesius of Cyrene ii. 293.

Synthesis 371-2 : defined by Pappus
ii. 400.

Syracuse 8.

Table of Chords 45, ii. 259-60, ii.

283.

Tdittiriya Samhitd 146.

Tannery, P. 15, 44, 87, 89, 119, 132,

180, 182, 184, 188, 196 n., 232,

279, 326, 440, ii. 51, ii. 105, ii.

204-5, ii. 215, ii. 218, ii. 253,

ii. 317, ii. 453, ii. 483, ii. 519,
ii. 538, ii. 545, 546, ii. 550, ii. 556,

ii. 561.

Teles on secondary education 21.

Teos inscription 32, 34.

Tetrads of Apollonius 40.

Tetrahedron : construction 416, ii.

368 : volume of, ii. 335.
Thabit b. Qurra : translator of Eu-

clid 362, 363 : of Archimedes's
Liber assumptorum ii. 22 : of
Apollonius's Conies V-VII ii. 127:
of Menelaus's Elements of Geo-
metry ii. 260 : of Ptolemy ii.

274-5.

Thales 2, 4, 67 : one of Seven Wise
Men 128, 142 : introduced geo-

metry into Greece 128: geometri-

cal theorems attributed to, 130—

7 : measurement of height of

pyramid 129-30, and of distance

of ship from shore 131-3 : defini-

tion of number 69 : astronomy
137-9, ii. 244 : predicted solar

eclipse 137-8.

Theaetetus 2, 119, 170: on surds

22-3,155, 203-4, 205, 209, 304:
investigated regular solids 159,

162,212,217: on irrationals 209-
12, 216-17.

Themistius 221, 223, 224.

Theodorus ofCyrene : taughtmathe-
matics 22-3 : on surds 22-3, 155—

6, 203-9, 304.

Theodosiusii. 245-6: Sphaerica349-
50, ii. 246-52 : other works ii.

246 : no trigonometry in, ii. 250.

Theologumena arithmetices 96, 97,

318.

Theon of Alexandria : examples of

multiplication and division 58,

59-60 : extraction of square root
61-3 : edition of Euclid's Elements
360-1, ii. 527-8 : of Optics 441,
ii. 528 : Catoptrica ib. : commen-
tary on Syntaxis 58, 60, ii. 274,
ii. 526-7.

Theon of Smyrna 12, 72, 73, 74, 75,

76, 79, 83, 87, ii. 515 : treatise

of, ii. 238-44: on 'side-' and
'diameter-numbers' 91-3, 112:
forms of numbers which cannot
be squares 112-13.

Theophrastus 158, 163 : on Plato's

view of the earth 315.

Theudius 320-1.

Theuth, Egyptian god, reputed in-

ventor of mathematics 121.

Thevenot, M. ii. 308.

Thrasyllus 97, 176, 177, ii. 241, ii.

243.

Thucydides ii. 207.

Thymaridas : definition of unit 69:
' rectilinear ' = prime numbers
72 : iirav6t]nn, a system of simple
equations solved 94.

Timaeus of Locri 86 c

Tittel ii. 300, 301, 304.

Tore (or anchor-rirr£) : use by Ar-

chytas 219, 247-9 : sections of

(Perseus), ii. 203-6: volume of
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(Dionysodorus and Heron), ii.

218-19, ii. 334-5.

Torelli, J. ii. 27.

Transversal : Menelaus's theorem
for spherical and plane triangles

ii. 266-70 : lemmas relating to

quadrilateral and transversal

(Pappus) ii. 419-20.

'Treasury of Analysis' 421, 422,

439, ii. 399-427.

Triangle : theorem about sum of

angles Pythagorean 135. 143,

Geminus and Aristotle on, 135-6.

Triangle, spherical : called rpwrXet-

pov (Menelaus) ii. 262 : proposi-

tions analogous to Euclid's on
plane triangles ii. 262-5 : sum of

angles greater than two right

angles ii. 264.

Triangular numbers 15, 69 : forma-
tion 76-7 : 8 times triangular

number + 1 = a square 84, ii.

516.

Trigonometry ii. 5, ii. 198, ii. 257-9,

ii. 265-73, ii. 276-86, ii. 290-1.

Trisection of any angle : solutions

235-44 : Pappus on, ii. 385-6.

Tschirnhausen, E. W. v., 200.

Tycho Brahe 317, ii. 2, ii. 196.

Tzifra (= 0) ii. 547.

Ukha-thebt (side of base in pyramid)
126, 127.

Unit : definitions (Pythagoreans,

Euclid, Thymaridas, Chrysippus)

69.

Usener, H. 184, 188.

Valla, G. : translator of extracts

from Euclid 365, and from Archi-

medes ii. 26.

Venatorius, Thomas Gechauff: ed.

princeps of Archimedes ii. 27.

Venturi, G. ii. 308.

Vieta 200, 223, ii. 182, ii.456, ii.480,

ii. 557.

Vigesimal system (of numerals) 26.

Vincent, A. J. H. 50, 436, ii. 308,
ii. 545, ii. 546.

Vitruvius 18, 147, 174, 213, ii. 1,

ii. 245 : Vitruvius and Heron,
ii. 302-3.

Viviani, V. ii. 261.

Vogt, H., 156 «., 203 n.

Wescher, C. ii. 309.

Wilamowitz - MoellendorfF, U. v.,

158 w., 245, ii. 128.

Xenocrates 24, 319 : works on
Numbers 319 : upheld 'indivisible

lines' 181.

Xenophon, on arithmetic in educa-
tion 19.

Xylander (W. Holzmann) ii. 454-5,
ii. 545.

Yahya b. Khalid b. Barmak ii. 274.

Zamberti, B., translator of Euclid
365, 441.

Zeno of Elea 271-3: arguments on
motion273-83.

Zeno of Sidon on Eucl. I. 1, 359, ii.

221-2.

Zenodorus ii. 207-13.

Zero in Babylonian notation 29

:

O in Ptolemy 39, 45.

Zeuthen, H. G. 190, 206-9, 210-11,
398, 437, ii. 52, ii. 105, ii. 203,
ii. 290-1, ii. 405, ii. 444.

Zodiac circle : obliquity discovered
by Oenopides 138, 174, ii. 244.
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