NONRESIDENT TRAINING COURSE SEPTEMBER 1998 Navy Electricity and Electronics Training Series Module 3 — Introduction to Circuit Protection, Control, and Measurement NAVEDTRA 14175 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. PREFACE By enrolling in this self-study course, you have demonstrated a desire to improve yourself and the Navy. Remember, however, this self-study course is only one part of the total Navy training program. Practical experience, schools, selected reading, and your desire to succeed are also necessary to successfully round out a fully meaningful training program. COURSE OVERVIEW: To introduce the student to the subject of Circuit Protection, Control, and Measurement who needs such a background in accomplishing daily work and/or in preparing for further study. THE COURSE: This self-study course is organized into subject matter areas, each containing learning objectives to help you determine what you should learn along with text and illustrations to help you understand the information. The subject matter reflects day-to-day requirements and experiences of personnel in the rating or skill area. It also reflects guidance provided by Enlisted Community Managers (ECMs) and other senior personnel, technical references, instructions, etc., and either the occupational or naval standards, which are listed in the Manual of Navy Enlisted Manpower Personnel Classifications and Occupational Standards , NAVPERS 18068. THE QUESTIONS: The questions that appear in this course are designed to help you understand the material in the text. VALUE: In completing this course, you will improve your military and professional knowledge. Importantly, it can also help you study for the Navy-wide advancement in rate examination. If you are studying and discover a reference in the text to another publication for further information, look it up. 1998 Edition Prepared by FCC(SW) James L. Hicks Published by NAVAL EDUCATION AND TRAINING PROFESSIONAL DEVELOPMENT AND TECHNOLOGY CENTER NAVSUP Logistics Tracking Number 0504-LP-026-8280 Sailor’s Creed “I am a United States Sailor. I will support and defend the Constitution of the United States of America and I will obey the orders of those appointed over me. I represent the fighting spirit of the Navy and those who have gone before me to defend freedom and democracy around the world. I proudly serve my country’s Navy combat team with honor, courage and commitment. I am committed to excellence and the fair treatment of all.” TABLE OF CONTENTS CHAPTER PAGE 1 . Circuit Measurement 1-1 2. Circuit Protection Devices 2-1 3. Circuit Control Devices 3-1 APPENDIX I. Glossary AI-1 II. Laws of Exponents All- 1 III. Schematic Symbols AIII-1 IV. Cross Reference of Military and Commercial Fuse Designations AIV-1 INDEX INDEX- 1 NAVY ELECTRICITY AND ELECTRONICS TRAINING SERIES The Navy Electricity and Electronics Training Series (NEETS) was developed for use by personnel in many electrical- and electronic-related Navy ratings. Written by, and with the advice of, senior technicians in these ratings, this series provides beginners with fundamental electrical and electronic concepts through self-study. The presentation of this series is not oriented to any specific rating structure, but is divided into modules containing related information organized into traditional paths of instruction. The series is designed to give small amounts of information that can be easily digested before advancing further into the more complex material. For a student just becoming acquainted with electricity or electronics, it is highly recommended that the modules be studied in their suggested sequence. While there is a listing of NEETS by module title, the following brief descriptions give a quick overview of how the individual modules flow together. Module 1, Introduction to Matter , Energy, and Direct Current , introduces the course with a short history of electricity and electronics and proceeds into the characteristics of matter, energy, and direct current (dc). It also describes some of the general safety precautions and first-aid procedures that should be common knowledge for a person working in the field of electricity. Related safety hints are located throughout the rest of the series, as well. Module 2, Introduction to Alternating Current and Transformers, is an introduction to alternating current (ac) and transformers, including basic ac theory and fundamentals of electromagnetism, inductance, capacitance, impedance, and transformers. Module 3, Introduction to Circuit Protection, Control, and Measurement, encompasses circuit breakers, fuses, and current limiters used in circuit protection, as well as the theory and use of meters as electrical measuring devices. Module 4, Introduction to Electrical Conductors, Wiring Techniques, and Schematic Reading, presents conductor usage, insulation used as wire covering, splicing, termination of wiring, soldering, and reading electrical wiring diagrams. Module 5, Introduction to Generators and Motors, is an introduction to generators and motors, and covers the uses of ac and dc generators and motors in the conversion of electrical and mechanical energies. Module 6, Introduction to Electronic Emission, Tubes, and Power Supplies, ties the first five modules together in an introduction to vacuum tubes and vacuum-tube power supplies. Module 7, Introduction to Solid-State Devices and Power Supplies, is similar to module 6, but it is in reference to solid-state devices. Module 8, Introduction to Amplifiers, covers amplifiers. Module 9 , Introduction to Wave-Generation and Wave-Shaping Circuits, discusses wave generation and wave-shaping circuits. Module 10, Introduction to Wave Propagation, Transmission Lines, and Antennas, presents the characteristics of wave propagation, transmission lines, and antennas. IV Module 11, Microwave Principles, explains microwave oscillators, amplifiers, and waveguides. Module 12, Modulation Principles, discusses the principles of modulation. Module 13, Introduction to Number Systems and Logic Circuits, presents the fundamental concepts of number systems, Boolean algebra, and logic circuits, all of which pertain to digital computers. Module 14, Introduction to Microelectronics, covers microelectronics technology and miniature and microminiature circuit repair. Module 15, Principles of Synchros, Servos, and Gyros, provides the basic principles, operations, functions, and applications of synchro, servo, and gyro mechanisms. Module 16, Introduction to Test Equipment, is an introduction to some of the more commonly used test equipments and their applications. Module 17, Radio-Frequency Communications Principles, presents the fundamentals of a radio- frequency communications system. Module 18, Radar Principles, covers the fundamentals of a radar system. Module 19, The Technician's Handbook, is a handy reference of commonly used general information, such as electrical and electronic formulas, color coding, and naval supply system data. Module 20, Master Glossary, is the glossary of terms for the series. Module 21, Test Methods and Practices, describes basic test methods and practices. Module 22, Introduction to Digital Computers, is an introduction to digital computers. Module 23, Magnetic Recording, is an introduction to the use and maintenance of magnetic recorders and the concepts of recording on magnetic tape and disks. Module 24, Introduction to Fiber Optics, is an introduction to fiber optics. Embedded questions are inserted throughout each module, except for modules 19 and 20, which are reference books. If you have any difficulty in answering any of the questions, restudy the applicable section. Although an attempt has been made to use simple language, various technical words and phrases have necessarily been included. Specific terms are defined in Module 20, Master Glossary. Considerable emphasis has been placed on illustrations to provide a maximum amount of information. In some instances, a knowledge of basic algebra may be required. Assignments are provided for each module, with the exceptions of Module 19, The Technician's Handbook ; and Module 20, Master Glossary. Course descriptions and ordering information are in NAVEDTRA 12061, Catalog of Nonresident Training Courses. v Throughout the text of this course and while using technical manuals associated with the equipment you will be working on, you will find the below notations at the end of some paragraphs. The notations are used to emphasize that safety hazards exist and care must be taken or observed. WARNING AN OPERATING PROCEDURE, PRACTICE, OR CONDITION, ETC., WHICH MAY RESULT IN INJURY OR DEATH IF NOT CAREFULLY OBSERVED OR FOLLOWED. CAUTION AN OPERATING PROCEDURE, PRACTICE, OR CONDITION, ETC., WHICH MAY RESULT IN DAMAGE TO EQUIPMENT IF NOT CAREFULLY OBSERVED OR FOLLOWED. NOTE An operating procedure, practice, or condition, etc., which is essential to emphasize. vi INSTRUCTIONS FOR TAKING THE COURSE ASSIGNMENTS The text pages that you are to study are listed at the beginning of each assignment. Study these pages carefully before attempting to answer the questions. Pay close attention to tables and illustrations and read the learning objectives. The learning objectives state what you should be able to do after studying the material. Answering the questions correctly helps you accomplish the objectives. SELECTING YOUR ANSWERS Read each question carefully, then select the BEST answer. You may refer freely to the text. The answers must be the result of your own work and decisions. You are prohibited from referring to or copying the answers of others and from giving answers to anyone else taking the course. SUBMITTING YOUR ASSIGNMENTS To have your assignments graded, you must be enrolled in the course with the Nonresident Training Course Administration Branch at the Naval Education and Training Professional Development and Technology Center (NETPDTC). Following enrollment, there are two ways of having your assignments graded: (1) use the Internet to submit your assignments as you complete them, or (2) send all the assignments at one time by mail to NETPDTC. Grading on the Internet: Advantages to Internet grading are: • you may submit your answers as soon as you complete an assignment, and • you get your results faster; usually by the next working day (approximately 24 hours). In addition to receiving grade results for each assignment, you will receive course completion confirmation once you have completed all the assignments. To submit your assignment answers via the Internet, go to: http://courses.cnet.navy.mil Grading by Mail: When you submit answer sheets by mail, send all of your assignments at one time. Do NOT submit individual answer sheets for grading. Mail all of your assignments in an envelope, which you either provide yourself or obtain from your nearest Educational Services Officer (ESO). Submit answer sheets to: COMMANDING OFFICER NETPDTC N331 6490 SAUFLEY FIELD ROAD PENSACOLA FL 32559-5000 Answer Sheets: All courses include one “scannable” answer sheet for each assignment. These answer sheets are preprinted with your SSN, name, assignment number, and course number. Explanations for completing the answer sheets are on the answer sheet. Do not use answer sheet reproductions: Use only the original answer sheets that we provide — reproductions will not work with our scanning equipment and cannot be processed. Follow the instructions for marking your answers on the answer sheet. Be sure that blocks 1, 2, and 3 are filled in correctly. This information is necessary for your course to be properly processed and for you to receive credit for your work. COMPLETION TIME Courses must be completed within 12 months from the date of enrollment. This includes time required to resubmit failed assignments. Vll PASS/FAIL ASSIGNMENT PROCEDURES If your overall course score is 3.2 or higher, you will pass the course and will not be required to resubmit assignments. Once your assignments have been graded you will receive course completion confirmation. If you receive less than a 3.2 on any assignment and your overall course score is below 3.2, you will be given the opportunity to resubmit failed assignments. You may resubmit failed assignments only once. Internet students will receive notification when they have failed an assignment— they may then resubmit failed assignments on the web site. Internet students may view and print results for failed assignments from the web site. Students who submit by mail will receive a failing result letter and a new answer sheet for resubmission of each failed assignment. COMPLETION CONFIRMATION After successfully completing this course, you will receive a letter of completion. ERRATA Errata are used to correct minor errors or delete obsolete information in a course. Errata may also be used to provide instructions to the student. If a course has an errata, it will be included as the first page(s) after the front cover. Errata for all courses can be accessed and viewed/downloaded at: http://www.advancement.cnet.navy.mil STUDENT FEEDBACK QUESTIONS For subject matter questions: E-mail: n3 1 5 .products @ cnet.navy.mil Phone: Comm: (850) 452-1001, ext. 1728 DSN: 922-1001, ext. 1728 FAX: (850)452-1370 (Do not fax answer sheets.) Address: COMMANDING OFFICER NETPDTC N315 6490 SAUFLEY FIELD ROAD PENSACOLA FL 32509-5237 For enrollment, shipping, grading, or completion letter questions E-mail: fleetservices@cnet.navy.mil Phone: Toll Free: 877-264-8583 Comm: (850)452-1511/1181/1859 DSN: 922-1511/1181/1859 FAX: (850)452-1370 (Do not fax answer sheets.) Address: COMMANDING OFFICER NETPDTC N331 6490 SAUFLEY FIELD ROAD PENSACOLA FL 32559-5000 NAVAL RESERVE RETIREMENT CREDIT If you are a member of the Naval Reserve, you will receive retirement points if you are authorized to receive them under current directives governing retirement of Naval Reserve personnel. For Naval Reserve retirement, this course is evaluated at 5 points. (Refer to Administrative Procedures for Naval Reservists on Inactive Duty , BUPERSINST 1001.39, for more information about retirement points.) We value your suggestions, questions, and criticisms on our courses. If you would like to communicate with us regarding this course, we encourage you, if possible, to use e-mail. If you write or fax, please use a copy of the Student Comment form that follows this page. vm Student Comments MEETS Module 3 Course Title: Introduction to Circuit Protection, Control, and Measurement NAVEDTRA: 14175 Date: We need some information about you : Rate/Rank and Name: SSN: Command/Unit Street Address: City: State/FPO: Zip Your comments, suggestions, etc .: Privacy Act Statement: Under authority of Title 5, USC 301, information regarding your military status is requested in processing your comments and in preparing a reply. This information will not be divulged without written authorization to anyone other than those within POD for official use in determining performance. NETPDTC 1550/41 (Rev 4-00) IX CHAPTER 1 CIRCUIT MEASUREMENT LEARNING OBJECTIVES Learning objectives are stated at the beginning of each chapter. These learning objectives serve as a preview of the information you are expected to learn in the chapter. The comprehensive check questions are based on the objectives. By successfully completing the NRTC, you indicate that you have met the objectives and have learned the information. The learning objectives are listed below. Upon completion of this chapter you will be able to: 1. State two ways circuit measurement is used, why in-circuit meters are used, and one advantage of out-of-circuit meters. 2. State the way in which a compass reacts to a conducting wire including the compass reaction to increasing and decreasing dc and ac high and low frequencies. 3. State how a d’Arsonval meter movement reacts to dc. 4. State the purpose of a rectifier as used in ac meters. 5. State the meaning of the term "damping" as it applies to meter movements and describe two methods by which damping is accomplished. 6. Identify average value as the value of ac measured and effective value (rms) as the ac value indicated on ac meter scales. 7. Identify three meter movements that measure dc or ac without the use of a rectifier. 8. State the electrical quantity measured by an ammeter, the way in which an ammeter is connected in a circuit, and the effect of an ammeter upon a circuit. 9. Define ammeter sensitivity. 10. State the method used to allow an ammeter to measure different ranges and the reason for using the highest range when connecting an ammeter to a circuit. 1 1 . List the safety precautions for ammeter use. 12. State the electrical quantity measured by a voltmeter, the way in which a voltmeter is connected in a circuit, the way in which a voltmeter affects the circuit being measured, and the way in which a voltmeter is made from a current reacting meter movement. 13. Define voltmeter sensitivity. 14. State the method used to allow a voltmeter to measure different ranges and the reason for using the highest range when connecting a voltmeter to a circuit. 1-1 15. Identify the type of meter movement that reacts to voltage and the most common use of this movement. 16. List the safety precautions for voltmeter use. 17. State the electrical quantity measured by an ohmmeter, the second use of an ohmmeter, and the way in which an ohmmeter is connected to a resistance being measured. 18. State the method used to allow an ohmmeter to measure different ranges and the area of an ohmmeter scale that should be used when measuring resistance. 19. State the two types of ohmmeters and the way in which each can be identified. 20. List the safety precautions for ohmmeter use. 21. State the primary reason for using a megger and the method of using it. 22. Identify normal and abnormal indications on a megger. 23. List the safety precautions for megger use. 24. State how a multimeter differs from other meters, the reason a multimeter is preferred over separate meters, and the way in which a multimeter is changed from a voltage measuring device to a current measuring device. 25. State the reason the ac and dc scales of a multimeter differ, the reason for having a mirror on the scale of a multimeter, and the proper way of reading a multimeter using the mirror. 26. List the safety precautions for multimeter use. 27. State the purpose of a hook-on type voltameter. 28. State the electrical quantity measured by a wattmeter and a watt-hour meter. 29. Identify the two types of frequency meters. 30. Identify the type of meter and interpret the meter reading from scale presentations of an ammeter; a voltmeter; an ohmmeter; a megger; a multimeter (current, voltage, and resistance examples); a wattmeter; a watt-hour meter; and a frequency meter (vibrating reed and moving-disk types). CIRCUIT MEASUREMENT This chapter will acquaint you with the basics of circuit measurement and some of the devices used to measure voltage, current, resistance, power, and frequency. There are other quantities involved in electrical circuits, such as capacitance, inductance, impedance, true power, and effective power. It is possible to measure any circuit quantity once you are able to select and use the proper circuit measuring device. You will NOT know all there is to know about circuit measuring devices (test equipment) when you finish this chapter. That is beyond the scope of this chapter and even beyond the scope of this training series. However, more information on test equipment is provided in another portion of this training series. A question which you might ask before starting this chapter is "Why do I need to know about circuit measurement?" 1-2 If you intend to accomplish anything in the field of electricity and electronics, you must be aware of the forces acting inside the circuits with which you work. Modules 1 and 2 of this training series introduced you to the physics involved in the study of electricity and to the fundamental concepts of direct and alternating current. The terms voltage (volts), current (amperes), and resistance (ohms) were explained, as well as the various circuit elements; e.g., resistors, capacitors, inductors, transformers, and batteries. In explaining these terms and elements to you, schematic symbols and schematic diagrams were used. In many of these schematic diagrams, a meter was represented in the circuit, as shown in figure 1-1. As you recall, the current in a dc circuit with 6 volts across a 6-ohm resistor is 1 ampere. The @ (UPPERCASE A) in figure 1-1 is the symbol for an ammeter. An ammeter is a device that measures current. The name "ammeter" comes from the fact that it is a meter used to measure current (in amperes), and thus is called an AMpere METER, or AMMETER. The ammeter in figure 1-1 is measuring a current of 1 ampere with the voltage and resistance values given. Figure 1-1. — A simple representative circuit. In the discussion and explanation of electrical and electronic circuits, the quantities in the circuit (voltage, current, and resistance) are important. If you can measure the electrical quantities in a circuit, it is easier to understand what is happening in that circuit. This is especially true when you are troubleshooting defective circuits. By measuring the voltage, current, capacitance, inductance, impedance, and resistance in a circuit, you can determine why the circuit is not doing what it is supposed to do. For instance, you can determine why a radio is not receiving or transmitting, why your automobile will not start, or why an electric oven is not working. Measurement will also assist you in determining why an electrical component (resistor, capacitor, inductor) is not doing its job. The measurement of the electrical parameters quantities in a circuit is an essential part of working on electrical and electronic equipment. INTRODUCTION TO CIRCUIT MEASUREMENT Circuit measurement is used to monitor the operation of an electrical or electronic device, or to determine the reason a device is not operating properly. Since electricity is invisible, you must use some sort of device to determine what is happening in an electrical circuit. Various devices called test equipment are used to measure electrical quantities. The most common types of test equipment use some kind of metering device. 1-3 IN-CIRCUIT METERS Some electrical and electronic devices have meters built into them. These meters are known as in- circuit meters . An in-circuit meter is used to monitor the operation of the device in which it is installed. Some examples of in-circuit meters are the generator or alternator meter on some automobiles; the voltage, current, and frequency meters on control panels at electrical power plants; and the electrical power meter that records the amount of electricity used in a building. It is not practical to install an in-circuit meter in every circuit. However, it is possible to install an in- circuit meter in each critical or representative circuit to monitor the operation of a piece of electrical equipment. A mere glance at or scan of the in-circuit meters on a control board is often sufficient to tell if the equipment is working properly. While an in-circuit meter will indicate that an electrical device is not functioning properly, the cause of the malfunction is determined by troubleshooting. Troubleshooting is the process of locating and repairing faults in equipment after they have occurred . Since troubleshooting is covered elsewhere in this training series, it will be mentioned here only as it applies to circuit measurement. OUT-OF-CIRCUIT METERS In troubleshooting, it is usually necessary to use a meter that can be connected to the electrical or electronic equipment at various testing points and may be moved from one piece of equipment to another. These meters are generally portable and self-contained, and are known as out-of-circuit meters . Out-of-circuit meters are more versatile than in-circuit meters in that the out-of-circuit meter can be used wherever you wish to connect it. Therefore, the out-of-circuit meter is more valuable in locating the cause of a malfunction in a device. Ql. What are two ways that circuit measurement is used? Q2. Why are in-circuit meters used? Q3. What is one advantage of an out-of-circuit meter when it is compared with an in-circuit meter? BASIC METER MOVEMENTS The meter movement is, as the name implies, the part of a meter that moves. A meter movement converts electrical energy into mechanical energy. There are many different types of meter movements. The first one you will learn about is based upon a principle with which you are already familiar. That principle is the interaction of magnetic fields. COMPASS AND CONDUCTING WIRE You know that an electrical conductor in which current flows has a magnetic field generated around it. If a compass is placed close to the conductor, the compass will react to that magnetic field (fig. 1-2). 1-4 Figure 1-2. — Compass and conductor with direct current. If the battery is disconnected, the north end of the compass needle will point to magnetic north, as illustrated in figure 1-2(A) by the broken-line compass needle pointing to the right. When the battery is connected, current flows through the circuit and the compass needle aligns itself with the magnetic field of the conductor, as indicated by the solid compass needle. The strength of the magnetic field created around the conductor is dependent upon the amount of current. In figure 1-2(A), the resistance in the circuit is 6 ohms. With the 6-volt battery shown, current in the circuit is 1 ampere. In figure 1-2(B), the resistance has been changed to 12 ohms. With the 6-volt battery shown, current in the circuit is 1/2 or .5 ampere. The magnetic field around the conductor in figure 1-2(B) is weaker than the magnetic field around the conductor in figure 1-2(A). The compass needle in figure 1- 2(B) does not move as far from magnetic north. If the direction of the current is reversed, the compass needle will move in the opposite direction because the polarity of the magnetic field has reversed. In figure 1-2(C), the battery connections are reversed and the compass needle now moves in the opposite direction. You can construct a crude meter to measure current by using a compass and a piece of paper. By using resistors of known values, and marking the paper to indicate a numerical value, as in figure 1-3, you have a device that measures current. 1-5 ± I Figure 1-3. — A simple meter from a compass. This is, in fact, the way the first GALVANOMETERS were developed. A galvanometer is an instrument that measures small amounts of current and is based on the electromagnetic principle. A galvanometer can also use the principles of electrodynamics, which will be covered later in this topic. The meter in figure 1-3 is not very practical for electrical measurement. The amount the compass needle swings depends upon the closeness of the compass to the conductor carrying the current, the direction of the conductor in relation to magnetic north, and the influence of other magnetic fields. In addition, very small amounts of current will not overcome the magnetic field of the Earth and the needle will not move. Q4. How does a compass react when placed close to a current carrying conductor? Q5. If the amount of current in the conductor changes, what happens to the magnetic field around the conductor? Q6. How does the compass needle react to a decreased magnetic field? PERMANENT-MAGNET MOVING-COIL MOVEMENT The compass and conducting wire meter can be considered a fixed-conductor moving-magnet device since the compass is, in reality, a magnet that is allowed to move. The basic principle of this device is the interaction of magnetic fields-the field of the compass (a permanent magnet) and the field around the conductor (a simple electromagnet). A permanent-magnet moving-coil movement is based upon a fixed permanent magnet and a coil of wire which is able to move, as in figure 1-4. When the switch is closed, causing current through the coil, the coil will have a magnetic field which will react to the magnetic field of the permanent magnet. The bottom portion of the coil in figure 1-4 will be the north pole of this electromagnet. Since opposite poles attract, the coil will move to the position shown in figure 1-5. 1-6 Figure 1-4. — A movable coil in a magnetic field (no current). Figure 1-5. — A movable coil in a magnetic field (current). The coil of wire is wound on an aluminum frame, or bobbin, and the bobbin is supported by jeweled bearings which allow it to move freely. This is shown in figure 1-6. Figure 1-6. — A basic coil arrangement. 1-7 To use this permanent-magnet moving-coil device as a meter, two problems must be solved. First, a way must be found to return the coil to its original position when there is no current through the coil. Second, a method is needed to indicate the amount of coil movement. The first problem is solved by the use of hairsprings attached to each end of the coil as shown in figure 1-7. These hairsprings can also be used to make the electrical connections to the coil. With the use of hairsprings, the coil will return to its initial position when there is no current. The springs will also tend to resist the movement of the coil when there is current through the coil. When the attraction between the magnetic fields (from the permanent magnet and the coil) is exactly equal to the force of the hairsprings, the coil will stop moving toward the magnet. HAIRSPRING HAIRSPRING Figure 1-7. — Coil and hairsprings. As the current through the coil increases, the magnetic field generated around the coil increases. The stronger the magnetic field around the coil, the farther the coil will move. This is a good basis for a meter. But, how will you know how far the coil moves? If a pointer is attached to the coil and extended out to a scale, the pointer will move as the coil moves, and the scale can be marked to indicate the amount of current through the coil. This is shown in figure 1-8. POINTER HAIRSPRING SCALE COIL HAIRSPRING Figure 1-8. — A complete coil. Two other features are used to increase the accuracy and efficiency of this meter movement. First, an iron core is placed inside the coil to concentrate the magnetic fields . Second, curved pole pieces are 1-8 attached to the magnet to ensure that the turning force on the coil increases steadily as the current increases. The meter movement as it appears when fully assembled is shown in figure 1-9. HORSESHOE HAIRSPRING ASSEMBLED ARRANGEMENT Figure 1-9. — Assembled meter movement. This permanent-magnet moving-coil meter movement is the basic movement in most measuring instruments. It is commonly called the d’Arsonval movement because it was first employed by the Frenchman d’Arsonval in making electrical measurements. Figure 1-10 is a view of the d’Arsonval meter movement used in a meter. SCALE Figure 1-10. — A meter using d'Arsonval movement. <27. What type of meter movement is the d'Arsonval meter movement? 1-9 Q8. What is the effect of current flow through the coil in a d’Arsonval meter movement? Q9. What are three functions of the hairsprings in a d’Arsonval meter movement? COMPASS AND ALTERNATING CURRENT Up to this point, only direct current examples have been used. What happens with the use of alternating current? Figure 1-11 shows a magnet close to a conductor carrying alternating current at a frequency of 1 hertz. Figure 1-11. — Compass and conductor with ac. The compass needle will swing toward the east part of the compass (down) as the current goes positive, as represented in figure 1-1 1(A). (The sine wave of the current is shown in the lower portion of the figure to help you visualize the current in the conductor.) In figure 1-1 1(B), the current returns to zero, and the compass needle returns to magnetic north (right). As the current goes negative, as in figure 1-1 1(C), the compass needle swings toward the west portion of the compass (up). The compass needle returns to magnetic north as the current returns to zero as shown in figure 1-1 1(D). This cycle of the current going positive and negative and the compass swinging back and forth will continue as long as there is alternating current in the conductor. If the frequency of the alternating current is increased, the compass needle will swing back and forth at a higher rate (faster). At a high enough frequency, the compass needle will not swing back and forth, but simply vibrate around the magnetic north position. This happens because the needle cannot react fast enough to the very rapid current alternations. The compass (a simple meter) will indicate the average value of the alternating current (remember the average value of a sine wave is zero) by vibrating around the zero point on the meter (magnetic north). This is not of much use if you wish to know the value of the alternating current. Some device, such as a rectifier, is needed to allow the compass to react to the alternating current in a way that can be useful in measuring the current. 1-10 RECTIFIER FOR AC MEASUREMENT A rectifier is a device that changes alternating current to a form of direct current. The way in which this is done will be covered later in this training series. For now, it is necessary to know only the information presented in figure 1-12. ■ _ Figure 1-12. — Rectifier action. Figure 1-12 shows that an alternating current passed through a rectifier will come out as a "pulsating direct current." What happens to the compass now? Figure 1-13 answers that question. Figure 1-13. — Compass and conductor; rectified ac. When the compass is placed close to the wire and the frequency of the alternating current is high enough, the compass will vibrate around a point that represents the average value of the pulsating direct current, as shown in figure 1-13. Q10. How would a compass react when placed close to a conductor carrying alternating current at a low frequency? Qll. How would the compass react if the alternating current through the conductor was a high frequency ? Q12. What is the purpose of a rectifier in a meter? 1-11 By connecting a rectifier to a d’Arsonval meter movement, an alternating current measuring device is created. When ac is converted to pulsating dc, the d’Arsonval movement will react to the average value of the pulsating dc (which is the average value of one-half of the sine wave). Another characteristic of using a rectifier concerns the fact that the d ’Arsonval meter movement is capable of indicating current in only one direction. If the d Arsonval meter movement were used to indicate alternating current without a rectifier, or direct current of the wrong polarity, the movement would be severely damaged. The pulsating dc is current in a single direction, and so the d Arsonval meter movement can be used as long as proper polarity is observed. DAMPING A problem that is created by the use of a rectifier and d Arsonval meter movement is that the pointer will vibrate (oscillate) around the average value indication. This oscillation will make the meter difficult to read. The process of "smoothing out" the oscillation of the pointer is known as DAMPING. There are two basic techniques used to damp the pointer of a d Arsonval meter movement. The first method of damping comes from the d Arsonval meter movement itself. In the d’Arsonval meter movement, current through the coil causes the coil to move in the magnetic field of the permanent magnet. This movement of the coil (conductor) through a magnetic field causes a current to be induced in the coil opposite to the current that caused the movement of the coil. This induced current will act to damp oscillations. In addition to this method of damping, which comes from the movement itself, most meters use a second method of damping. The second method of damping used in most meter movements is an airtight chamber containing a vane (like a windmill vane) attached to the coil (fig. 1-14). POINTER ALUMINUM DAMPING VANE ENCLOSED IN DAMPING HAMBER) E SPRING FOR CONTROL ACTION COVER AIRTIGHT DAMPING CHAMBER Figure 1-14. — A typical meter damping system. 1-12 As the coil moves, the vane moves within the airtight chamber. The action of the vane against the air in the chamber opposes the coil movement and damps the oscillations. Q13. How can a dArsonval meter movement be adapted for use as an ac meter? Q14. What is damping? Q15. What are two methods used to damp a meter movement? Q16. What value does a meter movement react to (actually measure) when measuring ac? Q17. What value is indicated on the scale of an ac meter? An additional advantage of damping a meter movement is that the damping systems will act to slow down the coil and help keep the pointer from overshooting its rest position when the current through the meter is removed. INDICATING ALTERNATING CURRENT Another problem encountered in measuring ac is that the meter movement reacts to the average value of the ac . The value used when working with ac is the effective value (rms value). Therefore, a different scale is used on an ac meter. The scale is marked with the effective value, even though it is the average value to which the meter is reacting. That is why an ac meter will give an incorrect reading if used to measure dc. OTHER METER MOVEMENTS The dArsonval meter movement (permanent-magnet moving-coil) is only one type of meter movement. Other types of meter movements can be used for either ac or dc measurement without the use of a rectifier. When galvanometers were mentioned earlier in this topic, it was stated that they could be either electromagnetic or electrodynamic. Electrodynamic meter movements will be discussed at this point. ELECTRODYNAMIC METER MOVEMENT An electrodynamic movement uses the same basic operating principle as the basic moving-coil meter movement, except that the permanent magnet is replaced by fixed coils (fig. 1-15). A moving coil, to which the meter pointer is attached, is suspended between two field coils and connected in series with these coils. The three coils (two field coils and the moving coil) are connected in series across the meter terminals so that the same current flows through each. 1-13 r\nr\n N FIXED COIL t MOVING COIL FIXED COIL I METER TERMINALS Figure 1-15. — Electrodynamic meter movement. Current flow in either direction through the three coils causes a magnetic field to exist between the field coils. The current in the moving coil causes it to act as a magnet and exert a turning force against a spring. If the current is reversed, the field polarity and the polarity of the moving coil reverse at the same time, and the turning force continues in the original direction. Since reversing the current direction does not reverse the turning force, this type of meter can be used to measure both ac and dc if the scale is changed. While some voltmeters and ammeters use the electrodynamic principle of operation, the most important application is in the wattmeter. The wattmeter, along with the voltmeter and the ammeter, will be discussed later in this topic. MOVING-VANE METER MOVEMENTS The moving-vane meter movement (sometimes called the moving-iron movement) is the most commonly used movement for ac meters. The moving-vane meter operates on the principle of magnetic repulsion between like poles (fig. 1-16). The current to be measured flows through a coil, producing a magnetic field which is proportional to the strength of the current. Suspended in this field are two iron vanes. One is in a fixed position, the other, attached to the meter pointer, is movable. The magnetic field magnetizes these iron vanes with the same polarity regardless of the direction of current flow in the coil. Since like poles repel, the movable vane pulls away from the fixed vane, moving the meter pointer. This motion exerts a turning force against the spring. The distance the vane will move against the force of the spring depends on the strength of the magnetic field, which in turn depends on the coil current. 1-14 POINTER SPRING MOVING VANE FIXED VANE- COIL MAGNETIC REPULSION CAUSES MOVING VANE TO TURN METER TERMINALS — Figure 1-16. — Moving-vane meter movement. These meters are generally used at 60-hertz ac, but may be used at other ac frequencies. By changing the meter scale to indicate dc values rather than ac rms values, moving-vane meters will measure dc current and dc voltage. This is not recommended due to the residual magnetism left in the vanes, which will result in an error in the instrument. One of the major disadvantages of this type of meter movement occurs due to the high reluctance of the magnetic circuit. This causes the meter to require much more power than the D ’Arson val meter to produce a full scale deflection, thereby reducing the meters sensitivity. HOT-WIRE AND THERMOCOUPLE METER MOVEMENTS Hot-wire and thermocouple meter movements both use the heating effect of current flowing through a resistance to cause meter deflection. Each uses this effect in a different manner. Since their operation depends only on the heating effect of current flow, they may be used to measure both direct current and alternating current of any frequency on a single scale. The hot-wire meter movement deflection depends on the expansion of a high-resistance wire caused by the heating effect of the wire itself as current flows through it. (See fig. 1-17.) A resistance wire is stretched taut between the two meter terminals, with a thread attached at a right angle to the center of the wire. A spring connected to the opposite end of the thread exerts a constant tension on the resistance wire. Current flow heats the wire, causing it to expand. This motion is transferred to the meter pointer through the thread and a pivot. 1-15 RESISTANCE WIRE o METER TERMINALS CURRENT PATH PIVOT THREAD SPRING Figure 1-17. — Hot-wire meter movement. The thermocouple meter consists of a resistance wire across the meter terminals, which heats in proportion to the amount of current. (See fig. 1-18.) Attached to this wire is a small thermocouple junction of two unlike metal wires, which connect across a very sensitive dc meter movement (usually a d’Arsonval meter movement). As the current being measured heats the heating resistor, a small current (through the thermocouple wires and the meter movement) is generated by the thermocouple junction. The current being measured flows through only the resistance wire, not through the meter movement itself. The pointer turns in proportion to the amount of heat generated by the resistance wire. POINTER WIRE Figure 1-18. — A thermocouple meter. Q18. List three meter movements that can measure either ac or dc without the use of a rectifier. Q19. What electrical property is used by all the meter movements discussed so far? AMMETERS An ammeter is a device that measures current. Since all meter movements have resistance, a resistor will be used to represent a meter in the following explanations. Direct current circuits will be used for simplicity of explanation. 1-16 AMMETER CONNECTED IN SERIES In figure 1-19(A), R { and R 2 are in series. The total circuit resistance is R 2 + R 2 and total circuit current flows through both resistors. In figure 1-19(B), R\ and R 2 are in parallel. The total circuit resistance is 1 R 1 R 2 and total circuit current does not flow through either resistor. VW «1 METER R2 LOAD Figure 1-19. — A series and a parallel circuit. If R\ represents an ammeter, the only way in which total circuit current will flow through the meter (and thus be measured) is to have the meter (Ri) in series with the circuit load (R 2 ), as shown in figure 1-19(A). In complex electrical circuits, you are not always concerned with total circuit current. You may be interested in the current through a particular component or group of components. In any case, an ammeter is always connected in series with the circuit you wish to test. Figure 1-20 shows various circuit arrangements with the ammeter(s) properly connected for measuring current in various portions of the circuit. 1-17 (A) SERIES CIRCUIT (B) PARALLEL CIRCUIT (C) PARALLEL CIRCUIT (D) PARALLEL CIRCUIT I T = IR, + IR 2 (E) SERIES PARALLEL CIRCUIT Figure 1-20. — Proper ammeter connections. Connecting an ammeter in parallel would give you not only an incorrect measurement, it would also damage the ammeter, because too much current would pass through the meter. EFFECT ON CIRCUIT BEING MEASURED The meter affects the circuit resistance and the circuit current. If R\ is removed from the circuit in figure 1- 19(A), the total circuit resistance is R 2 . Circuit current E (I) equals — , k 2 with the meter (Ri) in the circuit, circuit resistance is Rj + R 2 and circuit current The smaller the resistance of the meter (Ri ), the less it will affect the circuit being measured. (Rj represents the total resistance of the meter; not just the resistance of the meter movement.) 1-18 AMMETER SENSITIVITY Ammeter sensitivity is the amount of current necessary to cause full scale deflection (maximum reading) of the ammeter. The smaller the amount of current, the more "sensitive" the ammeter. For example, an ammeter with a maximum current reading of 1 milliampere would have a sensitivity of 1 milliampere, and be more sensitive than an ammeter with a maximum reading of 1 ampere and a sensitivity of 1 ampere. Sensitivity can be given for a meter movement, but the term "ammeter sensitivity" usually refers to the entire ammeter and not just the meter movement. An ammeter consists of more than just the meter movement. AMMETER RANGES If you have a meter movement with a sensitivity of 1 milliampere, you can connect it in series with a circuit and measure currents up to 1 milliampere. But what do you do to measure currents over 1 milliampere? To answer this question, look at figure 1-21. In figure 1-2 1(A), 10 volts are applied to two resistors in parallel. R\ is a 10-ohm resistor and R 2 is a 1.1 1-ohm resistor. Since voltage in parallel branches is equal- Figure 1-21. — Current in a parallel circuit. In figure 1-21(B), the voltage is increased to 100 volts. Now, 1-19 I I 100V 10Q 100V 1.1 IQ In figure 1-21(C), the voltage is reduced from 100 volts to 50 volts. In this case, I I 50V 1 0Q 50V 1.1 IQ = 45A Notice that the relationship (ratio) of I R i and I R2 remains the same. I R2 is nine times greater than I Ri and I R1 has one-tenth of the total current. If Ri is replaced by a meter movement that has 10 ohms of resistance and a sensitivity of 10 amperes, the reading of the meter will represent one-tenth of the current in the circuit and R 2 will carry nine-tenths of the current. R 2 is a SHUNT resistor because it diverts, or shunts, a portion of the current from the meter movement (Ri). By this method, a 10-ampere meter movement will measure current up to 100 amperes. By adding a second scale to the face of the meter, the current can be read directly. By adding several shunt resistors in the meter case, with a switch to select the desired resistor, the ammeter will be capable of measuring several different maximum current readings or ranges. Most meter movements in use today have sensitivities of from 5 microamperes to 1 milliampere. Figure 1-22 shows the circuit of meter switched to higher ranges, the shunt an ammeter that uses a meter movement with a sensitivity of 100 microamperes and shunt resistors. This ammeter has five ranges (100 microamperes; 1, 10, and 100 milliamperes; 1 ampere) selected by a switch. 1-20 Figure 1-22. — An ammeter with internal shunt resistors. By adding several shunt resistors in the meter case, with a switch to select the desired resistor, the ammeter will be capable of measuring several different maximum current readings or ranges. Most meter movements in use today have sensitivities of from 5 microamperes to 1 milliampere. Figure 1-22 shows the circuit of meter switched to higher ranges, the shunt an ammeter that uses a meter movement with a sensitivity of 100 microamperes and shunt resistors. This ammeter has five ranges (100 microamperes; 1 , 10 , and 100 milliamperes; 1 ampere) selected by a switch. With the switch in the 100 microampere position, all the current being measured will go through the meter movement. None of the current will go through any of the shunt resistors. If the ammeter is switched to the 1 milliampere position, the current being measured will have parallel paths of the meter movement and all the shunt resistors (R^ , R 2 , R 3 , and R 4 ). Now, only a portion of the current will go through the meter movement and the rest of the current will go through the shunt resistors. When the meter is switched to the 10-milliampere position (as shown in fig. 1-22), only resistors Ri, R 2 , and R 3 shunt the meter. Since the resistance of the shunting resistance is less than with R 4 in the circuit (as was the case in the 1 -milliampere position), more current will go through the shunt resistors and less current will go through the meter movement. As the resistance decreases and more current goes through the shunt resistors. As long as the current to be measured does not exceed the range selected, the meter movement will never have more than 100 microamperes of current through it. Shunt resistors are made with close tolerances. That means if a shunt resistor is selected with a resistance of .01 ohms (as in fig. 1 - 22 ), the actual resistance of that shunt resistor will not vary from that value by more than 1 percent. Since a shunt resistor is used to protect a meter movement and to allow accurate measurement, it is important that the resistance of the shunt resistor is known very accurately. Figure 1-22 represents an ammeter with internal shunts. The shunt resistors are inside the meter case and selected by a switch. For limited current ranges (below 50 amperes), internal shunts are most often employed. 1-21 For higher current ranges (above 50 amperes) ammeters that use external shunts are used. The external shunt resistor serves the same purpose as the internal shunt resistor. The external shunt is connected in series with the circuit to be measured and in parallel with the ammeter. This shunts (bypasses) the ammeter so only a portion of the current goes through the meter. Each external shunt will be marked with the maximum current value that the ammeter will measure when that shunt is used. Figure 1-23 shows an ammeter that is designed to use external shunts and a d’Arsonval meter movement. Figure 1 -23(A) shows the internal construction of the meter and the way in which the external shunt is connected to the meter and to the circuit being measured. Figure 1 -23(C) shows some typical external shunts. SCALE CALIBRATED IN AMPERES TO REAR BALANCE SPRING Y DARSONVAL MOVEMENT LOAD EXTERNAL VOLTAGE SOURCE SHUNT FOR LOAD FROM REAR BALANCE SPRING 57- METER LEADS (A) INTERNAL CONSTRUCTION AND CIRCUIT (B) EXTERNAL VIEW OOPPER BLOCKS (C) TYPICAL EXTERNAL AMMETER SHUNTS Figure 1-23. — An ammeter employing the d'Arsonval principle and external shunts. A shunt resistor is nothing more than a resistor in parallel with the meter movement. To measure high currents, very small resistance shunts are used so the majority of the current will go through the shunt. Since the total resistance of a parallel circuit (the meter movement and shunt resistor) is always less than the resistance of the smallest resistor, as an ammeter’s range is increased, its resistance decreases. This is important because the load resistance of high-current circuits is smaller than the load resistance of low-current circuits. To obtain accurate measurements, it is necessary that the ammeter resistance be much less than the load resistance, since the ammeter is connected in series with the load. Q20. What electrical property does an ammeter measure? 1-22 Q21. How is an ammeter connected to the circuit under test? Q22. How does an ammeter affect the circuit being measured? Q23. How is the ammeter’s effect on the circuit being measured kept to a minimum? Q24. What is ammeter sensitivity? Q25. What is used to allow an ammeter to measure different ranges? Range Selection Part of the correct use of an ammeter is the proper use of the range selection switch. If the current to be measured is larger than the scale of the meter selected, the meter movement will have excessive current and will be damaged. Therefore, it is important to always start with the highest range when you use an ammeter. If the current can be measured on several ranges, use the range that results in a reading near the middle of the scale . Figure 1-24 illustrates these points. Figure 1-24. — Reading an ammeter at various ranges. Figure 1 -24(A) shows the initial reading of a circuit. The highest range (250 milliamperes) has been selected and the meter indication is very small. It would be difficult to properly interpret this reading with any degree of accuracy. Figure 1 -24(B) shows the second reading, with the next largest range (50 milliamperes). The meter deflection is a little greater. It is possible to interpret this reading as 5 milliamperes. Since this approximation of the current is less than the next range, the meter is switched as 1-23 shown in figure 1 -24(C). The range of the meter is now 10 milliamperes and it is possible to read the meter indication of 5 milliamperes with the greatest degree of accuracy. Since the current indicated is equal to (or greater than) the next range of the ammeter (5 milliamperes), the meter should NOT be switched to the next range. AMMETER SAFETY PRECAUTIONS When you use an ammeter, certain precautions must be observed to prevent injury to yourself or others and to prevent damage to the ammeter or the equipment on which you are working. The following list contains the MINIMUM precautions to observe when using an ammeter. • Ammeters must always be connected in series with the circuit under test. • Always start with the highest range of an ammeter. • Deenergize and discharge the circuit completely before you connect or disconnect the ammeter. • In dc ammeters, observe the proper circuit polarity to prevent the meter from being damaged. • Never use a dc ammeter to measure ac. • Observe the general safety precautions of electrical and electronic devices. Q26. Why should you use the highest range of an ammeter for the initial measurement? Q27. What range of an ammeter is selected for the final measurement? Q28. List the six safety precautions for the use of ammeters. Q29. Why will an ammeter be damaged if connected in parallel with the circuit to be measured? VOLTMETERS All the meter movements discussed so far react to current, and you have been shown how ammeters are constructed from those meter movements. It is often necessary to measure circuit properties other than current. Voltage measurement, for example, is accomplished with a VOLTMETER. VOLTMETERS CONNECTED IN PARALLEL While ammeters are always connected in series, voltmeters are always connected in parallel . Figure 1-25 (and the following figures) use resistors to represent the voltmeter movement. Since a meter movement can be considered as a resistor, the concepts illustrated are true for voltmeters as well as resistors. For simplicity, dc circuits are shown, but the principles apply to both ac and dc voltmeters. 1-24 — 25V Rl ion* r 2 15t i < I R1 = Z5A> I R2 = 1.67A * Eri=29V E R2 = 25V (METER) | (LOAD) R t - V' e rt 6Q 4.17A = 25V (A) — 25V ^r IrI = 1A Eri = iw (METER) R 2 isrr J R2 “ < E R2 = 15V (LOAD) Figure 1-25. — Current and voltage in series and parallel circuits. Figure 1 -25(A) shows two resistors connected in parallel. Notice that the voltage across both resistors is equal. In figure 1 -25(B) the same resistors are connected in series. In this case, the voltage across the resistors is not equal. If R\ represents a voltmeter, the only way in which it can be connected to measure the voltage of R 2 is in parallel with R 2 , as in figure 1-25 (A). LOADING EFFECT A voltmeter has an effect on the circuit being measured. This is called LOADING the circuit. Figure 1-26 illustrates the loading effect and the way in which the loading effect is kept to a minimum. 1-25 (A) (B) WV • R 1 15G I R1 = 1.0 00 4 A E R1 = 15.006V 725V fW 10QS + I R2 = .9994A E R2 = 9394V ■'4 10KG J R4 - .9994 mA E R4 _ 9394V °H X 939Q££ r " V I= RN = 1 J0004A = 9.994 V l I I i Figure 1-26. — The loading effect. In figure 1-26(A), a series circuit is shown with Rj equaling 15 ohms and R 2 equaling 10 ohms. The voltage across R 2 (E R2 ) equals 10 volts. If a meter (represented by R 3 ) with a resistance of 10 ohms is connected in parallel with R 2 , as in figure 1 -26(B), the combined resistance of R 2 and R 3 (R n ) is equal to 5 ohms. The voltage across R 2 and R 3 is now 6.25 volts, and that is what the meter will indicate. Notice that the voltage across Rj and the circuit current have both increased. The addition of the meter (R 3 ) has loaded the circuit. In figure 1 -26(C), the low-resistance meter (R 3 ) is replaced by a higher resistance meter (R 4 ) with a resistance of 10 kilohms. The combined resistance of R 2 and R 4 (R n ) is equal to 9.99 ohms. The voltage across R 2 and R 4 is now 9.99 volts, the value that will be indicated on the meter. This is much closer to the voltage across R 2 , with no meter (R 3 or R 4 ) in the circuit. Notice that the voltage across R, and the circuit current in figure 1 -26(C) are much closer to the values in 1 -26(A). The current (I R4 ) through the meter (R 4 ) in figure 1 -26(C) is also very small compared to the current (I R2 ) through R 2 . In figure 1 -26(C) the meter (R 4 ) has much less effect on the circuit and does not load the circuit as much. Therefore, a voltmeter should have a high resistance compared to the circuit being measured, to minimize the loading effect. 1-26 Q 30. What electrical quantity is measured by a voltmeter? Q31. How is a voltmeter connected to the circuit to be measured? Q32. What is the loading effect of a voltmeter? Q33. How is the loading effect of a voltmeter kept to a minimum? MAKING A VOLTMETER FROM A CURRENT SENSITIVE METER MOVEMENT The meter movements discussed earlier in this chapter have all reacted to current. Various ways have been shown in which these movements can be used in ammeters. If the current and resistance are known, the voltage can be calculated by the formula E = IR. A meter movement has a known resistance, so as the movement reacts to the current, the voltage can be indicated on the scale of the meter. In figure 1 -27(A), a voltmeter (represented by R 2 ) connected across a 10-ohm resistor with 10 volts applied. The current through the voltmeter (R 2 ) is .1 milliamperes. In figure 1-27(B), the voltage is increased to 100 volts. Now, the current through the voltmeter (R 2 ) is 1 milliampere. The voltage has increased by a factor of 10 and so has the current. This illustrates that the current through the meter is proportional to the voltage being measured. (B) Figure 1-27. — Current and voltage in parallel circuit. SENSITIVITY OF VOLTMETERS Voltmeter sensitivity is expressed in ohms per volt (Q/V). It is the resistance of the voltmeter at the full-scale reading in volts. Since the voltmeter’s resistance does not change with the position of the pointer, the total resistance of the meter is the sensitivity multiplied by the full-scale voltage reading. The higher the sensitivity of a voltmeter, the higher the voltmeter’s resistance. Since high resistance voltmeters 1-27 have less loading effect on circuits, a high-sensitivity meter will provide a more accurate voltage measurement. To determine the sensitivity of a meter movement, you need only to divide 1 by the amount of current needed to cause full-scale deflection of the meter movement. The manufacturer usually marks meter movements with the amount of current needed for full-scale deflection and the resistance of the meter. With these figures, you can calculate the sensitivity ( i full-scale current ) and the full-scale voltage reading full-scale current (full-scale current x resistance). For example, if a meter has a full-scale current of 50pA and a resistance of 960£2, the sensitivity could be calculated as: 1 full-scale current 1 50^A = 20kQ /volt The full-scale voltage reading would be calculated as: Full-scale voltage reading = full-scale current x resistance Full-scale voltage reading = 50jxA x 960£2 Full-scale voltage reading = 48mV RANGES Table 1-1 shows the figures for most meter movements in use today. Table 1-1. — Meter Movement Characteristics CURRENT TO DEFLECT FULL SCALE RESISTANCE SENSITIVITY VOLTAGE FULL SCALE 1mA iooa 1 k ft/VOLT .1 V 50 uA 960 a 20 k O/VOLT .048 V 5 uA 5750 a 200 k a/VOLT .029 V Sensitivity Sensitivity Sensitivity Notice that the meter movements shown in table 1-1 will indicate .029 volts to .1 volt at full scale, and the sensitivity ranges from 1000 ohms per volt to 200,000 ohms per volt. The higher sensitivity 1-28 meters indicate smaller amounts of voltage. Since most voltage measurements involve voltage larger than . 1 volt, a method must be used to extend the voltage reading. Figure 1-28 illustrates the method of increasing the voltage range of a voltmeter. Figure 1-28. — A voltmeter and a range resistor. In figure 1 -28(A), a voltmeter with a range of 10 volts and a resistance of 1 kilohm (R 2 ) is connected in parallel to resistor Rj. The meter has .01 ampere of current (full-scale deflection) and indicates 10 volts. In figure 1 -28(B), the voltage has been increased to 100 volts. This is more than the meter can measure. A 9 kilohm resistor (R 3 ) is connected in series with the meter (R 2 ). The meter (R 2 ) now has .01 ampere of current (full-scale deflection). But since R 3 has increased the voltage capability of the meter, the meter indicates 100 volts. R 3 has changed the range of the meter. Voltmeters can be constructed with several ranges by the use of a switch and internal resistors. Figure 1-29 shows a voltmeter with a meter movement of 100 ohms and 1 milliampere full-scale deflection with 5 ranges of voltage through the use of a switch. In this way a voltmeter can be used to measure several different ranges of voltage. 1-29 Figure 1-29. — A voltmeter with internal range resistors. The current through the meter movement is determined by the voltage being measured. If the voltage measured is higher than the range of the voltmeter, excess current will flow through the meter movement and the meter will be damaged. Therefore, you should always start with the highest range of a voltmeter and switch the ranges until a reading is obtained near the center of the scale. Figure 1-30 illustrates these points. 1-30 (A) (B) Figure 1-30. — Reading a voltmeter at various ranges. In figure 1 -30(A) the meter is in the 1000-volt range. The pointer is barely above the 0 position. It is not possible to accurately read this voltage. In figure 1 -30(B) the meter is switched to the 250 volt range. From the pointer position it is possible to approximate the voltage as 20 volts. Since this is well below the next range, the meter is switched, as in figure 1 -30(C). With the meter in the 50-volt range, it is possible to read the voltage as 22 volts. Since this is more than the next range of the meter (10 volts), the meter would not be switched to the next (lower) scale. Q34. How is it possible to use a current sensitive meter movement to measure voltage? Q35. What is voltmeter sensitivity? Q36. What method is used to allow a voltmeter to have several ranges? Q37. Why should you always use the highest range when connecting a voltmeter to a circuit? ELECTROSTATIC METER MOVEMENT The final meter movement covered in this chapter is the ELECTROSTATIC METER MOVEMENT. The other meter movements you have studied all react to current , the electrostatic meter movement reacts to voltage . The mechanism is based on the repulsion of like charges on the plates of a capacitor. The electrostatic meter movement is actually a large variable capacitor in which one set of plates is allowed to 1-31 move. The movement of the plates is opposed by a spring attached to the plates. A pointer that indicates the value of the voltage is attached to these movable plates. As the voltage increases, the plates develop more torque. To develop sufficient torque, the plates must be large and closely spaced. A very high voltage is necessary to provide movement, therefore, electrostatic voltmeters are used only for HIGH VOLTAGE measurement. VOLTMETER SAFETY PRECAUTIONS Just as with ammeters, voltmeters require safety precautions to prevent injury to personnel and damage to the voltmeter or equipment. The following is a list of the MINIMUM safety precautions for using a voltmeter. • Always connect voltmeters in parallel. • Always start with the highest range of a voltmeter. • Deenergize and discharge the circuit completely before connecting or disconnecting the voltmeter. • In dc voltmeters, observe the proper circuit polarity to prevent damage to the meter. • Never use a dc voltmeter to measure ac voltage. • Observe the general safety precautions of electrical and electronic devices. Q38. What type of meter movement reacts to voltage rather than current? Q39. What is the only use for the voltage sensitive meter movement? Q40. List the six safety precautions for the use of voltmeters. OHMMETERS The two instruments most commonly used to check the continuity (a complete circuit), or to measure the resistance of a circuit or circuit element, are the OHMMETER and the MEGGER (megohm meter). The ohmmeter is widely used to measure resistance and check the continuity of electrical circuits and devices. Its range usually extends to only a few megohms. The megger is widely used for measuring insulation resistance, such as between a wire and the outer surface of the insulation, and insulation resistance of cables and insulators. The range of a megger may extend to more than 1,000 megohms. The ohmmeter consists of a dc ammeter, with a few added features. The added features are: 1. A dc source of potential (usually a 3-volt battery) 2. One or more resistors (one of which is variable) 3. A simple ohmmeter circuit is shown in figure 1-31. The ohmmeter’s pointer deflection is controlled by the amount of battery current passing through the moving coil. Before measuring the resistance of an unknown resistor or electrical circuit, the test leads of the ohmmeter are first shorted together, as shown in figure 1-31. With the leads shorted, the meter is calibrated for proper operation on the selected range. While the leads are shorted, meter current is maximum and the pointer deflects a maximum amount, somewhere near the zero position on the ohms 1-32 scale. Because of this current through the meter with the leads shorted, it is necessary to remove the test leads when you are finished using the ohmmeter. If the leads were left connected, they could come in contact with each other and discharge the ohmmeter battery. When the variable resistor (rheostat) is adjusted properly, with the leads shorted, the pointer of the meter will come to rest exactly on the zero position. This indicates ZERO RESISTANCE between the test leads, which, in fact, are shorted together. The zero reading of a series-type ohmmeter is on the right-hand side of the scale, where as the zero reading for an ammeter or a voltmeter is generally to the left-hand side of the scale. (There is another type of ohmmeter which is discussed a little later on in this chapter.) When the test leads of an ohmmeter are separated, the pointer of the meter will return to the left side of the scale. The interruption of current and the spring tension act on the movable coil assembly, moving the pointer to the left side (oo) of the scale. U TEST LEADS SHORTED Figure 1-31. — A simple ohmmeter circuit. USING THE OHMMETER After the ohmmeter is adjusted for zero reading, it is ready to be connected in a circuit to measure resistance. A typical circuit and ohmmeter arrangement is shown in figure 1-32. 1-33 Figure 1-32. — Measuring circuit resistance with an ohmmeter. The power switch of the circuit to be measured should always be in the OFF position. This prevents the source voltage of the circuit from being applied across the meter, which could cause damage to the meter movement. The test leads of the ohmmeter are connected in series with the circuit to be measured (fig. 1-32). This causes the current produced by the 3-volt battery of the meter to flow through the circuit being tested. Assume that the meter test leads are connected at points a and b of figure 1-32. The amount of current that flows through the meter coil will depend on the total resistance of resistors Ri and R 2 , and the resistance of the meter. Since the meter has been preadjusted (zeroed), the amount of coil movement now depends solely on the resistance of R t and R 2 . The inclusion of R\ and R 2 raises the total series resistance, decreasing the current, and thus decreasing the pointer deflection. The pointer will now come to rest at a scale figure indicating the combined resistance of R\ and R 2 . If R\ or R 2 , or both, were replaced with a resistor(s) having a larger value, the current flow in the moving coil of the meter would be decreased further. The deflection would also be further decreased, and the scale indication would read a still higher circuit resistance. Movement of the moving coil is proportional to the amount of current flow. OHMMETER RANGES The amount of circuit resistance to be measured may vary over a wide range. In some cases it may be only a few ohms, and in others it may be as great as 1,000,000 ohms (1 megohm). To enable the meter to indicate any value being measured, with the least error, scale multiplication features are used in most ohmmeters. For example, a typical meter will have four test lead jacks-COMMON, R x 1, R x 10, and R x 100. The jack marked COMMON is connected internally through the battery to one side of the moving coil of the ohmmeter. The jacks marked R x 1, R x 10, and R x 100 are connected to three different size resistors located within the ohmmeter. This is shown in figure 1-33. 1-34 Some ohmmeters are equipped with a selector switch for selecting the multiplication scale desired, so only two test lead jacks are necessary. Other meters have a separate jack for each range, as shown in figure 1-33. The range to be used in measuring any particular unknown resistance (R x in figure 1-33) depends on the approximate value of the unknown resistance. For instance, assume the ohmmeter in figure 1-33 is calibrated in divisions from 0 to 1,000. If R x is greater than 1,000 ohms, and the R x 1 range is being used, the ohmmeter cannot measure it. This occurs because the combined series resistance of resistor R x 1 and R x is too great to allow sufficient battery current to flow to deflect the pointer away from infinity (oo). (Infinity is a quantity larger than the largest quantity you can measure.) The test lead would have to be plugged into the next range, R x 10. With this done, assume the pointer deflects to indicate 375 ohms. This would indicate that R x has 375 ohms x 10, or 3,750 ohms resistance. The change of range caused the deflection because resistor R x 10 has about 1/10 the resistance of resistor R x 1. Thus, selecting the smaller series resistance permitted a battery current of sufficient amount to cause a useful pointer deflection. If the R x 100 range were used to measure the same 3,750-ohm resistor, the pointer would deflect still further, to the 37.5-ohm position. This increased deflection would occur because resistor R x 100 has about 1/10 the resistance of resistor R x 10. The foregoing circuit arrangement allows the same amount of current to flow through the meter’s moving coil whether the meter measures 10,000 ohms on the R x 10 scale, or 100,000 ohms on the R x 100 scale. It always takes the same amount of current to deflect the pointer to a certain position on the scale (midscale position for example), regardless of the multiplication factor being used. Since the multiplier resistors are of different values, it is necessary to ALWAYS "zero" adjust the meter for each multiplication fact or selected. You should select the multiplication factor (range) that will result in the pointer coming to rest as near as possible to the midpoint of the scale . This enables you to read the resistance more accurately, because the scale readings are more easily interpreted at or near midpoint. 1-35 Q41. What electrical quantity is measured by an ohmmeter? Q42. What other measurement can an ohmmeter make? Q43. How is a series-type ohmmeter connected to the circuit being measured? Q44. What is used to provide the ohmmeter with several ranges ? Q45. What area of an ohmmeter scale should be used when measuring circuits? SHUNT OHMMETER The ohmmeter described to this point is known as a series ohmmeter, because the resistance to be measured is in series with the internal resistors and the meter movement of the ohmmeter. Another type of ohmmeter is the SHUNT OHMMETER. In the shunt ohmmeter, the resistance to be measured shunts (is in parallel with) the meter movement of the ohmmeter. The most obvious way to tell the difference between the series and shunt ohmmeters is by the scale of the meter. Figure 1-34 shows the scale of a series ohmmeter and the scale of a shunt ohmmeter. (A) SERIES OHMMETER